
Towards A Squeak/Smalltalk-based Python IDE
An Interpreter-level Integration of Python with Smalltalk

Fabio Niephaus

Hasso Plattner Institute, University of Potsdam

Potsdam, Germany

fniephaus@acm.org

ABSTRACT

In this paper, we present how we integrated Python with a Smalltalk

environment on interpreter level in order to be able to reuse con-

cepts and tools from Smalltalk for Python development.

CCS CONCEPTS

• Software and its engineering → Integrated and visual de-

velopment environments; Interpreters;

KEYWORDS

Smalltalk, Python, IDE, interpreters, debugging

ACM Reference format:

Fabio Niephaus. 2017. Towards A Squeak/Smalltalk-based Python IDE. In

Proceedings of Programming ’17, Brussels, Belgium, April 03-06, 2017, 2 pages.

DOI: http://dx.doi.org/10.1145/3079368.3079370

1 INTRODUCTION

The Smalltalk programming language is one of the few languages

that comes with its own development environment [6]. It is largely

implemented in itself, which enables many features that are miss-

ing in other programming languages and integrated development

environments (ides).

One example of such a feature is Smalltalk’s interactive debug-

ger, which allows stop-edit-continue programming at runtime. In

contrast, Python’s default debugger PDB [15] uses traditional break-

points to stop-and-inspect the runtime. It does not allow developers

to modify program code and continue afterwards, or to interrupt

the program at arbitrary points. Python ides provide UI-based

debugging tools which can be more convenient, but their function-

ality is ultimately a graphical layer over PDB.

We believe that the advantages of Smalltalk’s tools, such as the

debugger, as well as the ability to rapidly build new tools would also

be bene�cial for developers working with other programming lan-

guages. We intend to lay the groundwork for this e�ort by demon-

strating a mechanism to integrate other dynamic, object-oriented

languages with Smalltalk, using Python as our prototype. In our

design, we integrate Python and Smalltalk at an equal level rather

than one running on top of the other. Not only will this result in

better performance, but more importantly it will allow us to adopt

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

Programming ’17, Brussels, Belgium
© 2017 Copyright held by the owner/author(s). 978-1-4503-4836-2/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3079368.3079370

Smalltalk tools, so that they can be used for Python development.

On the other hand, this also makes thousands of Python packages

available to the Smalltalk community, including popular and ma-

ture packages such as NumPy [10], Django [7], or scikit-learn [11].

With our work, we aim to make the following contributions:

(1) Demonstrate an approach to deeply integrate a foreign

programming language with Smalltalk;

(2) Lay the groundwork for adapting Smalltalk concepts and

tools for Python development;

(3) Allow the Smalltalk community to easily reuse Python li-

braries and frameworks.

2 IMPLEMENTATION

Our approach is based on interpreter composition of RPython-

based virtual machines (vms) [1, 2]. We use RSqueak/VM [4] for

Squeak/Smalltalk [8] and PyPy [13] for Python. Since we want to be

able to interact with the Smalltalk environment while a Python pro-

gram is running, we need to �nd a way to run the two interpreter

loops concurrently.

Figure 1: The vm switches to the Python interpreter loop

whenever a Smalltalk-level Python process is scheduled.

Smalltalk has a concept of processes which can be scheduled dy-

namically [6]. Figure 1 shows how we leverage this and integrate

the execution of Python bytecodes with a Smalltalk-level process,

leaving the decision when to run more Python bytecodes up to

the Smalltalk scheduler. This scheduler uses priority-based round-

robin scheduling [6] to run Smalltalk processes, and therefore en-

sures that Smalltalk’s standard processes, such as the UI process,

are being scheduled alongside with Python-executing processes.

This keeps the Smalltalk environment responsive and even allows

us to interrupt a Python process to inspect it from Smalltalk.

In a second step, we introduce a special PythonObject class in

Smalltalk and add appropriate primitives to the vm in order to be

able to interact with and send messages to Python objects. From

1

1

Programming ’17, April 03-06, 2017, Brussels, Belgium Fabio Niephaus

now on, we can execute Python code from Smalltalk by calling

a primEval:filename:mode: method, which, just like Python’s

compile() built-in, expects Python source code, a �lename, and

a mode (“eval”, “exec”, or “single”). The result of such a call is ei-

ther a PythonObject, or a Smalltalk object in case the vm is able

to automatically convert a primitive data type. When sending a

message to a PythonObject, the vm �rst attempts to call a corre-

sponding Python method or to get a Python attribute. If this was

unsuccessful, it performs a normal Smalltalk lookup. This means

that PythonObjects are hybrid objects, because they can have both,

methods written in Python and in Smalltalk. As an example for the

interaction with PythonObjects, calling

(PythonObject

primEval: 'dict(x=123, y=456)'

filename: '<string>'

mode: 'eval') __getitem__: 'x'

results in a SmallInteger 123 in Smalltalk, and is equivalent to

calling dict(x=123, y=456).__getitem__('x') in Python.

With this, we can start to adopt and build new tools in Smalltalk

to control and modify a Python program at runtime as well as use

Python libraries and objects in Smalltalk applications.

3 RELATEDWORK

There are several implementations of programming languages which

run on top of another language, such as JRuby [9], which is a Ruby

implementation on top of Java. Moreover, the idea to compose in-

terpreters in RPython is also not a new one [2, 3]. However, in these

approaches debuggers and other tools for the foreign language can-

not share runtime concepts and need to be built from scratch. The

Helvetia [12] project aims to make Smalltalk tools reusable, but

targets embedded languages. Eco [5] is a language composition

editor which allows to write application in multiple languages at

the same time, but does not execute them.

4 FUTUREWORK

In the following months, we are going to adopt Smalltalk tools, such

as the debugger, the system browser, or the test runner, so that they

can be used for Python development. Moreover, adapted versions

of the workspace and inspection tools would allow live, interac-

tive exploration of Python objects. In addition, we want to eval-

uate whether building application-speci�c tools in Smalltalk, for

example using Vivide [14], translates to other languages. We have

already implemented simple applications which reuse the Python

standard library. But it would also be interesting to see a Smalltalk

project using more powerful Python packages such as scikit-learn

in order to further improve the interaction between the two lan-

guages. We also want to generalize our approach and apply it to

other programming languages, such as integrating Ruby, to demon-

strate that the design is not limited to Python. Further on, we want

to investigate if and how we can integrate languages with other

programming paradigms, such as Prolog.

5 CONCLUSION

In this paper, we demonstrated how we designed and implemented

a vm with support for Smalltalk and Python. Since our approach is

based on interpreter composition, we only compromise little perfor-

mance for the ability to control the execution of Python code from

Smalltalk. With this prototype vm, we can start adopting Smalltalk

tools, such as its interactive debugger, for Python development.

REFERENCES

[1] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. Rpython: A step towards

reconciling dynamically and statically typed oo languages. In Proceedings of the
2007 Symposium on Dynamic Languages, DLS ’07, pages 53–64, New York, NY,

USA, 2007. ACM. ISBN 978-1-59593-868-8. doi: 10.1145/1297081.1297091. URL

http://doi.acm.org/10.1145/1297081.1297091.

[2] E. Barrett, C. F. Bolz, and L. Tratt. Unipycation: A case study in cross-language

tracing. In Proceedings of the 7th ACM workshop on Virtual machines and inter-
mediate languages, pages 31–40. ACM, 2013.

[3] E. Barrett, C. F. Bolz, and L. Tratt. Approaches to interpreter composition. Com-
puter Languages, Systems & Structures, 44:199–217, 2015.

[4] C. F. Bolz, A. Kuhn, A. Lienhard, N. D. Matsakis, O. Nierstrasz, L. Renggli, A. Rigo,

and T. Verwaest. Back to the Future in One Week — Implementing a Smalltalk VM
in PyPy, pages 123–139. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

ISBN 978-3-540-89275-5.

[5] L. Diekmann and L. Tratt. Eco: A language composition editor. In International
Conference on Software Language Engineering, pages 82–101. Springer, 2014.

[6] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implementation.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1983. ISBN

0-201-11371-6.

[7] A. Holovaty and J. Kaplan-Moss. The de�nitive guide to Django: Web development
done right. Apress, 2009.

[8] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay. Back to the future: the

story of squeak, a practical smalltalk written in itself. In ACM SIGPLAN Notices,
volume 32, pages 318–326. ACM, 1997.

[9] C. O. Nutter, T. Enebo, N. Sieger, O. Bini, and I. Dees. Using JRuby: Bringing
Ruby to Java. Pragmatic Bookshelf, 1st edition, 2011. ISBN 9781934356654.

[10] T. E. Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning

in python. Journal of Machine Learning Research, 12(Oct):2825–2830, 2011.

[12] L. Renggli, T. Gîrba, and O. Nierstrasz. Embedding languages without breaking

tools. In European Conference on Object-Oriented Programming, pages 380–404.

Springer, 2010.

[13] A. Rigo and S. Pedroni. Pypy’s approach to virtual machine construction. In

Companion to the 21st ACM SIGPLAN Symposium onObject-oriented Programming
Systems, Languages, and Applications, OOPSLA ’06, pages 944–953, New York,

NY, USA, 2006. ACM. ISBN 1-59593-491-X. doi: 10.1145/1176617.1176753. URL

http://doi.acm.org/10.1145/1176617.1176753.

[14] M. Taeumel, B. Steinert, and R. Hirschfeld. The vivide programming environ-

ment: connecting run-time information with programmers’ system knowledge.

In Proceedings of the ACM international symposium on New ideas, new paradigms,
and re�ections on programming and software, pages 117–126. ACM, 2012.

[15] G. van Rossum. Python Library Reference. Centrum voor Wiskunde en Informat-

ica (CWI), 1995.

2

2

http://doi.acm.org/10.1145/1297081.1297091
http://doi.acm.org/10.1145/1176617.1176753

	Abstract
	1 Introduction
	2 Implementation
	3 Related Work
	4 Future Work
	5 Conclusion
	References

