
Optimizing Sideways Composition
Fast Context-oriented Programming in ContextPyPy

Tobias Pape* Tim Felgentreff*† Robert Hirschfeld*†

*Hasso Plattner Institute, University of Potsdam, Germany
†Communications Design Group (CDG), SAP Labs, USA

†Viewpoints Research Institute, USA
{firstname}.{lastname}@hpi.uni-potsdam.de

Abstract
The prevalent way of code sharing in many current object
systems is static and/or single inheritance; both are limit-
ing in situations that call for multi-dimensional decomposi-
tion. Sideways composition provides a technique to reduce
their limitations. Context-oriented programming (cop) no-
tably applies sideways composition to achieve better modu-
larity. However, most cop implementations have a substan-
tial performance overhead. This is partly because weaving
and execution of layered methods violate assumptions that
common language implementations hold about lookup. Meta-
tracing just-in-time (jit) compilers have unique characteris-
tics that can alleviate the performance overhead, as they can
treat lookup differently.

We show that meta-tracing jit compilers are good at
optimizing sideways composition and give initial, supporting
results. Furthermore, we suggest that explicit communication
with the jit compiler in a cop implementation can improve
performance further.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.3.2 [Pro-
gramming Languages]: Language Classifications—Multi-
paradigm languages; D.3.4 [Programming Languages]:
Processors—Run-time environments

Keywords context-oriented programming, meta-tracing jit
compilers, optimization, virtual machines, PyPy

1. Introduction
Sideways composition provides a technique to avoid some
of the limitations of static, single inheritance object-oriented
systems where multi-dimensional composition of behavior

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

COP’16, July 17-22 2016, Rome, Italy
Copyright© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4440-1/16/07. . . $15.00
DOI: http://dx.doi.org/10.1145/2951965.2951967

is desirable. In particular, context-oriented programming ap-
plies sideways composition to improve modularity. cop as a
modularity mechanism to dynamically adapt behavior at run-
time has been demonstrated to be useful in a variety of scenar-
ios. Beyond its original motivation for dynamically adapting
systems based on environmental factors such as battery level,
geolocation, or time of day [9], cop has also been applied to
provide safety in the development of live systems [12] or to
let multiple conflicting versions of programming interfaces
co-exist [7].

However, as with many abstraction mechanisms, cop
comes with some overhead, a fact that has been repeat-
edly recognized. By weaving and executing layered methods,
it violates assumptions of common language implementa-
tions and thus context layer aware method lookup requires
additional operations at run-time. Most cop implementa-
tions in dynamic languages use the host language’s meta-
programming facilities to redirect method dispatch, whereas
statically compiled languages require additional compilation
steps to construct data structures to track layer activation
states at run-time. Both of these solutions come with consid-
erable performance decrease from 75 % to 99 % [2].

We argue that virtual machines (vms) with meta-tracing
jit compilers can alleviate the performance overhead, be-
cause their execution model allows them to optimize non-
standard lookup. This can be achieved by explicitly telling
the jit complier crucial information using small “hints” on
the side of the cop implementation, avoiding a complex ar-
chitecture to cache and optimize lookup.

In this work, we make the following contributions and
show

• that the performance overhead of sideways composition
is still present in most cop implementations;
• that meta-tracing–based jit compilation can reduce the

overhead of sideways composition; and
• that announcing the active layer composition explicitly

to the jit compiler can further reduce the overhead of
sideways composition.

2. Background: Meta-tracing jit Compilers
Just-in-time (jit) compilation is one of the most frequently
used technique for speeding up the execution of programs at
run-time. Many language implementations have yet benefit-
ted from jit compilers, including but not limited to today’s
popular languages such as Java [13] or JavaScript [10]. A
particular implementation approach for jit compilers is to
use tracing, that is, recording the steps an interpreter takes
to obtain its instruction sequence, a trace. This trace is sub-
sequently used instead of the interpreter to execute the same
part of that program [3] at higher speed.

With meta-tracing the execution of the interpreter is ob-
served instead of the execution of the application program.
The resulting traces are therefore not specific to the partic-
ular application but to the underlying interpreter [5]. This
way, language implementers do not have to implement opti-
mized language-specific jit compilers but rather to provide
a straightforward language-specific interpreter that is subject
to the meta-tracing technique. “Hints” enable communication
with and hence fine-tuning of jit compiler [4].

3. Faster Sideways Composition with
Meta-tracing

We propose that meta-tracing jit compilers can reduce the
overhead of sideways composition and cop, possibly more so
when telling the active layer composition to the jit compiler.

3.1 Employing a Meta-tracing jit
Context-oriented programming employs sideways composi-
tion to inject context-dependent behavioral changes into an
existing hierarchy of behavior. These hierarchies are typically
defined by the static and/or single inheritance of object sys-
tems. These hierarchies are typically important for execution
time performance, as they form the basis for lookup.

Most execution environments, such as vms for dynamic
object-oriented languages, assume that those hierarchies
change rarely and hence lookup can be fast. However, us-
ing sideways composition to alter behavior invalidates this
assumption. Especially, since cop explicitly redefines lookup
based on currently active layers; the composition of currently
active layers becomes crucial for calculating the lookup in
the dynamic extent of executed code. If this composition
stays the same, lookup stays the same, if it changes, lookup
may change. Execution environments typically have to de-
cide, whether to always re-exercise the lookup for every
method under the active layers, or cache (and invalidate)
lookup information when the composition of active layers
changes. For example in the sequence

1 -- active layers: ∅
2 method1()
3 activate(layer1)
4 method2()
5 deactivate(layer1)

a cop implementation typically uses one of the following
two strategies:

1. lookup method1() under the composition ∅ and lookup
method2() under the composition [layer1], or

2. use cached lookup information for method1(), switch
cached lookup information due to change in active layers,
use (new) cached lookup information for method2().

Both cases effect a performance impact either on every
lookup or on every layer change.

With meta-tracing jit compilers, however, this effect is
much less severe. Although rarely-changing lookup still is
helpful for its operation, a change in lookup— for example
induced by a layer activation — can be anticipated and be
accounted for.

Thus, with a properly instructed meta-tracing jit com-
piler, a third option becomes available. At points in the exe-
cution where the composition of active layers becomes im-
portant, a guard ensures that this composition did not change.
While counter-intuitive at first, this actually is a benefit. When
a certain different composition has been encountered often
enough at the guard, the meta-tracing jit compiler will intro-
duce a bridge into a new part of a trace, in which this different
composition can be assumed not to change, and lookup can
be optimized accordingly. Note that this resembles strategy 2
above, but is implicit and guided by the jit compiler. There-
fore, the cop implementation does not have to manage the
caching information when altering the lookup information,
saving both execution time and implementation complexity.

3.2 Promoting the Compositions of Active Layers
The compositions of active layers is crucially important
for the lookup in cop, and all strategies above reflect this.
However, only the language-level implementation of cop
knows about the composition’s importance, and even for
meta-tracing jit compiler’s strategy, the jit compiler first
hast to become aware of the fact that the composition is
important for its trace. Yet, the jit compiler has to apply
heuristics to identify the composition as trace-important.

This situation is commonly known when implementing
vms that use a meta-tracing jit compiler. Based on the value
of a certain object it may be desirable to specialize traces
to these values (essentially what happened above with the
guard and the bridge). Implementers can chose to promote [4,
§3.1] such an object and the jit compiler will ensure that
traces are specialized to the object’s values, regardless of
wether the jit compiler’s heuristics would result in the same
specialization or not. If applied carefully, this promotion can
decrease execution time.

Up until recently, this promotion of objects had not been
available to language-level implementers of cop. However,
at the time of writing, one vm with meta-tracing jit compiler
(PyPy) exposes the promote functionality to the language-
level and it is possible to use it for a cop implementation.

The composition of active layers can now be promoted and
the meta-tracing jit compiler now ensures that (a) a special-
ized traces exists for each encountered composition, and (b)
within a given trace, the composition will not change and
can be relied upon. This assumption now can be made when
exercising lookup during execution, saving execution time.

4. ContextPyPy Implementation Outline
We briefly describe certain implementation details of Con-
textPy and how “hints” to the meta-tracing jit compiler lead
to ContextPyPy.

During development, programmers using ContextPy can
annotate methods as being advices before/after/around their
base methods in a certain layer (Layer-in-Class). Using
Python annotations, these methods are registered to a de-
scriptor holding onto all partial methods and possibly a base
method. That way only methods that are layered at least once
are affected. The descriptor, being a Python callable, takes
the place of the named method in the class and, from this
point on, dictates execution and effectively lookup of the par-
tial methods. When code calls the method— now represented
by the descriptor — the active layer composition is deter-
mined, considering globally activated (globalActivateLayer
plus counterpart) but also dynamically active layers. For that,
a thread local storage provides a dynamically scoped layer
composition, which can be affected using Python’s with syn-
tax (with activeLayers(myLayer): ...). Based on that compo-
sition, a partial method ordering is determined and cached
using the composition as key. This is a simple optimization
most other cop implementations also use. Then, the first
method of the ordering is executed. The global function
proceed() inspects the descriptors ordering to determine the
next method to be executed.

As described in section 3.2, it is desirable to have one trace
per layer composition, which the heuristics typically provide.
However, with recent PyPy, we can tell this directly to the jit
compiler. Moreover, we are interested in the method ordering
resulting from the layer composition to know what method
to execute next. Therefore, in ContextPyPy, the method
“talking” to the jit promotes this ordering, as presented in
the following method:

1 def get_or_build_methods(self):
2 if self.layer_composition_unchanged():
3 return promote(self.last_ordering)
4 layer_composition = _baselayers + _tls.activelayers
5 last_ordering = self.method_ordering(layer_composition)
6 return last_ordering

5. Performance Evaluation with cop
As described in the introduction, we evaluate the following:

1. Sideways composition still has a considerable impact on
execution time.

2. Meta-tracing jit compilers can alleviate the performance
impact of sideways composition on execution time.

3. Explicit promotion of the active layer composition can
further improve execution time.

For 1, we re-run in parts benchmarks presented in 2009 [2],
which showed a performance impact of sideways composi-
tion as used with cop implementations. For 2, we addition-
ally augment the well-known DeltaBlue benchmark [8] with
layers and additional functionality and compare the impact of
sideways composition on platforms with and without meta-
tracing jit compilers. For 3, we run both benchmarks with a
promote-enhanced cop implementation, as well. We present
and discuss the most important results for each benchmark
and provide all results in the appendix.

5.1 Setup
System We executed the benchmarks on an Intel Core i7-
4850HQ at 2.3 GHz with 6 MB cache and 16 GB of RAM.
The machine ran Mac OS X 10.9.5. Certain benchmarks were
run on an Intel Core i7-4650U at 1.7 GHz with 4 MB cache
and 8 GB of RAM, this machine ran Windows 10.

Implementations We used ContextPy1 with Python 2.7.5
and PyPy 5.1 on OS X and ContextPyPy2 with PyPy 5.1
on OS X in both benchmarks. Additionally, for the re-run
of the 2009 benchmark, we used ContextJS [11]3 with V8
(Chrome 50.0.2661.66 beta 64-bit) on OS X, Chakra (Edge
25.10586) on Windows 10 and V8 (Chrome 49.0.2623.112)
on Windows 10; as well as LispWorks® 64-bit 7.0.0 on OS X.

Introducing layers with ContextPy increases the initial
size of the traces beyond PyPy’s standard maximum trace
limit. Therefore, we use a slightly altered build of PyPy 5.1
that allows a much higher trace limit than the standard build.

Methodology For cop09a and cop09b (see section 5.2),
every benchmark was run with increasing size until a mea-
surement took at least 5 seconds; this matches the original
methodology [2]. Warm-up is provided by the not measured
runs. For DeltaBlue (see section 5.2), every benchmark was
run 5 times uninterrupted in a new process with additional 3
times warm-up prior to measurement for PyPy4. The execu-
tion time was always measured in-system and, hence, does
not include start-up. We show the arithmetic mean of all runs
along with bootstrapped [6] confidence intervals for a 95 %
confidence level.

5.2 Benchmarks
Our first set of benchmarks is taken from one of our ear-
lier papers [2]. These micro-benchmarks attempt to mea-
sure the pure performance overhead of dispatching to ac-
tive layers and of layer activation. In the first part of these
benchmarks (cop09a), we use an object with ten integer

1 https://bitbucket.org/cfbolz/contextpy/ rev 5155cb7.
2 ContextPy as above but with explicit promote.
3 https://github.com/LivelyKernel/LivelyKernel/tree/master/core/cop rev 0bd117c.
4 Python did not exhibit any warm-up–related differences

https://bitbucket.org/cfbolz/contextpy/
https://github.com/LivelyKernel/LivelyKernel/tree/master/core/cop

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ContextL
0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%
3.5%
4.0%

ContextJS Edge ContextJS Chrome OSX ContextJS Chrome Win ContextPy Python OSX
0%

50%
100%
150%
200%
250%
300%
350%
400%

ContextPy PyPy OSX ContextPyPy PyPy OSX

Figure 1. Results of cop09a. Relative throughput of method execution in cop implementations with (each left to right) 0 to 10
layers normalized to the respective non-layered workload. Higher is better. For raw numbers see Table A.2 and Table A.4. (Note
the different scales, see Figure A.1 for an overview comparison.)

variables (counter1 to counter10) that provides ten meth-
ods (method1 to method10), where each methodi incre-
ments all counters from counter1 to counteri by one. The
same behavior is provided by a method layered. The base
method increments only counter1, and nine layers (Layer1
to Layer9) provide a partial method to adapt the base method
to each increment one of the other counters. Running just the
layered method without any layers being active thus yields
the same behavior as method1.

In the second part (cop09b) of our first benchmark set, we
measure the performance impact of layer activation. For most
cop languages, layer activation means updating internal data
structures with the current layer composition. To quantify
this impact, we measured the execution time of running
five methods (method1 to method5) in succession that each
increment one counter. We compare this to the execution
time of five partial methods from five layers that implement
the same method body, where each layer is activated in
succession.

Our second benchmark (DeltaBlue) measures the relative
overhead of sideways composition on a more wide-spread
benchmark, DeltaBlue. For that, we augmented DeltaBlue
with additional functionality (reversed lists for storage, count
of constraint executions and binary constraints), both stati-
cally added to the benchmark (DeltaPurple 4) and dynam-
ically composed via layers (DeltaRed +). To measure the
overhead of the mere presence of dynamic sideways compo-
sition functionality without actually using it, we also mea-
sured DeltaRed with all layers deactivated (DeltaViolet �).
We normalize the execution time of all four benchmarks to
DeltaBlue ◦ on each implementation and vm. That way, we
show the overhead of the cop implementation rather than
mere execution time.

5.3 Results
The results of the cop09a benchmark are shown in Figure 1.
We evaluated the performance by comparing each ordinary
method methodi with the execution performance of activat-
ing all layers from Layer1 to Layeri (which gives the same
behavior) and normalizing to the ordinary method. As we re-
ported in our previous work, ContextL shows a performance
degradation ranging from 22 % to 65 %. Interestingly, the de-
crease in performance does not seem to correspond to the
number of active layers, likely due to the variability of the

optimizations of the underlying Lisp vm. On the V8 and
Chakra JavaScript vms, ContextJS incurs a massive perfor-
mance hit of over 99.7 % in all cases, even where no layer
is active. ContextPy on the Python vm is little better with
overhead around 95 %.

Running ContextPy on PyPy, that is, using a meta-tracing
jit compiler, yields vastly different results. Against the trend
of the other implementation/platform combinations, using
cop layers can increase performance. When just layers are
present but not activated, ContextPy on PyPy can gain a 3.5×
speedup and ContextPyPy even over 4×. Compared with
ContextPy on Python, the relative performance difference
is up to two orders of magnitude improved.

Moreover, ContextPyPy manages to retain a speedup of at
least 2× over the non-layered version up to three active layers,
exhibiting only minor slowdown for four to six active layers.
After that, the performance levels up with ContextPy on PyPy.
We attribute the latter, rather steep decline in performance to
how the meta-tracing jit compiler handles rather long traces
that can occur with an increasing number of active layers and
which are yet to be investigated.

Discussion (cop09a) The meta-tracing jit compiler of
PyPy appears to be effective at eliminating the overhead of
sideways composition. The results of ContextPyPy suggest
that communicating layer information properly can vastly
improve this effect, too.

The results of the cop09b benchmark are shown in Figure 2.
The performance impact for layer activation for each of the
tested systems is comparable and clearly increases as more
layers are activated. Moreover, ContextPy on Python— the
only implementation/platform combination without jit or
jit-like optimizations— exhibits the least severe impact with
increasing layers.

Discussion (cop09b) The meta-tracing jit compiler of
PyPy seems to have to invalidate assumptions on layer ac-
tivations, possibly not being able to re-use certain traces. The
results of ContextPyPy suggest that the current way of com-
municating layer information to the meta-tracing jit com-
piler in fact can also hamper optimizations, that is, such hints
have to be used with great care.

The results of the DeltaBlue benchmark are shown in Fig-
ure 3. Expectedly, the additional workload of DeltaPurple

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

ContextL ContextJS Edge ContextJS Chrome OSX ContextJS Chrome Win ContextPy Python OSX ContextPy PyPy OSX ContextPyPy PyPy OSX

Figure 2. Results of cop09b. Relative throughput of layer activation in cop implementations with (each left to right) 1 to 5
layers normalized to a workload with no layers active whatsoever. Higher is better. For raw numbers see Table A.3 and Table A.4.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

Python PyPy ContextPyPy

R
e

la
ti

v
e

 R
u

n
ti

m
e

Benchmark

DeltaBlue

DeltaPurple

DeltaViolet

DeltaRed

Figure 3. Results of DeltaBlue. Relative execution time of Delta. . . benchmarks on ContextPy on Python and PyPy; and
ContextPyPy. Normalized to DeltaBlue. Lower is better. For raw numbers see Table A.1.

over DeltaBlue is comparable across all three implementa-
tion/platform combinations. However, the mere presence of
layered methods (DeltaViolet) has a comparatively high im-
pact on Python, with up to 3× slowdown. At the same time,
virtually no overhead is present on PyPy for DeltaViolet. The
overhead of activated layers (DeltaRed) is quite severe on
Python, ranging about 5× of DeltaPurple, whereas on PyPy
the slowdown is less than 50 % (≈ 1.4×). ContextPyPy per-
forms virtually the same as ContextPy on PyPy.

Discussion (DeltaBlue) Being a less “micro” benchmark,
DeltaBlue reinforces the impression of cop09a that the
meta-tracing jit compiler of PyPy is effective at eliminat-
ing the overhead of sideways composition. Especially the no-
layers-activated case having no overhead seems important for
wider adoption. Seeing cop09a and cop09b, the indifference
between ContextPy on PyPy and ContextPyPy is unexpected,
both the missing speedup from cop09a and the missing slow-
down from cop09b. However, the slowdown of cop09b is
neither present for ContextPy on PyPy, suggesting that Con-
textPyPy’s promote approach could be nevertheless viable to
use.

6. Related Work
Other implementations of context-oriented programming
have tried to optimize their implementations using traditional
compiler and optimization techniques. However, while they
can only reduce the performance overhead in some cases,
they are sometimes difficult to apply and increase the com-
plexity of the system. A common optimization approach

is to shift the performance impact to the layer activation
time under the assumption the changes in layer composition
are comparatively rarer than execution of layered methods.
This approach can drastically limit the performance impact
of layers when the composition changes rarely, but at the
cost of reduced performance for applications where the layer
composition may change frequently.

Instances where this optimization is used are ContextAm-
ber, Elektra, and cj. ContextAmber [17] optimistically flat-
tens layered methods when the layer composition changes
to achieve near native performance during execution. An ex-
tension to the C++ configuration management system Elek-
tra [14] make use of extensive code generation and caching of
the active layer composition to minimize the performance im-
pact of running with active layers in a tight loop. The cj [15,
16] system that implements cop on top of the delMDSOC
virtual machine model. This model is well suited towards
multi-dimensional dispatch, and thus a cop implementation
on top of it achieves good performance in this case. However,
as with the other two approaches, switching layers becomes
more expensive as a result.

Another approach at optimizing cop that is closer to the
work presented here is to use facilities of general purpose
vms directly. One such facility is Java’s invokedynamic in-
struction that allows language extensions to implement new
lookup semantics for the Java vm. However, prior work [1]
indicates that this extension point may provide only mini-
mally improved performance compared to an implementation
using language-level caching facilities, albeit using less code
and a simplified architecture.

7. Conclusion and Future Work
Our first results for using meta-tracing jit optimizations
to reduce the performance impact of cop are promising
for micro benchmarks. The meta-tracing jit compiler of
PyPy appears to be effective at eliminating the overhead of
sideways composition for method lookup. Our results also
show that a few, carefully placed hints can help the runtime
to improve this effect, too.

For future work we have to further investigate how careful
one has to be in placing those hints and how the performance
behavior changes with larger applications. Our results with a
larger benchmark indicate that the approach is viable, but so
far the performance is less than we had hoped for. Nonethe-
less the fact that we see no overhead with our approach for
executing layered methods when no or only one layer is active
and the layer composition does not change already shows that
cop can be enabled in a language without paying a perfor-
mance penalty. We think this result in itself is important for
to argue for wider adoption of sideways composition mecha-
nisms like cop.

Acknowledgments
We gratefully acknowledge the financial support of HPI’s
Research School and the Hasso Plattner Design Thinking
Research Program (HPDTRP). LispWorks Ltd. kindly pro-
vided an evaluation license of LispWorks® 64-bit for Mac
OS X for testing purposes. We greatly appreciate the support
of Carl Friedrich Bolz with the ContextPy and ContextPyPy
implementations.

We want to thank the anonymous reviewers for their
feedback and suggestions.

References
[1] M. Appeltauer, M. Haupt, and R. Hirschfeld. “Layered

method dispatch with INVOKEDYNAMIC: an imple-
mentation study”. In: Proc. Workshop on COP. ACM.
2010, p. 4.

[2] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and
M. Perscheid. “A Comparison of Context-oriented Pro-
gramming Languages”. In: Proc. Workshop on COP.
Genova, Italy: ACM, 2009, pp. 1–6.

[3] V. Bala, E. Duesterwald, and S. Banerjia. “Dynamo: A
Transparent Dynamic Optimization System”. In: ACM
SIGPLAN Notices 35.5 (2000), pp. 1–12.

[4] C. F. Bolz, A. Cuni, M. Fijałkowski, M. Leuschel, S.
Pedroni, and A. Rigo. “Runtime Feedback in a Meta-
tracing JIT for Efficient Dynamic Languages”. In: Proc.
ICOOOLPS. Lancaster, United Kingdom: ACM, 2011,
9:1–9:8.

[5] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo.
“Tracing the Meta-level: PyPy’s Tracing JIT Com-
piler”. In: Proc. ICOOOLPS. Genova, Italy: ACM,
2009, pp. 18–25.

[6] A. C. Davison and D. V. Hinkley. “Confidence Inter-
vals”. In: Bootstrap Methods and Their Application.
Cambridge, 1997. Chap. 5.

[7] T. Felgentreff. “A Tool Building Example: Layers as
Source Code Packages”. Demo given at 5th Interna-
tional Workshop on Context-Oriented Programming,
Montpellier, France. July 2, 2013.

[8] B. N. Freeman-Benson and J. Maloney. “The DeltaBlue
algorithm: An incremental constraint hierarchy solver”.
In: Proc. 8th Intl. Conf. on Computers and Communi-
cations. IEEE. 1989, pp. 538–542.

[9] R. Hirschfeld, P. Costanza, and O. Nierstrasz. “Context-
oriented Programming”. In: Journal of Object Technol-
ogy 7.3 (2008), pp. 125–151.

[10] M. Hölttä. Crankshafting from the ground up. Tech. rep.
Google, Aug. 2013.

[11] J. Lincke, M. Appeltauer, B. Steinert, and R. Hirschfeld.
“An open implementation for context-oriented layer
composition in ContextJS”. In: Sci. Comput. Program.
76.12 (2011), pp. 1194–1209.

[12] J. Lincke and R. Hirschfeld. “Scoping changes in self-
supporting development environments using context-
oriented programming”. In: Proc. Workshop on COP.
ACM. June 2012, pp. 2–10.

[13] M. Paleczny, C. A. Vick, and C. Click. “The Java
HotSpot™ Server Compiler”. In: Proc. Symp. Java™
Virtual Machine Research and Technology. Vol. 1.
JVM’01. Monterey, California: USENIX Association,
Apr. 24, 2001.

[14] M. Raab and F. Puntigam. “Program Execution Envi-
ronments As Contextual Values”. In: Proc. Workshop
on COP. Uppsala, Sweden: ACM, 2014, 8:1–8:6.

[15] H. Schippers, M. Haupt, and R. Hirschfeld. “An im-
plementation substrate for languages composing mod-
ularized crosscutting concerns”. In: Proc. SAC. ACM.
2009, pp. 1944–1951.

[16] H. Schippers, D. Janssens, M. Haupt, and R. Hirschfeld.
“Delegation-based semantics for modularizing crosscut-
ting concerns”. In: ACM Sigplan Notices. Vol. 43. 10.
ACM. 2008, pp. 525–542.

[17] M. Springer, J. Lincke, and R. Hirschfeld. “Efficient
Layered Method Execution in ContextAmber”. In:
Proc. Workshop on COP. ACM. 2015, p. 5.

A. Comprehensive Results

Table A.1. DeltaBlue. Execution time for each benchmark in milliseconds with confidence intervals for a 95 % confidence
level. Lower is better.

Benchmark Python PyPy ContextPyPy

DeltaBlue 10 269 ± 185 2368 ± 30 2354 ± 21
DeltaPurple 13 529 ± 171 3036 ± 36 3054 ± 23
DeltaViolet 35 924 ± 541 2451 ± 14 2427 ± 9
DeltaRed 72 331 ± 3509 4646 ± 77 4675 ± 73

0%
50%

100%
150%
200%
250%
300%
350%
400%

ContextL ContextJS Edge ContextJS Chrome OSX ContextJS Chrome Win ContextPy Python OSX ContextPy PyPy OSX ContextPyPy PyPy OSX

Figure A.1. Overview for cop09a. Relative throughput of method execution in cop implementations with (each left to right) 0
to 10 layers normalized to the respective non-layered workload. Higher is better.

Table A.2. cop09a. Relative throughput of method execution in cop implementations with 0 to 10 layers normalized to the
respective non-layered workload. Higher is better.

ContextL ContextJS ContextJS ContextJS ContextPy ContextPy ContextPyPy
Edge Chrome OSX Chrome Win Python OSX PyPy OSX PyPy OSX

no activate layer 67.17 % 0.04 % 0.13 % 0.05 % 4.20 % 347.33 % 441.73 %
1 active layer 35.90 % 0.09 % 0.09 % 0.03 % 4.11 % 72.76 % 243.82 %
2 active layer 36.66 % 0.08 % 0.07 % 0.03 % 3.86 % 47.07 % 244.15 %
3 active layer 43.75 % 0.10 % 0.06 % 0.02 % 3.80 % 37.48 % 196.92 %
4 active layer 44.90 % 0.08 % 0.05 % 0.04 % 3.65 % 27.90 % 86.65 %
5 active layer 47.81 % 0.12 % 0.05 % 0.05 % 3.58 % 28.67 % 94.42 %
6 active layer 77.95 % 0.22 % 0.05 % 0.05 % 3.45 % 26.40 % 90.14 %
7 active layer 42.77 % 0.18 % 0.06 % 0.05 % 3.42 % 12.38 % 16.06 %
8 active layer 49.87 % 0.18 % 0.06 % 0.05 % 3.43 % 5.17 % 5.35 %
9 active layer 37.90 % 0.18 % 0.06 % 0.06 % 3.50 % 4.42 % 4.51 %

Table A.3. cop09b. Relative throughput of layer activation in cop implementations with 0 to 10 layers normalized to the
respective non-layered workload. Higher is better.

ContextL ContextJS ContextJS ContextJS ContextPy ContextPy ContextPyPy
Edge Chrome OSX Chrome Win Python OSX PyPy OSX PyPy OSX

no activate layer 100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 % 100.00 %
1 active layer 74.97 % 91.56 % 50.00 % 71.13 % 89.22 % 89.59 % 80.16 %
2 active layer 66.25 % 67.17 % 50.00 % 52.01 % 80.41 % 61.37 % 21.88 %
3 active layer 57.18 % 63.70 % 25.00 % 38.59 % 72.23 % 43.84 % 13.81 %
4 active layer 22.56 % 53.07 % 25.00 % 29.40 % 66.51 % 34.79 % 10.32 %
5 active layer 24.72 % 45.31 % 12.50 % 22.74 % 61.59 % 30.19 % 8.08 %

Table
A

.4.
R

aw
num

bers
forthe

com
parison

benchm
arks

(c
o
p09

a
&
c
o
p09

b).ops
is

num
berofoperations

(higheris
better),tim

e
(s)is

tim
e

in
seconds

(low
eris

better),ops
/s

is
num

berofoperations
persecond

(higheris
better).

C
ontextL

C
ontextJS

E
dge

C
ontextJS

C
hrom

e
O

SX
C

ontextJS
C

hrom
e

W
in

C
ontextPy

Python
O

SX
C

ontextPy
PyPy

O
SX

C
ontextPyPy

PyPy
O

SX

ops
tim

e
(s)

ops
/s

ops
tim

e
(s)

ops
/s

ops
tim

e
(s)

ops
/s

ops
tim

e
(s)

ops
/s

ops
tim

e
(s)

ops
/s

ops
tim

e
(s)

ops
/s

ops
tim

e
(s)

ops
/s

NoLayer

1
8.19

·10
8

6.96
1.18

·10
8

8.39
·10

8
7.72

1.09
·10

8
3.36

·10
9

9.56
3.51

·10
8

3.36
·10

9
9.82

3.42
·10

8
2.56

·10
7

5.52
4.64

·10
6

8.19
·10

8
8.10

1.01
·10

8
8.19

·10
8

8.50
9.64

·10
7

2
4.10

·10
8

5.21
7.86

·10
7

8.39
·10

8
8.26

1.02
·10

8
3.36

·10
9

9.60
3.49

·10
8

1.68
·10

9
5.11

3.28
·10

8
2.56

·10
7

9.09
2.82

·10
6

8.19
·10

8
9.17

8.94
·10

7
8.19

·10
8

9.04
9.07

·10
7

3
4.10

·10
8

6.41
6.39

·10
7

8.39
·10

8
8.90

9.43
·10

7
3.36

·10
9

9.59
3.50

·10
8

1.68
·10

9
5.34

3.14
·10

8
1.28

·10
7

6.00
2.13

·10
6

4.10
·10

8
5.12

8.00
·10

7
4.10

·10
8

5.28
7.76

·10
7

4
4.10

·10
8

8.35
4.90

·10
7

4.19
·10

8
5.80

7.24
·10

7
3.36

·10
9

9.58
3.50

·10
8

1.68
·10

9
5.19

3.23
·10

8
1.28

·10
7

7.68
1.67

·10
6

4.10
·10

8
5.81

7.05
·10

7
4.10

·10
8

5.89
6.96

·10
7

5
4.10

·10
8

9.98
4.10

·10
7

4.19
·10

8
5.33

7.87
·10

7
3.36

·10
9

9.62
3.49

·10
8

1.68
·10

9
5.86

2.86
·10

8
1.28

·10
7

9.04
1.42

·10
6

4.10
·10

8
6.61

6.19
·10

7
4.10

·10
8

6.54
6.26

·10
7

6
2.05

·10
8

5.98
3.43

·10
7

4.19
·10

8
9.75

4.30
·10

7
1.68

·10
9

5.24
3.20

·10
8

1.68
·10

9
6.69

2.51
·10

8
6.40

·10
6

5.25
1.22

·10
6

4.10
·10

8
7.56

5.42
·10

7
4.10

·10
8

7.65
5.35

·10
7

7
2.05

·10
8

10.78
1.90

·10
7

2.10
·10

8
9.13

2.30
·10

7
1.68

·10
9

6.22
2.70

·10
8

1.68
·10

9
8.96

1.87
·10

8
6.40

·10
6

5.81
1.10

·10
6

4.10
·10

8
8.33

4.92
·10

7
4.10

·10
8

8.63
4.75

·10
7

8
1.02

·10
8

5.02
2.04

·10
7

2.10
·10

8
8.11

2.59
·10

7
1.68

·10
9

6.98
2.40

·10
8

1.68
·10

9
9.38

1.79
·10

8
6.40

·10
6

6.59
9.72

·10
5

4.10
·10

8
9.51

4.31
·10

7
4.10

·10
8

9.49
4.32

·10
7

9
1.02

·10
8

6.23
1.64

·10
7

2.10
·10

8
8.75

2.40
·10

7
1.68

·10
9

8.12
2.07

·10
8

8.39
·10

8
5.83

1.44
·10

8
6.40

·10
6

7.35
8.71

·10
5

2.05
·10

8
5.01

4.09
·10

7
2.05

·10
8

5.24
3.91

·10
7

10
1.02

·10
8

6.19
1.65

·10
7

2.10
·10

8
9.54

2.20
·10

7
1.68

·10
9

8.89
1.89

·10
8

8.39
·10

8
6.81

1.23
·10

8
6.40

·10
6

8.26
7.75

·10
5

2.05
·10

8
5.33

3.85
·10

7
2.05

·10
8

5.47
3.75

·10
7

WithLayer

0
4.10

·10
8

5.18
7.90

·10
7

4.10
·10

5
9.14

4.48
·10

4
3.28

·10
6

7.00
4.68

·10
5

3.28
·10

6
17.51

1.87
·10

5
3.20

·10
6

16.43
1.95

·10
5

3.28
·10

9
9.33

3.51
·10

8
3.28

·10
9

7.70
4.26

·10
8

1
2.05

·10
8

7.26
2.82

·10
7

8.19
·10

5
8.58

9.55
·10

4
1.64

·10
6

5.03
3.26

·10
5

8.19
·10

5
8.15

1.01
·10

5
3.20

·10
6

27.65
1.16

·10
5

4.10
·10

8
6.30

6.50
·10

7
1.64

·10
9

7.41
2.21

·10
8

2
2.05

·10
8

8.74
2.34

·10
7

4.10
·10

5
5.35

7.66
·10

4
1.64

·10
6

6.34
2.59

·10
5

4.10
·10

5
5.00

8.19
·10

4
3.20

·10
6

38.87
8.23

·10
4

2.05
·10

8
5.44

3.76
·10

7
1.64

·10
9

8.65
1.89

·10
8

3
2.05

·10
8

9.54
2.15

·10
7

4.10
·10

5
5.76

7.11
·10

4
1.64

·10
6

7.42
2.21

·10
5

4.10
·10

5
6.09

6.73
·10

4
3.20

·10
6

50.55
6.33

·10
4

2.05
·10

8
7.75

2.64
·10

7
8.19

·10
8

5.98
1.37

·10
8

4
1.02

·10
8

5.56
1.84

·10
7

4.10
·10

5
6.41

6.39
·10

4
1.64

·10
6

8.58
1.91

·10
5

8.19
·10

5
6.49

1.26
·10

5
3.20

·10
6

61.86
5.17

·10
4

1.02
·10

8
5.93

1.73
·10

7
4.10

·10
8

7.55
5.43

·10
7

5
1.02

·10
8

6.25
1.64

·10
7

4.10
·10

5
7.63

5.37
·10

4
1.64

·10
6

9.93
1.65

·10
5

8.19
·10

5
7.19

1.14
·10

5
3.20

·10
6

73.46
4.36

·10
4

1.02
·10

8
6.60

1.55
·10

7
4.10

·10
8

8.10
5.06

·10
7

6
1.02

·10
8

6.92
1.48

·10
7

4.10
·10

5
8.14

5.03
·10

4
8.19

·10
5

5.53
1.48

·10
5

8.19
·10

5
8.12

1.01
·10

5
3.20

·10
6

84.18
3.80

·10
4

1.02
·10

8
7.88

1.30
·10

7
4.10

·10
8

9.57
4.28

·10
7

7
1.02

·10
8

11.73
8.73

·10
6

4.10
·10

5
8.64

4.74
·10

4
8.19

·10
5

6.12
1.34

·10
5

8.19
·10

5
9.04

9.06
·10

4
3.20

·10
6

96.26
3.32

·10
4

5.12
·10

7
9.61

5.33
·10

6
5.12

·10
7

7.38
6.94

·10
6

8
5.12

·10
7

6.25
8.20

·10
6

4.10
·10

5
9.55

4.29
·10

4
8.19

·10
5

6.61
1.24

·10
5

4.10
·10

5
5.21

7.86
·10

4
3.20

·10
6107.12

2.99
·10

4
1.28

·10
7

6.06
2.11

·10
6

1.28
·10

7
6.12

2.09
·10

6

9
5.12

·10
7

8.17
6.27

·10
6

2.05
·10

5
5.25

3.90
·10

4
8.19

·10
5

7.29
1.12

·10
5

4.10
·10

5
5.38

7.62
·10

4
3.20

·10
6118.06

2.71
·10

4
1.28

·10
7

7.54
1.70

·10
6

1.28
·10

7
7.58

1.69
·10

6

Activation

0
1.02

·10
8

5.67
1.81

·10
7

2.05
·10

5
9.82

2.09
·10

4
8.19

·10
5

9.05
9.05

·10
4

4.10
·10

5
8.77

4.67
·10

4
3.20

·10
6

85.01
3.76

·10
4

1.02
·10

8
6.22

1.65
·10

7
4.10

·10
8

5.66
7.24

·10
7

1
1.02

·10
8

7.56
1.35

·10
7

1.02
·10

5
5.36

1.91
·10

4
4.10

·10
5

6.66
6.15

·10
4

2.05
·10

5
6.17

3.32
·10

4
3.20

·10
6

95.28
3.36

·10
4

1.02
·10

8
6.95

1.47
·10

7
4.10

·10
8

7.06
5.80

·10
7

2
1.02

·10
8

8.56
1.20

·10
7

1.02
·10

5
7.31

1.40
·10

4
4.10

·10
5

9.30
4.41

·10
4

2.05
·10

5
8.43

2.43
·10

4
3.20

·10
6105.72

3.03
·10

4
5.12

·10
7

5.07
1.01

·10
7

1.02
·10

8
6.47

1.58
·10

7

3
1.02

·10
8

9.91
1.03

·10
7

1.02
·10

5
7.70

1.33
·10

4
2.05

·10
5

6.36
3.22

·10
4

1.02
·10

5
5.68

1.80
·10

4
3.20

·10
6117.70

2.72
·10

4
5.12

·10
7

7.10
7.21

·10
6

1.02
·10

8
10.24

10.00
·10

6

4
2.56

·10
7

6.28
4.08

·10
6

1.02
·10

5
9.25

1.11
·10

4
2.05

·10
5

8.59
2.39

·10
4

1.02
·10

5
7.46

1.37
·10

4
3.20

·10
6127.82

2.50
·10

4
5.12

·10
7

8.94
5.72

·10
6

5.12
·10

7
6.86

7.47
·10

6

5
5.12

·10
7

11.47
4.47

·10
6

5.12
·10

4
5.42

9.45
·10

3
1.02

·10
5

5.63
1.82

·10
4

1.02
·10

5
9.64

1.06
·10

4
3.20

·10
6138.02

2.32
·10

4
2.56

·10
7

5.15
4.97

·10
6

5.12
·10

7
8.75

5.85
·10

6

	Introduction
	Background: Meta-tracing jit Compilers
	Faster Sideways Composition with Meta-tracing
	Employing a Meta-tracing jit
	Promoting the Compositions of Active Layers

	ContextPyPy Implementation Outline
	Performance Evaluation with cop
	Setup
	Benchmarks
	Results

	Related Work
	Conclusion and Future Work
	Comprehensive Results

