
188

Test-driven Fault Navigation for Debugging

Reproducible Failures

Michael Perscheid　Michael Haupt　Robert Hirschfeld

Hidehiko Masuhara

Debugging failing test cases, particularly the search for failure causes, is often a laborious and time-

consuming activity. With the help of spectrum-based fault localization developers are able to reduce the

potentially large search space by detecting anomalies in tested program entities. However, such anomalies do

not necessarily indicate defects and so developers still have to analyze numerous candidates one by one until

they find the failure cause. This procedure is inefficient since it does not take into account how suspicious

entities relate to each other, whether another developer is better qualified for debugging this failure, or how

erroneous behavior comes to be.

We present test-driven fault navigation as an interconnected debugging guide that integrates spectrum-

based anomalies and failure causes. By analyzing failure-reproducing test cases, we reveal suspicious system

parts, developers most qualified for addressing localized faults, and erroneous behavior in the execution

history. The Paths tool suite realizes our approach: PathMap supports a breadth first search for narrowing

down failure causes and recommends developers for help; PathFinder is a lightweight back-in-time debugger

that classifies failing test behavior for easily following infection chains back to defects. The evaluation of

our approach illustrates the improvements for debugging test cases, the high accuracy of recommended

developers, and the fast response times of our corresponding tool suite.

1 Introduction

Debugging failing test cases tends to be a te-

dious activity since it requires deep knowledge of

the system and its behavior [33]. For localizing

failure causes, developers have to follow the infec-

tion chain backwards; starting from the observable

failure they follow erroneous behavior, including in-

fected state, to the failure-inducing defect (root

cause) [34]. In practice, however, this process is

only partially supported by tools such as symbolic

再現可能な誤りをデバッグするためのテスト駆動型誤り発
見ツール.

Michael Perscheid and Robert Hirschfeld, Software

Architecture Group, Hasso Plattner Institute, Uni-

versity of Potsdam, Germany.

Michael Haupt, Oracle Labs..

増原英彦, 東京大学大学院総合文化研究科, Graduate

School of Arts and Sciences, the University of

Tokyo.

コンピュータソフトウェア,Vol.29,No.3 (2012),pp.188–211.

[研究論文] 2011 年 10 月 31 日受付.

debuggers and test runners. They do not provide

advice to anomalies in state and behavior (such as

deviations from passing test cases), qualified devel-

opers for help, or back-in-time capabilities [34]. For

this reason, debugging often requires too much time

because developers have to rely primarily on their

intuition.

To decrease the required debugging effort,

spectrum-based fault localization [11] reveals anoma-

lies that may help in identifying failure causes. By

comparing covered program statements of passed

and failed test cases, the approach produces a

prioritized list of suspicious statements which re-

stricts the search space and reduces speculations.

Unfortunately, anomalies are not failure causes—

developers have only a few starting points that

must be debugged one by one. By debugging these

suspicious source code entities, anomalies and fail-

ure causes are not integrated with each other and

thus lead to a number of questions that are difficult

to answer: what are the relations between anoma-

lies and failures; are there experienced developers

Vol. 29 No. 3 Aug. 2012 189

that understand the failure and its anomalies more

easily; how are infected state and anomalous be-

havior propagated so that failures come to be.

To further reduce debugging costs, we argue that

it is important to integrate anomalies and failure

causes. An integration supports developers in an-

swering more difficult questions and allows other

debugging activities to benefit even from anoma-

lies. Linked views between suspicious source code

entities and erroneous behavior help not only to

localize causes more efficiently but also to identify

the most qualified developers for understanding the

current failure.

In this paper, test-driven fault navigation inte-

grates anomalies and failure causes to support de-

velopers in debugging reproducible failures. De-

velopers isolate suspicious system parts, identify

most qualified colleagues for help, and debug er-

roneous behavior back in time. Based on test cases

as descriptions of reproducible failures, we improve

spectrum-based fault localization by combining re-

vealed anomalies with a compact system overview,

development information, and the execution his-

tory. The Path tool suite realizes our approach

and consists of PathMap as an extended test run-

ner that highlights relationships between suspicious

system parts and identifies experienced develop-

ers for helping with failures and PathFinder as a

lightweight back-in-time debugger for failing tests

that eases navigation to failure causes by emphasiz-

ing anomalous behavior. To achieve fast response

time for requested run-time information, we base

our implementation on step-wise run-time analy-

sis [23]. Our analysis automatically splits and dis-

tributes, depending on developers needs, the dy-

namic analysis over multiple runs and so ensures a

high degree of scalability. Thus, we answer quickly

where the failure cause is located, which developer

is most qualified for fixing the bug, and how erro-

neous behavior is related to anomalies.

Test-driven fault navigation gives interconnected

and fast advice to failure causes by combining test

cases, spectrum-based fault localization, and step-

wise run-time analysis. The contributions of this

paper are as follows:

• Structural navigation supports a scalable

breadth first search for suspicious system parts

based on the results of unit test frameworks†1

and spectrum-based fault localization. It high-

lights relationships between anomalies and pro-

vides an overview of starting points that are

likely to include the failure cause. PathMap re-

alizes the structural navigation as an extended

test runner. It provides a scalable tree map vi-

sualization and a low overhead analysis frame-

work that computes anomalies at methods and

refines results at statements on-demand.

• Team navigation identifies other developers

as experts for helping with failures based on

spectrum-based anomalies. Our metric re-

stricts the set of possible experts to suspicious

methods only with the result that our sug-

gested developers understand anomalies best.

Assuming that anomalies have a high proba-

bility to include failure causes, we are able to

recommend experts even though the defect is

still unknown.

• Behavioral navigation follows the infection

chain backwards from the observable failure to

the past defect. With the help of step-wise

run-time analysis and spectrum-based fault lo-

calization, we realize a lightweight back-in-time

debugger for test cases that highlights anoma-

lies for easier navigation through erroneous be-

havior. PathFinder allows immediate access

to run-time information and supports develop-

ers in understanding the relationship between

anomalies and causes.

We have implemented test-driven fault naviga-

tion as part of our Paths framework that provides

integrated tool support for the Squeak/Smalltalk

IDE. Moreover, we illustrate our approach with

a case study and evaluate it with respect to im-

provements for debugging, accuracy of our devel-

oper ranking metric, and efficiency of our tool suite.

The remainder of this paper is structured as

follows: Section 2 introduces our motivating case

study and explains contemporary challenges in test-

ing and debugging. Section 3 presents the integra-

tion of anomalies and failure causes and how our

test-driven fault navigation influences the debug-

†1 We consider unit test frameworks, for instance

xUnit [3], as a technique for implementing differ-

ent kinds of test cases. Our approach works for

combined testing including among others accep-

tance, integration, and module tests.

190 コンピュータソフトウェア

ging process. Sections 4, 5, and 6 explain the struc-

tural, team, and behavioral navigation in detail.

Section 7 outlines the implementation of our Paths

framework and discusses the introduction of our ap-

proach. Section 8 evaluates the improvements, ac-

curacy, and efficiency of our approach. Section 9

discusses related work and Section 10 concludes.

2 Finding Causes of Reproducible

Failures

We introduce a motivating example for an error

taken from the Seaside Web framework [24] that

serves as a basis for our discussion of challenges in

testing and debugging. Seaside is an open source

Web framework written in Smalltalk and consists

of about 400 classes, 3,700 methods and a large

test suite with more than 650 test cases. By this

example, we will demonstrate test-driven fault nav-

igation in the following Sections.

2. 1 Typing Error Example in Seaside

We have inserted a defect into Seaside’s Web

server and its request/response processing logic

(WABufferedResponse class, writeHeadersOn:

method). Figure 1 illustrates the typing error

inside the header creation of buffered responses.

The typo in “Content-Lenght” is inconspicuous but

leads to invalid results in requests that demand

buffered responses. Streamed responses are not in-

fluenced and still work correctly.

Although the typo is simple to characterize, ob-

serving it can be laborious. First, some clients hide

the failure since they are able to handle corrupted

header information. Second, as the response header

is built by concatenating strings, the compiler does

not report an error. Third, by reading source code

like a text, developers tend to overlook such small

typos [28].

2. 2 Challenges in Testing and Debugging

Localizing our typing error with standard tools

such as test runner and symbolic debugger can be

cumbersome. Figure 2 depicts a typical debug-

ging session. First, Seaside’s test suite answers

with 9 failed and 53 passed test cases for all re-

sponse tests. Since all failing runs are part of

WABufferedResponseTest, developers might expect

the cause within buffered responses. However, this

Fig. 1 An inconspicuous typo in writ-

ing buffered response headers leads

to faulty results of several client re-

quests.

assumption lacks evidence, such as a list of meth-

ods being executed by all failed tests. Second,

starting the standard debugger on a failing test

shows a violated assertion within the test method

itself. This, however, means that developers only

recognize the observable failure instead of its origin.

Only the current stack is available, but our typo is

far away from the observable malfunction. Third,

the thrown assertion suggests that something is dif-

ferent from the expected response. Developers have

to introspect the complete response object for lo-

calizing the typo. There are no pointers to the cor-

rupted state or its infection chain. Remarkably,

the response status is still valid (200, OK). Further-

more, in our example we assume that developers

are aware of Seaside’s request/response processing.

However, developers’ expertise significantly influ-

ences the required debugging effort; for instance,

less experienced developers need more time for

comprehending Seaside’s continuation-based com-

munication [27].

In general, debugging of test cases faces several

challenges with respect to localizing failure causes

and defects. On the one hand, testing only verifies

if a failure occurs or not. There is no additional

information about differences between failing and

passing tests. Hence, developers can neither re-

strict the search space to particular program enti-

ties nor find expert knowledge for suspicious system

parts. On the other hand, symbolic debuggers suf-

fer from missing advice to causes and capabilities

to follow the infection chain backwards. Since it is

hard to understand how erroneous behavior comes

to be, developers have to rely primarily on their

intuition.

To support a breadth first search for debugging,

Vol. 29 No. 3 Aug. 2012 191

Fig. 2 Localizing failure causes with standard tools (Unit test runner (1),

symbolic debugger (2), and object explorer (3)) is cumbersome.

spectrum-based fault localization techniques [1]

compare the differences of test case coverage and re-

strict the potential search space. These techniques

reveal anomalies in tested program behavior that

could be responsible for failure causes. In Figure 3,

a small example analyzes the number of failing and

passing tests per covered method, computes a per-

centage value determining the failure cause proba-

bility, and returns a set of suspicious source code

entities.

Although anomalies restrict the search space by

providing excellent hints for starting debugging—

there are often numerous anomalies that include

neither a failure cause nor a defect. The amount

of anomalies can be quite large because spectrum-

based fault localization techniques suffer from a

scalability problem [10]. Either they provide

anomalies at the statement-level, whose dynamic

analysis is slow and creates numerous results, or

they include other program entities, such as meth-

ods or classes, which miss important fine-granular

information. In addition to it, spectrum-based

anomalies are only sorted by suspiciousness and

the source code structure. Existing techniques do

not consider the infection chain at all and so de-

velopers have to costly debug unrelated anomalies

Fig. 3 Spectrum-based fault localization

reveals a set of suspicious source code

entities that could be responsible for

failure causes. The static structure

shows eleven methods (represented as

boxes) in their source code defini-

tion order. Each covered method box

is highlighted with its failure cause

probability from red (high) to green

(low).

one by one. In our small example in Figure 3,

there are four methods with the same high suspi-

ciousness value (red color) and it is not clear how

they are related to failure causes, to each other,

192 コンピュータソフトウェア

and which statements are responsible for the fail-

ing behavior. For instance, it is not clear that

method 2 is executed before the defect (method

4) and thus it works as expected (compare to Fig-

ure 4). As defects do not often come first, analyzing

spectrum-based anomalies can be time-consuming

and strongly depends on program comprehension.

For debugging failure causes or interpreting the

list of suspicious entities, developers’ expertise sig-

nificantly influences the required effort [2]. More

experienced developers invent better hypotheses

about failure causes than novices that do not know

the code base. Unfortunately, the identification of

corresponding experts is quite challenging since ob-

servable failures do not explicitly reveal infected

system parts. Existing approaches consider either

the entire system or similar failure reports to au-

tomatically assigning bug reports to more experi-

enced developers. Without taking suspicious sys-

tem parts into account, these approaches consider

a too large search space or they require a com-

prehensive bug tracker database with already fixed

failures. For that reason, recommended develop-

ers are seldom good matches for debugging specific

failures.

To understand how the failure comes to be, qual-

ified developers have to follow the infection chain

backwards [34]. Beginning with failure-reproducing

behavior, in the form of failing test cases, develop-

ers trace observable failures or anomalies via the

infection chain back to responsible defects. For in-

stance, the small example in Figure 4 illustrates the

infection chain with the observable failure (method

11, bottom right corner) and the defect (method 4,

center left). For localizing the initial failure cause,

developers have to decide at each executed method

what the corrupted state or behavior is so that they

are able to follow the infection chain backwards.

However, starting debugging at failures or

anomalies still includes a long way to failure-

inducing causes that happened in the past [15].

Most debuggers do not support back-in-time ca-

pabilities, and if they do, these features often come

with a performance overhead [14] or a more com-

plicated setup [26]. Furthermore, there is no direct

navigation to failure causes and developers have to

examine an enormous amount of data manually.

The missing classification of suspicious or harmless

behavior leads to numerous and often laborious de-

Fig. 4 Developers have to follow the in-

fection chain (grey border) from the

observable failure (method 11, bot-

tom right corner) back to the defect

(method 4, center left). Each row

shows all eleven methods and high-

lights the specific method that is ex-

ecuted at this point in time. The dif-

ferent arrows define the method ex-

ecution order for a passing or failing

test case.

cisions on which execution subtree to follow. Thus,

the infection chain is hard to follow, developers

require much program comprehension, and debug-

ging of failing test cases becomes a time-consuming

activity.

3 Test-driven Fault Navigation

We present test-driven fault navigation for im-

proving debugging of failures that are reproducible

by test cases. To address the challenges in testing

and debugging, we integrate anomalies and failure

causes and introduce a novel systematic top-down

debugging process that guides developers with in-

terconnected advice to failure causes.

Vol. 29 No. 3 Aug. 2012 193

3. 1 Integration of Anomalies and Failure

Causes

To further support debugging of failing test cases,

we integrate anomalies and failure causes. Efficient

debugging requires linked views between suspicious

source code entities and erroneous behavior, as well

as qualified developers for analyzing these entities.

We expect that the combination of unit testing,

spectrum-based anomalies, and lightweight back in

time debugging is able to limit their shortcomings.

With the help of anomalies, we restrict the search

space for failure causes in structure, the develop-

ment team, and behavior of programs. In structure,

we support developers in creating first hypotheses

about failure causes by easily analyzing similarities

of anomalies. To solve the scalability problem of

existing spectrum-based fault localization, we split

the coverage analysis of test cases over multiple

runs. We provide fast access to method informa-

tion and on-demand refinements at statements by

re-executing test cases. In the development team,

we assess expert knowledge for failures even though

defects are still unknown. We only consider authors

of spectrum-based anomalies and identify develop-

ers that understand suspicious system parts best.

In behavior, we allow developers to easily navigate

the infection chain backwards by highlighting po-

tentially erroneous behavior. To get fast access to

execution histories, we leverage reproducible test

cases [32] and distribute their dynamic analysis de-

pending on developers’ needs [23]. By classifying

traced methods with their spectrum-based results,

developers are able to find abbreviations within the

large amount of data.

Figure 5 illustrates the integration of anoma-

lies and failure causes. First, there are three red

anomalies in the structure (methods 5, 4, and 2 on

the left side) that form a suspicious system part.

Second, we expect that the most active developers

of these three methods are experts for understand-

ing this failure and its causes. Third, the infection

chain is classified with anomalies and developers

can directly start debugging on the left sub tree.

For instance, methods 8 and 6 are less suspicious

and developers can shorten the infection chain to

methods 5, 4, and 2. Further on, as method 2

is called before the defect in method 4, develop-

ers, following erroneous behavior backwards, do not

need to check this anomaly because they have al-

Fig. 5 The integration of anomalies and

failure causes gives developers helpful

advice on how to follow the infection

chain backwards. The execution his-

tory includes information about fail-

ure cause probabilities at each single

method. Thus, developers can decide

where to focus the debugging effort

and they understand how anomalies

are related to each other.

ready found the root cause.

3. 2 Debugging Reproducible Failures

Besides the pure integration of anomalies and

failure causes, localizing non-trivial faults also re-

quires a systematic procedure [34]. Experienced

developers apply a promising debugging method by

starting with a breadth-first search [33]. They look

at a system view of the problem area, classify suspi-

cious system parts, and refine their understanding

step by step. However, independent and specialized

debugging tools does not coherently support such a

systematic procedure. This often leads to confusing

and time-consuming debugging sessions, especially

for novice developers who trust more in intuition

instead of searching failure causes systematically.

We introduce a systematic top-down debugging

process with corresponding new tools that not only

194 コンピュータソフトウェア

Fig. 6 Our debugging process guides with

interconnected advice to reproducible

failure causes in structure, behavior,

and to corresponding experts.

supports the method of experts but also integrates

anomalies and so provides guidances for all kinds

of developers. Developers are able to navigate from

failures to causes by reproducing observable faults

with the help of test cases. Afterwards, they can

isolate anomalies within parts of the system, iden-

tify other developers for help, and understand er-

roneous behavior. Figure 6 summarizes our test-

driven fault navigation process and its primary ac-

tivities:

Reproducing failure

As a precondition for all following activities, de-

velopers have to reproduce the observable failure in

the form of at least one unit test. Besides the ben-

eficial verification of resolved failures, we require

tests above all as entry points for analyzing erro-

neous behavior. We have chosen unit test frame-

works because of their importance in current devel-

opment projects. Our approach is neither limited

to unit testing nor does it require minimal test cases

as proposed by some guidelines [3]. In the case of

our Seaside example, developers have to implement

a simple server request waiting for a corrupted re-

sponse that cannot be parsed correctly.

Localizing suspicious system parts (Struc-

tural navigation)

Having at least one failing test, developers can

compare its execution with other test cases and

identify structural problem areas. By analyzing

failed and passed test behavior, possible failure

causes are automatically localized within a few sus-

picious methods so that the necessary search space

is significantly reduced. For supporting spectrum-

based fault localization within the system’s struc-

ture, we have developed an extended test runner

called PathMap that provides a scalable tree map

visualization and a low overhead analysis frame-

work that computes anomalies at methods and re-

fines results at statements on demand. In Seaside,

all failing tests overlap within response handling

classes and the failure cause of our typing error can

be isolated within a few methods.

Recommending developers as experts

(Team navigation)

Some failures require expert knowledge of oth-

ers so that developers can understand and debug

faults more easily. By combining localized prob-

lem areas with source code management informa-

tion, we provide a novel developer ranking metric

that identifies the most qualified experts for fixing

a failure. Developers having changed the most sus-

picious methods are more likely to be experts than

authors of non-infected system parts. We have inte-

grated our metric within PathMap providing navi-

gation to suitable team members. For instance, our

developer ranking metric proposes contact persons

who have recently worked on the most suspicious

buffered response methods.

Debugging erroneous behavior back in

time (Behavioral navigation)

For refining their understanding of erroneous be-

havior, developers explore the execution and state

history of a specific test. To follow the infection

chain back to the failure cause, they can start our

lightweight back in time debugger, called Path-

Finder, either at the failing test directly or at ar-

bitrary methods as recommended by PathMap. If

suspicious system parts are available, conspicuous

methods classify the executed trace and so ease the

behavioral navigation to defects. In our example,

developers examine the request-response processing

of a failing test in detail. Due to a classified trace,

they can shorten the search for corrupted behavior

to the creation of buffered response objects.

Besides our systematic process for debugging re-

producible failures, the combination of unit testing

and spectrum-based fault localization also provides

the foundation for interconnected navigation with a

high degree of automation. All activities and their

anomalous results are affiliated with each other and

Vol. 29 No. 3 Aug. 2012 195

Fig. 7 PathMap is our extended test runner that analyzes test case behavior and

visualizes suspicious methods of the system under observation.

so allow developers to explore failure causes from

combined perspectives. Our tools support these

points of view in a practical and scalable manner.

4 Structural Navigation: Localizing

Suspicious System Parts

For supporting a breadth-first search, we provide

a complete system overview that highlights anoma-

lous areas for potential failure causes. Applying

spectrum-based fault localization, which predicts

failure causes by the ratio of failed and passed tests

at covered methods, we analyze overlapping test

behavior, identify suspicious system parts, and vi-

sualize the results. Our PathMap tool implements

this approach as an extended test runner for the

Squeak/Smalltalk development environment (Fig-

ure 7). Its integral components are a compact vi-

sualization in form of an interactive tree map, a

lightweight dynamic analysis framework for record-

ing test executions, and different fault localization

metrics for identifying suspicious methods.

We visualize a structural system overview and its

relation to test case execution in form of a compact

and scalable tree map [31]. We reflect selected cat-

egories†2 as full columns that include their classes

†2 Categories are similar to packages in other pro-

as rows which in turn include methods†3 as small

boxes. The allocated space is proportional to the

number of methods per node. All elements are or-

ganized alphabetically, and for a clear separation

we distinguish between test classes on the left-hand

side and core classes on the right-hand side (label

2 in Figure 7). The entire map can interactively be

explored to get more details about a specific node

(label 4 in Figure 7). Furthermore, each method

can be colorized with a hue element between green

and red for reflecting its suspiciousness score and a

saturation element for its confidence. For instance,

methods with a high failure cause probability pos-

sess a full red color. Such a visualization allows for

a high information density at a minimal required

space. The tree map in Figure 7 consists of only

500×500 pixels but is able to scale up to 4,000

methods. Even though this should suffice for most

medium-sized applications, PathMap allows for fil-

tering specific methods such as accessors, summa-

rizing large elements, and resizing the entire tree

map.

We ensure scalability of spectrum-based fault lo-

calization by efficiently recording test coverage with

gramming languages.

†3 We provide Smalltalk’s method categories as an

optional layer, too.

196 コンピュータソフトウェア

method wrappers [4] and refining statement cover-

age on demand. To reduce the overhead of run-time

observation, we restrict instrumentation to relevant

system parts and dynamic analysis to the gran-

ularity level of methods. With the focus on se-

lected categories we filter irrelevant code such as li-

braries where the defect is scarcely to be expected.

For identifying failure causes in full detail, Path-

Map allows for refining coverage information inside

specific methods. If developers request additional

information for a method, we run all its covering

tests, simulate byte code execution, and obtain re-

quired coverage information. We restrict the per-

formance decrease of statement-level analysis only

to the method of interest. Thus, we offer develop-

ers fast access to erroneous method behavior and

optionally refinements for all details of suspicious

statements.

Based on collected test coverage, we automat-

ically identify anomalies and visualize suspicious

methods in our tree map†4. In spectrum-based

fault localization [11], failure cause probabilities are

estimated by the ratio of all failing tests to test re-

sults per covered source code entity. Thus, meth-

ods are more likely to include the defect if they

are executed by a high number of failing and a low

number of passing tests. We distinguish between

suspiciousness and confidence values of methods.

While the former scores the failure cause proba-

bility with respect to covered tests and their re-

sults, the latter measures the degree of significance

based on the number of all test cases. A lot of met-

rics for spectrum-based fault localization have been

proposed among which Ochiai has shown to be the

most effective one [1].

suspicious(m) =
failed(m)√

totalFailed ∗ (failed(m) + passed (m))

This formula returns a value between 0 and 1 for

each method m being covered by at least one test.

To visualize this result, we colorize method nodes

in our tree map with a hue value between green

and red. For instance, a suspiciousness score of 0.7

†4 For statements, we compute spectrum-based

anomalies with the same formulas as for methods

and show their results in Smalltalk’s source code

browser directly.

creates an orange area.

To assess the significance of a suspiciousness

value, we apply a slightly adapted confidence met-

ric. We only consider the relation between failed

tests per method and all failing tests as we are not

interested in sane behavior for fault localization.

confidence(m) =
failed(m)

totalFailed
The returned value is directly mapped to the

saturation component of already colorized method

nodes. By looking only at faulty entities, we reduce

the visual clutter of too many colors and results.

For instance, a method covered by three out of six

failing tests is grayed out.

Adapting spectrum-based fault localization to

unit testing limits the influence of multiple faults.

The effectiveness of existing spectrum-based ap-

proaches suffers from overlapping test cases describ-

ing different failures as well as coincidentally cor-

rect test cases which execute defects but do not

verify their appearance. The selection of suitable

unit test suites allows for ignoring such problematic

tests and to focus on a single point of failure. Fur-

thermore, based on the origination condition of sin-

gle faults [30], which means each failure must evalu-

ate the defect, PathMap optionally filters methods

which were not executed by all failing tests. Thus,

developers choose designated test suites, further re-

duce fault localization results, and concentrate on

one specific failure at a time.

In our motivating typing error, PathMap local-

izes the failure cause within a few methods of Sea-

side’s response classes. In Figure 7, developers only

execute the response test suites as in ordinary test

runners with the result of 53 passed and 9 failed

tests (1). In the middle (2) they see a tree map of

Seaside’s structure with test classes on the left side

and core classes on the right side†5. Each color rep-

resents the suspiciousness score of a method reveal-

ing anomalous areas of the system. For instance,

the interactively explorable red box (3) illustrates

that all nine failing tests are part of the buffered

test suite. In contrast, the green box below in-

cludes the passed streaming tests and in orange

shared test methods. The more important infor-

mation for localizing the failure cause is visualized

†5 For the purpose of clarity, we limit the partial

trace to Seaside’s core.

Vol. 29 No. 3 Aug. 2012 197

Fig. 8 Our developer ranking points out (anonymized) experts. Based on authors of

spectrum-based anomalies, we create a ranked list of possible experts that

understand failure causes best.

at (4). There are three red and orange methods

providing confidence that the failure is included in

the WABufferedResponse class. To that effect, the

search space is reduced to six methods. However,

a detailed investigation of the writeContentOn:

method (5) shows that it shares the same character-

istics as our failure cause, i. e., writeHeadersOn:.

At this point, it is not clear from a static point of

view how these suspicious methods are related to

each other.

5 Team Navigation: Recommending

Developers as Experts

As understanding anomalies and failure causes

requires thorough familiarity with suspicious sys-

tem parts, we propose a new metric for identify-

ing expert knowledge. Especially in large projects

where not everyone knows everything, an impor-

tant task is to find experts that are able to ex-

plain erroneous behavior or even fix the failure it-

self [2]. Assuming that the author of the still un-

known defect is the most qualified contact person,

we restrict the search space to suspicious system

parts and approximate developers that have re-

cently worked on corresponding methods. Conse-

quently, as anomalies have a high probability to

include failure causes [11], our anomaly-based met-

ric recommends developers that comprehensively

understand infections or possibly the defect itself.

Figure 8 summarizes our metric and its relation-

ship to PathMap’s anomalies. For calculating the

developer ranking, we sum up suspicious and confi-

dent methods for each developer, compute the har-

monic mean for preventing outliers, and constitute

the proportion to all suspicious system parts.

First, from all methods of our system under ob-

servation (MPartial) we create a new set that in-

cludes methods being identified by the spectrum-

based fault localization.

MSuspicious =

{m ∈ MPartial | suspicious(m) > 0}
Second, with the help of Smalltalk’s source code

management system we identify developers that

have implemented at least one of these suspicious

methods. Having this list, we divide suspicious

methods into one set per developer based on the

method’s most active author. The function autho-

rOf() is independent of our approach and can be

replaced by arbitrary heuristics that return expert

knowledge for a specific method such as most ac-

tivity, last access, and initial implementation.

MDeveloper =

{m ∈ MSuspicious | authorOf (m) = Developer}
Third, for a specified set of methods we sum up

suspiciousness and confidence scores and create a

weighted average of both. The harmonic mean

combines both values and prevents outliers such as

high suspiciousness but low confidence.

FScore(M) =

2 ·

(∑
m∈M

suspicious(m)

)
·
(∑

m∈M

confidence(m)

)
∑

m∈M

suspicious(m) + confidence(m)

Fourth, we normalize individual developer scores

by comparing them with the value of all suspicious

methods.

198 コンピュータソフトウェア

Fig. 9 PathFinder is our lightweight back in time debugger that classifies failing

test behavior for supporting developers in navigating to failure causes.

developerRanking(Developer) =
FScore(MDeveloper)

FScore(MSuspicious)

Finally, we sort all developers by their achieved

expert knowledge for the anomalous system parts

so that we estimate the most qualified contact per-

sons even though the defect is not yet known.

With respect to our typing error, we reduce the

number of potential contact persons to 4 out of

24 Seaside developers, whereby the author of the

failure-inducing method is marked as particularly

important. The table in Figure 8 summarizes the

(interim) results of our developer ranking metric

and suggests Developer A for fixing the defect by

a wide margin. With our fault-based team naviga-

tion, we do not want to blame developers but rather

we expect that the individual skills of experts help

in comprehending and fixing failure causes more

easily.

6 Behavioral Navigation: Debugging

Erroneous Behavior Back in Time

To follow corrupted state and behavior back to

failure-inducing origins, we offer fast access to fail-

ing tests and their erroneous run-time data. Based

on our previous work [23], we extend our Path-

Finder tool to a back in time debugger for intro-

specting specific test executions with a special fo-

cus on fault localization. It does not only provide

immediate access to run-time information, but also

classifies traces with suspicious methods. For local-

izing faults in test case behavior, developers start

exploration either directly or out of covered sus-

picious methods as provided by PathMap. Subse-

quently, PathFinder opens at the chosen method

as shown in Figure 9 and allows for following the

infection chain back to the failure cause. We pro-

vide arbitrary navigation through method call trees

and their state spaces. Besides common back in

time features such as a query engine for getting a

deeper understanding of what happened, our Path-

Finder possesses two distinguishing characteristics.

First, step-wise run-time analysis allows for imme-

Vol. 29 No. 3 Aug. 2012 199

diate access to run-time information of test cases.

Second, the classification of suspicious trace data

facilitates navigation in large traces.

We ensure a feeling of immediacy when explor-

ing behavior by splitting run-time analysis of test

cases over multiple runs [23]. Usually, developers

comprehend program behavior by starting with an

initial overview of all run-time information and con-

tinuing with inspecting details. This systematic

method guides our approach to dynamic analysis:

run-time data is captured when needed. Step-wise

run-time analysis consists of a first shallow analy-

sis that represents an overview of a test run (a pure

method call tree) and additional refinement anal-

ysis runs that record on-demand user-relevant de-

tails (e.g. state of variables, statement coverage for

spectrum-based fault localization). Thereby, unit

test cases fulfill the requirement to reproduce ar-

bitrary points on a program execution in a short

time [32]. Thus, by dividing dynamic analysis costs

across multiple test runs, we ensure quick access

to relevant run-time information without collecting

needless data up front.

We classify behavior with respect to suspicious-

ness scores of methods for an efficient navigation to

failure causes in large traces. Therefore, we either

reuse PathMap’s already ranked methods or re-

run the spectrum-based fault localization on traced

methods again. The trace is divided into more or

less erroneous behavior depending on test results

of called methods. On the analogy of PathMap,

we colorize the trace with suspiciousness and con-

fidence scores at each executed method. Moreover,

a query mechanism supports the navigation to er-

roneous behavior. We expect that our classified

traces identify failure causes more quickly as it al-

lows shortcuts to methods that are likely to include

the defect.

In our Seaside example, PathFinder highlights

the erroneous behavior of creating buffered re-

sponses and supports developers in understand-

ing how suspicious methods belong together. Fol-

lowing Figure 9, developers focus on the failing

testIsCommitted behavior. They begin with the

search for executed methods with a failure cause

probability larger than 90 % (1). The trace in-

cludes and highlights four methods matching this

query. Since the writeContentOn: method (2) has

been executed shortly before the failure occurred,

it should be favored for exploring corrupted state

and behavior first†6. A detailed inspection of the

receiver object reveals that the typo already exists

before executing this method. Following the in-

fection chain backwards, more than three methods

can be neglected before the next suspicious method

is found (3). Considering writeHeadersOn: in the

same way manifests the failure cause. If necessary,

developers are able to refine fault localization at

the statement-level analogous to PathMap and see

that only the first line of the test case is always

executed, thus triggering the fault (4).

7 The Paths Framework

In this section, we outline the implementation

of test-driven fault navigation with the help of

our Paths framework. After that, we discuss our

approach with respect to other programming lan-

guages and its introduction to existing software sys-

tems.

7. 1 Implementation

Test-driven fault navigation is based on our

Paths framework that is illustrated in Figure 10. It

is seamlessly integrated into the Squeak/Smalltalk

development environment and requires only source

code, unit tests, and a corresponding change his-

tory of a selected Smalltalk project. In Squeak, the

latter is automatically recorded by a built-in source

code management system. After each change, au-

thor credential, timestamp, and modifications are

stored in a new version of the related source code

artifact.

The Paths dynamic analysis framework supports

the observation of unit test behavior by imple-

menting the refined coverage and step-wise run-

time analysis. Refined coverage analysis [22] is

a lightweight approach that splits dynamic anal-

ysis and its costs over multiple test runs. First,

it rapidly records the relationship between unit

tests and executed methods. Second, the state-

ment coverage of selected methods can be refined

on demand by re-executing their corresponding test

cases. With the help of this analysis, PathMap re-

veals anomalies for our structural navigation within

a short amount of time and at different levels of

†6 The simple accessor method contents can be ne-

glected at this point.

200 コンピュータソフトウェア

Fig. 10 The Paths framework is integrated into the Squeak/Smalltalk development

environment and consists of a dynamic analysis framework and our tool suite.

detail. Step-wise run-time analysis [23] divides the

dynamic analysis of one specific test case over mul-

tiple runs. In a first shallow analysis, it records

a simple method call tree which is presented in

PathFinder as our behavioral navigation. If de-

sired, additional information such as states can be

collected by running and analyzing the same test

again. For recording run-time information, we rely

on method wrappers and Smalltalk’s interpreter

simulation. At the level of methods, we collect

run-time information with flexible method wrap-

pers [4]: a wrapper introduces new behavior be-

fore and after the execution of a specific method

without changing its behavior. Depending on the

chosen analysis technique, wrappers collect among

others coverage, method calls, and state refine-

ments. To record statements of a specific method,

a special wrapper starts and stops Smalltalk’s sim-

ulation engine that analyze dedicated byte codes

only. Both analysis techniques are necessary since

a full simulation would slow down the execution

by a factor of at least 100 [8]. Finally, the frame-

work stores all collected measurements and makes

this data available to any interested tool. For in-

stance, PathFinder can reuse coverage information

for highlighting anomalies in test case behavior.

Our Paths tool suite consists of the extended test

runner PathMap, the developer ranking metric,

and the back in time debugger PathFinder. Path-

Map requires Smalltalk’s testing API to control the

underlying unit test framework, the reflection API

to draw a tree map of the system structure, and the

incremental dynamic analysis API to reveal anoma-

lies with the refined coverage analysis. Our devel-

oper ranking metric is embedded into PathMap and

combines its anomalies with author information of

the change history. PathFinder applies the test-

ing and reflection API to control specific test runs

and to show source code in corresponding call trees.

Such call trees are built with the help of our incre-

mental dynamic analysis API that starts step-wise

run-time analysis and assigns anomalies.

7. 2 Discussion

We argue that our approach can easily be

adapted to other object-oriented programming lan-

guages that include a unit test framework. For im-

plementing our Paths framework, the language and

its libraries have to support dynamic and static

analysis techniques. While the dynamic analysis

of method executions can be implemented with

aspect-oriented programming [7], statement-level

coverage depends on language features. For in-

stance, in C++ many coverage tools insert probes

into the source code and in Python the interpreter

offers a simple hook function for a fine-grained run-

time analysis. Regarding static analysis, developers

can rely on several external analysis tools or the re-

flection capabilities of their language. Also, many

version control systems such as subversion offer in-

terfaces to request author information of previous

changes. Finally, our Paths tool suite is mostly

Vol. 29 No. 3 Aug. 2012 201

a visualization concept whose implementation only

depends on the underlying IDE user interface. For

instance, Eclipse can be extended with a plug-in for

rendering the tree map and suspicious data.

The introduction costs for test-driven fault navi-

gation are low in the beginning but it will take some

time to become well acquainted with our tools.

These costs are especially composed of adapting

the underlying software system, teaching our new

debugging process, and practicing with our Paths

tools. The preparation effort for the underlying

software system is negligible. Once our Paths tool

suite is available for a specific programming lan-

guage, it only requires access to source code, unit

tests, and the change history. We have already

analyzed numerous Smalltalk projects without any

problems. Only, in some cases we had to revise non-

deterministic unit tests or we could not analyze the

system because of extensive reflection mechanisms.

The new concepts of our test-driven fault naviga-

tion process are easy to understand since they are

similar to other debugging activities. In compar-

ison to the ”traffic” principle [34], developers also

start with a breadth first search and they follow the

infection chain back. For instance, after presenting

our approach in a 90 minutes lecture, our under-

graduate students confirmed that they have under-

stood our approach. They praised the possibilities

to refine hypotheses with anomalies and to navigate

the infection chain backwards. However, we also

learned from our students that practice with our

Paths tool suite needs some time. Although they

come acquainted with the main features in a few

hours, an efficient debugging session still looks dif-

ferent. On the one hand, highlighted anomalies in

PathMap and PathFinder as well as the developer

ranking are easily applicable. On the other hand,

debugging back in time and searching anomalies in

large traces require an expensive change of thinking

when localizing more complicated failure causes.

For these reasons, we will prepare additional tu-

torials for getting started with the more advanced

features of our tools.

8 Evaluation

We evaluate test-driven fault navigation with re-

spect to its practicability for developers, the ac-

curacy of our developer ranking metric, and the

efficiency of our Path tool suite.

8. 1 Practicability of Test-Driven Fault

Navigation

For evaluating test-driven fault navigation and

its corresponding tools, we conduct a user study

within the scope of a real world project. We observe

six developers while debugging six failures and com-

pare PathMap and PathFinder with Smalltalk’s

test runner and symbolic debugger. In summary,

we find out that test-driven fault navigation is able

to decrease debugging costs with respect to re-

quired time and developer’s effort.

Experimental Setup

We choose Squeak’s iCalendar project†7 as the

underlying software system for our user study.

iCalendar is a library that supports the identically

named file format for sharing meeting requests and

tasks independent of specific calendar applications.

The project implements import and export func-

tionality of the file format including a parser, a

domain-specific object model, and I/O handling. It

is an external, open source, and real world project

that is used in several other applications. We

choose iCalendar because of its maturity, already

included and comprehensive test base, understand-

able domain, and ideal size that is neither too small

nor too large. The project characteristics can be

seen in the upper part of Table 2.

For our user study, we observe six developers

with a similar background knowledge. The par-

ticipants are computer science students in the 5th

semester. All of them have between 3 and 11 years

of programming experience and professional exper-

tise with symbolic debuggers. In the last year, they

attended two of our software engineering courses,

in which we intensively taught object-oriented pro-

gramming with the help of Smalltalk. In this time,

they built a new system from scratch, maintained

an existing application, and passed the courses with

excellent grades. The chosen students have simi-

lar development skills and they become acquainted

with iCalendar in our user study for the first time.

Thus, we can ensure that the required debugging

effort is not much influenced by individual skills

and knowledge about the system.

During the study, these students are supposed

†7 http://www.squeaksource.com/ical/

202 コンピュータソフトウェア

Table 1 Description of iCalendar’s failures.

call nodes between Suspicious

Failure Description Difficulty failure and defect method rank

1 Reversed comparison operator of event ob-

jects

Easy 1 1

2 Wrong conditional statement in handling

address parameters

Easy 27 22

3 Unintended string constant in phone types Normal 5 68

4 Forgotten deletion of obsolete calendar

events

Normal 84 10

5 Missing separator for parsing event files Hard 520 31

6 Return of improper but polymorph objects

for storing alarms

Hard 2133 42

to localize six failures with different levels of dif-

ficulty, which are described in Table 1. We in-

sert these six defects all over the iCalendar sys-

tem, whereby we described them obviously. For in-

stance, we comment important statements instead

of deleting them. So, it is easier for our developers

to verify defects after they have followed the infec-

tion chain backwards. For each failure, we assess a

level of difficulty that estimates the required effort

to localize its defect. On the one hand we choose

this level depending on our own debugging experi-

ence on the other hand it also reflects the length of

the infection chain (call nodes between failure and

defect) and the position of the defect in the list of

anomalies (suspicious method rank). Finally, we

have two failures from each of six, which are easy,

normal, and hard to debug. All failures can be re-

produced with 1-10 failing test cases, which do not

trivially include defects as part of their stack traces.

User Study Procedure

Before our user study, we presented a software

engineering course, in which all students had al-

ready access to our Path tools for a period of three

months. In this course, we also taught them ad-

vanced debugging concepts [34] and we introduced

test-driven fault navigation as an exemplary ap-

proach. To find participants for our user study, we

performed a short questionnaire with all students,

which takes into account years of programming ex-

perience, reviews of course projects, and grades.

Based on these results, we selected six excellent stu-

dents with a similar background knowledge. How-

ever, the questionnaire also revealed that mostly all

students were afraid of doing test-driven fault nav-

igation because of the new debugging concept and

neglected guidance from our part.

For the preparation of our participants, we intro-

duced test-driven fault navigation again and we al-

lowed them to become acquainted with iCalendar.

Within two hours, we first presented our Seaside

typo error followed by an instructed and compre-

hensive practice with our tools. The students de-

bugged one example failure in iCalendar with the

help of our guidance. In doing so, they understood

iCalendar’s basic concepts, investigated its source

code, and learned to debug with test-driven fault

navigation.

We conduct the user study by observing our de-

velopers during debugging iCalendar’s failures with

different tools. First, all developers debug three

failures with Squeak’s standard debugging tools.

After that, they debug the remaining three fail-

ures with our Path tools. While using test-driven

fault navigation, we provide assistance with han-

dling PathFinder’s user interface and its features.

We do not influence the process of localizing fail-

ures. For all six failures, we measure the complete

debugging time, including everything from time to

consider source code to execution time of applied

tools. Additionally, for test-driven fault navigation

we notice the point in time when our developers

start PathFinder to follow the infection chain back.

If the defect is not localized after 15 minutes, we

mark the failure as not solved.

To evaluate our approach, we assign each de-

veloper three failures for debugging with standard

tools (symbolic debugger and test runner) and

three failures for test-driven fault navigation (Path-

Vol. 29 No. 3 Aug. 2012 203

Fig. 11 Required debugging time with symbolic debugger and test runner compared to

PathFinder and PathMap. The time includes all applied debugging activities such

as running tests, time to consider source code, and execution time of tools. Lines

in test-driven fault navigation results mark the point in time when developers

started PathFinder to follow the infection chain back.

Finder and PathMap). For each of the six failures,

we ensure a unique combination of developers and

applied tools. At each level of difficulty a devel-

oper debugs one failure with standard tools and

the other one with our Path tools.

After the study, we interviewed each student and

asked for “I like and I wish” feedback with respect

to our approach and Path tools.

Lessons Learned

With the help of our user study, we reveal that

test-driven fault navigation is able to reduce the

required effort for localizing failure causes. Com-

pared to standard debugging tools, developers,

which apply our Path tools, need in the majority

of cases less time for debugging. Figure 11 summa-

rizes for each failure the required debugging time

with standard tools and our Path tools.

In the case of the first two easy failures, develop-

ers with test-driven fault navigation are about one

minute faster compared to developers with sym-

bolic debuggers and test runners only. For instance,

while the first failure requires at least three minutes

to debug with standard tools, our Path tools are

able to localize the defect in less than two minutes.

Even if all developers exchange their tools for the

second failure—from standard tools to Path tools

and vice versa—test-driven fault navigation is al-

most always faster. Thus, our performance increase

is independent of the expert knowledge of individ-

ual developers.

We have similar results with the next two normal

failures but the differences in required debugging

time are considerably larger. Especially, developers

with standard tools have some problems in localiz-

ing failure causes. Three students could not find

the defect within 15 minutes because they did not

comprehend what is going wrong. In contrast, two

other developers required only a short time for de-

bugging with standard tools. While one developer

knows the infected source code very well from the

preparation phase, the other developer instantly

had a proper intuition. Nevertheless, test-driven

fault navigation is once more better and allows all

developers to localize failure three in less than four

minutes and failure four in less than two minutes.

The integration of anomalies and failure causes is

very helpful and restricts the search space a lot.

With the help of PathFinder, developers could eas-

ily understand how the failure comes to be and they

were able to directly jump into erroneous behavior.

The last two hard failures required with all tools

much more time and they could not be solved by

204 コンピュータソフトウェア

five developers including one participant with Path

tools. We argue that these two failures are very

hard to debug because the corresponding test cases

fail far away from the failure-inducing defect. In

the case of failure five, all test-driven fault navi-

gation participants were able to identify the defect

within six to eight minutes, while standard debug-

ging tools either could not solve this failure or need

still more time. Failure six was so difficult that no

developer could solve it with standard tools. Also

with our Path tools one student could not solve

it—although he was close by. The other two de-

velopers were able to find this failure after about

twelve minutes. Especially, PathFinder’s possibil-

ity to follow the infection chain backwards in com-

bination with anomalies supported the developers

in isolating failure causes.

During debugging, we observed the participants

and got some interesting insights. Developers with

standard tools rely primarily on their intuition. Of-

ten, they guessed what is going wrong and what

is the infected state or behavior. In doing so,

some developers had proper hypotheses about fail-

ure causes but no developer was constantly better

in guessing than another one. This is also reflected

in the differences of required debugging time. In

contrast, our test-driven fault navigation allows de-

velopers to rely on a systematic debugging process

and the advice of our tools. They linked the corre-

sponding anomalies with their hypotheses and fol-

lowed the infection chain backwards. All developers

take advantage of the combined perspectives of our

Path tools. They usually started with a breadth-

first search in PathMap and then followed the in-

fection chain through suspicious behavior. As a

consequence, the differences in debugging time are

often marginal.

For assessing the effectiveness of PathMap and

PathFinder, we noticed the point in time when

developers switched from localizing suspicious sys-

tem parts to debugging erroneous behavior back in

time. For each failure, we marked this point in

time with small lines in the corresponding columns

of Figure 11. Usually, PathMap has been applied

for a breadth-first search in the first two minutes.

During this time, developers got a first impression

of anomalous system parts and they built first hy-

potheses about failure causes. In some cases (fail-

ure 1 and 4), these hypotheses were sufficient to

localize defects without the help of PathFinder. In

both failures, the defected method was ranked in

a very suspicious anomaly (compare to Table 1)

so that developers saw from the visualization alone

where the defect might be located. However, these

developers could not explain why such defects re-

sult in observable failures. If defects could not ob-

viously be found with PathMap, developers started

PathFinder and followed the infection chain back.

The required debugging time ranges from one to

twelve minutes and strongly depends on the diffi-

culty of failures and at which anomalous method

developers opened a failing test case. In summary,

both tools are effective for debugging because they

allow developers to reduce the search space step by

step until they localize the root cause.

Feedback of Participants

After the user study, we interviewed the partici-

pants and asked them for “I like and I wish” feed-

back about our approach and tools. All developers

like our Path tools and conceive them as very valu-

able for debugging. A participant summarizes it

as follows: “Especially while debugging non-trivial

faults, I have the feeling that the failure localization

requires less time. The classification of anomalies

allowed me to invent better hypotheses about the

failure cause and to abbreviate the execution his-

tory.” Another student stated: “The tools are fast

and very well integrated with each other. The color-

ing of map and trace has helped a lot in focusing on

suspicious entities.” A third developer mentions:

“Compared to a standard debugger, I had no prob-

lem to see into a complete program execution and

it was easy to understand how a failure comes to

be.” Last but not least, one of them concluded “I

can very well imagine that the Path tools improve

debugging of our real failures, too.”

Besides the positive feedback, they mostly wish

usability improvements of our tools. They sug-

gest promising new user interface elements and ad-

vanced query mechanisms for searching the call tree

and its states. We will implement most of the rec-

ommendations in the near future. Another point is

that test-driven fault navigation is a new debugging

method which requires a change of thinking. They

wish to have more practice in order to debug with

our Path tools even better. For this reason, we will

make our approach available within our next soft-

ware engineering course. Moreover, we will extend

Vol. 29 No. 3 Aug. 2012 205

Table 2 Project statistics and average performance characteristics for PathMap,

our developer ranking metric, and PathFinder

Seaside iCal- 4Confer- AweSOM Compiler

endar ences

Classes 394 77 175 68 64

Project Methods 3708 1347 2540 742 1294

statistics Tests 674 115 89 124 49

Coverage 58.3 % 72.98 % 43.74 % 81.8 % 51.1 %

Exec. time all tests (s) 9.19 1.05 198.57 3.77 0.91

PathMap ∆ Fault localization (s) 26.61 1.33 8.64 8.70 1.85

Refined fault localization (s) 2.38 2.51 16.70 3.73 0.90

Devel. Ranking Computation Costs (s) 11.19 5.00 7.92 3.44 4.49

Exec. time per test (ms) 0.76 3.34 1910.82 17.33 7.69

PathFinder ∆ Shallow analysis (ms) 336.17 258.16 281.02 235.79 247.23

∆ Refinement analysis (ms) 16.92 2.67 19.65 5.93 2.15

our upcoming debugging lecture with a test-driven

fault navigation tutorial.

Finally, all developers confirmed that the com-

bination of anomalies and failure causes is promis-

ing for debugging with less effort. With our test-

driven fault navigation, they get helpful advice for

strengthening their hypotheses about failure causes

and it appeared easier for them to follow the infec-

tion chain backwards.

8. 2 Accuracy of Recommended

Developers

We evaluate our developer ranking metric with

the help of a web-based conference management

system. The conference management system called

4Conferences permits activities such as the regis-

tration of attendees, the organization of payments,

the printing of badges, and the planning of talks. It

has been developed by five undergraduate student

projects in the context of two software engineering

courses in the last two years. In these courses, the

first three authors act as customers for the 28 in-

volved students. The students implemented 4Con-

ferences with the help of Extreme Programming.

Due to agile practices such as collective code own-

ership, all developers had access to the entire code

base and each method was implemented by a num-

ber of students. 4Conferences’s project character-

istics can be seen in the upper part of Table 2.

To measure the accuracy of our developer rank-

ing metric, we introduce a considerable number

of defects into 4Conference. We randomly choose

100 covered methods that are neither part of test

code nor trivial (e. g., getters) and create for each

method a defect with a small mutation engine. For

instance, we hide the method body and returning

the receiver object instead of executing the origi-

nal functionality. We ensure the occurrence of each

failure by observing corrupted test cases. For each

of the 100 defects, we automatically run PathMap,

compute a sorted list of recommended developers,

and compare it with the most active author of the

faulty method. In this evaluation, we consider such

an author as the most qualified expert for under-

standing the specific defect.

Figure 12 shows the distribution of methods per

author, where a method is always associated to its

most active author. This distribution reveals that

4Conferences has been uniformly implemented by

our 28 students. Only two developers have devel-

oped more than 10 % of the system, respectively

18 % and 11 %, and eleven developers have realized

less than 2 % of all methods. If we randomly insert

defects into 4Conferences, we have a chance of up

to 18 % to pick the most qualified developer from

the static distribution of expert knowledge. Fur-

thermore, there is a maximum probability of 38 %

to have the expert within the first three choices.

Figure 13 illustrates developer recommendations

of a simple coverage metric that takes into account

only covered methods of failing tests. This met-

ric restricts the search space to erroneous related

methods and sums up their authors. The chart

shows the position of the most qualified developer

206 コンピュータソフトウェア

Fig. 12 Results for developer recommen-

dation based on method distribu-

tion.

Fig. 13 Results for developer recommen-

dation based on coverage data.

in the list of recommended experts. In less than

20 % of all defects, the expert is found within the

first three ranks. Compared to the static distribu-

tion of methods per developer, this value is below

the 38 % of choosing an arbitrary expert. Only if

we consider at least six recommendations and ig-

nore the five false suggested experts, this metric

seems to be better.

Figure 14 presents for our anomaly-based devel-

oper ranking metric the position of the most qual-

ified expert in the list of recommendations. For

almost a third of all defects, the responsible de-

veloper of the faulty method is ranked in the first

Fig. 14 Results for developer recommen-

dation based on anomalies.

place. With a probability of 60 %, we suggest the

expert within the first three ranks and with a prob-

ability of 80 % in the first five ranks. Since we

restrict the search space to anomalies and their

involved developers, our metric is able to outper-

form the both other approaches. For instance, we

achieve a probability of 60 % followed by 38 %

of developer distribution and 19 % of the cover-

age metric for recommending experts in the first

three ranks. Even if developers being responsible

for the fault are not listed at the top, we expect

that their higher ranked colleagues are also familiar

with suspiciously related system parts. Consider-

ing that failure causes are still unknown, our devel-

oper ranking metric achieves very satisfactory re-

sults with respect to the accuracy of recommended

experts.

8. 3 Efficiency of the Path Tool Suite

　We evaluate the low performance overhead of our

Path tools by measuring the required time for col-

lecting and presenting run-time information from

five different Smalltalk projects.

The properties of the five mid-sized Smalltalk

projects are summarized in the upper part of Ta-

ble 2. Of the five projects, three systems are al-

ready described in this paper as we apply test-

driven fault navigation to them. Seaside is an open

source Web framework that includes our motivating

typo error. iCalendar handles appointments and

lays the foundation for our user study. 4Confer-

Vol. 29 No. 3 Aug. 2012 207

ences supports the web-based management of con-

ferences and determines the accuracy of our devel-

oper ranking metric. All projects, including their

test suites, were not implemented by the authors.

The remaining two (AweSOM and Compiler) are

additional projects that have also profited from our

Path tools during their maintenance. AweSOM is

a research prototype developed in our group that

implements a virtual machine for SOM Smalltalk

on top of the Squeak system. The last project is

Squeak’s standard Smalltalk compiler.

All five projects are well tested and in daily use

in software development and business activities.

Their acceptance, integration, and unit tests cover

large parts of the system, imposing different com-

putational costs. The projects involve various ap-

plication domains such as end-user Web applica-

tions, development tools, and virtual machines. As

a consequence, we argue that our Path tools are

applicable to a broad range of different software

systems if they include an adequate number of test

cases.

We measure the run-time overhead of our tool

suite by analyzing all tests of the five projects. We

do not insert failures because the analysis overhead

is independent of their occurrence. PathMap exe-

cutes the entire test suite with and without fault

localization. We refine fault localization at state-

ments only at non-trivial methods including a Mc-

Cabe complexity [18] greater than one. So, we

exclude simple methods with sequential behavior

where all statements have the same suspiciousness

score. For our developer ranking metric, we as-

sume the worst case by declaring each method as

anomalous and computing the most active devel-

oper. Thus, our metric has to gather all method

commits of a project. PathFinder runs each test

on its own and analyzes the overhead produced

by step-wise run-time analysis. Shallow analysis

records the entire method call tree while refinement

analysis creates a deep copy of the returned object

of a random call node. All experiments were run on

a MacBook with a 2.4 GHz Intel Core 2 Duo and 8

GB RAM running Mac OS X 10.6.6, using Squeak

version 4.1 on a 4.2.1b1 virtual machine.

The average results for the performance of Path-

Map are described in the second part of Table 2.

The first row shows the pure run-time (in seconds)

for executing all tests. While four projects run their

test suites in less than ten seconds, the 4Confer-

ences project requires more than three minutes due

to several slow running acceptance tests. These

tests check with the help of Selenium†8 complete

user workflows including multiple interactions with

the Web application. The second row presents the

overhead resulting from spectrum-based fault local-

ization. PathMap’s fault localization slows down

execution by a factor of 2.3 for iCalendar to 3.9 for

Seaside. In the case of 4Conferences, long waiting

times for responding to interactions of acceptance

tests explain the minimal slow down factor of 1.04.

In all other cases, the variation originates from

additional instrumentation and visualization costs.

Nevertheless, this overhead is low enough for ap-

plying spectrum-based fault localization frequently.

The third row reveals time for refining fault local-

ization at statements. The time mostly depends

on the number of covering tests per method and

their corresponding run-time. In most cases, de-

velopers get refined results for complex methods

in less than three seconds (without 4Conferences’s

long running acceptance tests the 80th percentile

is below 2.6 seconds). We argue this time is still

acceptable compared to a complete statement cov-

erage analysis that possesses a slow down factor of

about 120 in Squeak/Smalltalk [8].

The third part of Table 2 presents the computa-

tion costs for our developer ranking metric. The

required time for our metric is between 3.5 seconds

for AweSOM as the smallest and about 11 seconds

for Seaside as the largest system. The computation

costs strongly depend on the number of analyzed

methods. For each method, our metric requests

Smalltalk’s version control system to get all changes

and to compute the most active author. Especially,

the access to method changes slows down the exe-

cution as it includes excessive I/O handling. Con-

sidering our worst case scenario that each method

is an anomaly, the mentioned computation costs

reflect the maximum per project. In a realistic set-

ting anomalies cover only a subset of all methods

and so we argue that the computation costs are still

acceptable. For instance, in our Seaside typing er-

ror example we return the result of 54 anomalous

methods in about 3 seconds.

The lower part of Table 2 describes the average

†8 http://www.seleniumhq.org/

208 コンピュータソフトウェア

performance characteristics of PathFinder. The

first row lists the average and pure run-time per

unit test. As before 4Conferences’s acceptance

tests include high run-time costs which hinder im-

mediate feedback by our tools. Apart from that,

executing a single unit test requires less than 20

milliseconds on average. The second row demon-

strates the overhead associated with building the

lightweight method call tree. On average, this value

is between 200 and 300 milliseconds meaning that

the shallow analysis is quite fast. The 99th per-

centile for the required run-time overhead is below

750 ms. The third row deals with the refinement

analysis that allows developers to reload state in-

formation on demand. In doing so, the required

analysis overhead only depends on the effort for

creating a deep copy. Thus, our refinement analysis

also imposes minimal costs as the 95th percentile

is below 25 ms for all test cases. In summary, step-

wise run-time analysis supports fast response times

when debugging a test execution back in time since

run-time data is in most cases provided in consid-

erably less than two seconds [23].

8. 4 Threats to Validity

First, the Smalltalk context of our evaluation

might impede validity by limited scalability and

general applicability. However, the Seaside Web

framework is in fact a real-world system and it

exhibits source code characteristics comparable to

particular complex Java systems such as JHot-

Draw [23]. Even if the remaining projects are only

mid-sized systems, they illustrate the applicabil-

ity of our Path tools once unit tests are available.

While these insights do not guarantee scalability

to arbitrary languages and systems, they provide

a worthwhile direction for future studies assessing

general applicability.

Second, our user study is only based on one par-

ticular project, its six failures, and undergraduate

students. We consider the iCalendar project as a

real world application since it is mature and an

important part of several other systems. The six

failures are realistic and based on similar known de-

fects that we have found in other projects. We treat

our students as professional developers because of

their longstanding programming experience. Al-

though we require a larger study for a general con-

clusion, our user study already reveals the benefits

of our approach and its tool suite.

Third, the chronological order of debugging the

first three failures with standard tools could posi-

tively influence participants’ program comprehen-

sion. Thus, there is a chance to localize the remain-

ing three failures with our Path tools more simply.

To reduce this factor, we have a preparation phase

of two hours to become acquainted with iCalendar.

During this time, developers read not only source

code but also applied PathFinder to understand be-

havioral examples of test cases [23]. Furthermore,

we make sure that all defects and their infection

chains are unique. They are located in completely

different system parts and their failure-reproducing

test cases do not overlap each other.

Fourth, we limit the evaluation of our developer

ranking metric to accuracy and performance char-

acteristics. We have not yet checked the effec-

tiveness in a realistic setting due to difficulties in

finding suitable Smalltalk projects. Many projects

suffer from an unbalanced distribution of method

authors, missing tests that reproduce failures, or

failure reports that are not related to source code

changes and vice versa. For these reasons, we plan

a more controlled experiment with the 4Conference

system as part of our next software engineering

course. If students find a failure, our student assis-

tants, which are former developers of 4Conferences,

are supposed to write a reproducing test so that we

can verify our metric. Even though we evaluate our

developer ranking metric only with quite a number

of synthetic failures, we argue that its results are

already satisfactory with respect to recommended

developers.

Fifth, garbage collection was disabled during

measurement to elide performance influences. In

a realistic setting with enabled garbage collection,

minimal slowdowns would be possible.

Finally, we rely on tests to obey certain rules

of good style: e. g., they should be determinis-

tic. Tests that do not follow these guidelines might

hamper our conclusions. The tests that we used in

our evaluation were all acceptable in this respect.

9 Related Work

　 We divide related work into three categories:

spectrum-based fault localization, approaches to

determine developer expertise, and back in time de-

bugging.

Vol. 29 No. 3 Aug. 2012 209

9. 1 Spectrum-based Fault Localization

Spectrum-based fault localization is an active

field of research where passing and failing pro-

gram runs are compared with each other to iso-

late suspicious behavior or state. Tarantula [11]

analyzes and visualizes the overlapping behavior

of test cases with respect to their results. At

the system overview level, each statement is rep-

resented as a line of pixels and colorized with a

suspiciousness score that refers to the probability

of containing the defect. Later, Gammatella [21]

presents a more scalable and generalized visualiza-

tion in form of a tree map but only for classes.

The Whither tool [29] collects spectra of several

program executions, determines with the nearest

neighbor criterion the most similar correct and

faulty run, and creates a list of suspicious differ-

ences. AskIgor [5] identifies state differences of

passed and failed test runs and automatically iso-

lates the infection chain with delta debugging and

cause transitions. A first empirical study [10] com-

paring these different spectrum-based approaches

concludes that the Tarantula technique is more ef-

fective and efficient than the other ones. A more

comprehensive study [1], investigating the impact

of metrics and test design on the diagnostic accu-

racy of fault localization, states that similarity met-

rics are largely independent of test design and that

the Ochiai coefficient consistently outperforms all

other approaches.

All presented approaches produce ranked source

code entities that are likely to include failure

causes. However, as defects are rarely localized

without doubt, developers have to determine the

remaining results by hand. We argue that our

presented test-driven fault navigation deals with

this issue. It combines multiple perspectives based

on already gathered suspiciousness information and

supports developers in further approximating the

real failure cause.

9. 2 Determining Developer Expertise

Our developer ranking metric is mostly related

to approaches that identify expert knowledge for

development tasks. The expertise browser [20]

quantifies people with desired knowledge by analyz-

ing information from change management systems.

XFinder [12] is an Eclipse extension that recom-

mends a ranked list of developers to assist with

changing a given file. A developer-code map cre-

ated from version control information presents com-

mit contributions, recent activities, and the num-

ber of active workdays per developer and file. The

Emergent Expertise Locator [19] approximates, de-

pending on currently opened files and their histo-

ries, a ranked list of suitable team members. An

empirical study [6] verifies the assumption that

programmer’s activity indicates some knowledge of

code and presents additional factors that also in-

dicate expertise knowledge such as authorship or

performed tasks. Besides common expertise knowl-

edge, there are other approaches that focus on as-

signing bug reports to the most qualified devel-

opers. A first semi-automated machine learning

approach [2] works on open bug repositories and

learns from already resolved reports the relation-

ship between developers and bugs. It classifies new

incoming reports and recommends a few developers

that have worked on similar problems before. Dev-

elect [17] applies a similar approach but it matches

the lexical similarities between the vocabulary of

bug reports and the diffs of developers’ source code

contributions.

In contrast to our developer ranking metric, pre-

vious approaches are generally applicable but their

recommendation accuracy for a specific failure is

limited. Other approaches consider either the en-

tire system so that the search space is too large

or they require similar failure reports which ex-

cludes new kinds of failures. Our metric restricts

the search space to anomalies only. As anomalies

are likely to include failure causes, we are able to

recommend in many cases a suitable contact per-

son. Although we require at least one failing test

case, we think that often its implementation can be

derived from bug reports.

9. 3 Back in Time Debugging

To follow the infection chain from the observ-

able failure back to its cause, back-in time debug-

gers allow developers to navigate an entire pro-

gram execution and answer questions about the

cause of a particular state. The omniscient de-

bugger [14] records every event, object, and state

change until execution is interrupted. However,

the required dynamic analysis is quite time- and

memory-consuming. Unstuck [9] is the first back-

in time debugger for Smalltalk but suffers from

210 コンピュータソフトウェア

similar performance problems. WhyLine [13] al-

lows developers to ask a set of “why did” and “why

didn’t” questions such as why a line of code was not

reached. However, WhyLine requires a statically-

typed language and it does not scale well with long

traces. Other approaches aim to circumvent these

issues by focusing on performance improvements in

return for a more complicated setup. The trace-

oriented debugger [26] combines an efficient instru-

mentation for capturing exhaustive traces and a

specialized distributed database. Later, a novel in-

dexing and querying technique [25] ensures scala-

bility to arbitrarily large execution traces and of-

fers an interactive debugging experience. Object

flow analysis [16] in conjunction with object aliases

also allows for a practical back in time debugger.

The approach leverages the virtual machine and its

garbage collector to remove no longer reachable ob-

jects and to discard corresponding events.

Compared to such tools, our PathFinder is a

lightweight and specialized back in time debugger

for localizing failure causes in unit tests. Due to

step-wise run-time analysis, we do not record each

event beforehand but rather split dynamic analy-

sis over multiple runs. So, we can ensure fast re-

sponse times and low memory consumption since

only requested data is recorded [23]. Furthermore,

our classified traces allow to hop into erroneous be-

havior directly. Without this concept, developers

require more internal knowledge to isolate the in-

fection chain and to decide which path to follow.

10 Conclusion

We propose test-driven fault navigation as an

interconnected guide for debugging failures repro-

ducible via test cases. Based on the integration

of spectrum-based anomalies and failure causes,

we introduce a systematic breadth-first search that

navigates developers to failure causes within struc-

ture, the development team, and behavior. With

the help of our corresponding tool suite, including

PathMap and PathFinder, developers can localize

suspicious system parts, learn about other develop-

ers who are likely able to help, and debug erroneous

behavior back to failure-inducing origins. Our eval-

uation and case study demonstrate that test-driven

fault navigation, combining unit testing, spectrum-

based fault localization, and our step-wise run-time

analysis, is practical for bringing developers closer

and faster to defects. Thus, we expect that our ap-

proach is able to reduce debugging costs, especially,

in agile development projects with a high ratio of

testing [3].

Future work is two-fold. First, our approach will

be extended to take state information into account

in such a way that invariants of passing tests reveal

further anomalies in the infection chain. Second,

we are planning a larger user study to assess how

test-driven fault navigation improves debugging in

general.

References

[1] Abreu, R., Zoeteweij, P., Golsteijn, R. and

van Gemund, A. J.: A Practical Evaluation of

Spectrum-based Fault Localization, J. Sys. Soft.,

Vol. 82, No. 11(2009), pp. 1780–1792.

[2] Anvik, J., Hiew, L. and Murphy, G. C.: Who

Should Fix this Bug?, in Proc. ICSE, 2006, pp. 361–

370.

[3] Beck, K.: Test-driven Development: By Exam-

ple, Addison-Wesley Professional, 2003.

[4] Brant, J., Foote, B., Johnson, R. and Roberts,

D.: Wrappers to the Rescue, in Proc. ECOOP,

1998, pp. 396–417.

[5] Cleve, H. and Zeller, A.: Locating Causes of Pro-

gram Failures, in Proc. ICSE, 2005, pp. 342–351.

[6] Fritz, T., Murphy, G. C. and Hill, E.: Does

a Programmer’s Activity Indicate Knowledge of

Code?, in Proc. ESEC-FSE, 2007, pp. 341–350.

[7] Gschwind, T. and Oberleitner, J.: Improving

Dynamic Data Analysis with Aspect-Oriented Pro-

gramming, in Proc. CSMR, 2003, pp. 259–268.

[8] Haupt, M., Perscheid, M. and Hirschfeld, R.:

Type Harvesting - A Practical Approach to Obtain-

ing Typing Information in Dynamic Programming

Languages, in Proc. SAC, 2011, pp. 2169–2175.

[9] Hofer, C., Denker, M. and Ducasse, S.: Design

and Implementation of a Backward-in-Time Debug-

ger, in Proc. NODe, 2006, pp. 17–32.

[10] Jones, J. A. and Harrold, M. J.: Em-

pirical Evaluation of the Tarantula Automatic

Fault-Localization Technique, in Proc. ASE, 2005,

pp. 273–282.

[11] Jones, J. A., Harrold, M. J. and Stasko, J.: Vi-

sualization of Test Information to Assist Fault Lo-

calization, in Proc. ICSE, 2002, pp. 467–477.

[12] Kagdi, H., Hammad, M. and Maletic, J.: Who

Can Help Me with this Source Code Change?, in

Proc. ICSM, 2008, pp. 157–166.

[13] Ko, A. J. and Myers, B. A.: Debugging Rein-

vented: Asking and Answering Why and Why Not

Questions about Program Behavior, in Proc. ICSE,

2008, pp. 301–310.

[14] Lewis, B.: Debugging Backwards in Time, in

Proc. AADEBUG, 2003, pp. 225–235.

Vol. 29 No. 3 Aug. 2012 211

[15] Liblit, B., Naik, M., Zheng, A. X., Aiken, A. and

Jordan, M. I.: Scalable Statistical Bug Isolation, in

Proc. PLDI, 2005, pp. 15–26.

[16] Lienhard, A., Ĝırba, T. and Nierstrasz, O.:

Practical Object-Oriented Back-in-Time Debug-

ging, in Proc. ECOOP, 2008, pp. 592–615.

[17] Matter, D., Kuhn, A. and Nierstrasz, O.: As-

signing Bug Reports Using a Vocabulary-based Ex-

pertise Model of Developers, in Proc. MSR, 2009,

pp. 131–140.

[18] McCabe, T.: A Complexity Measure, IEEE

Trans. Soft. Eng., Vol. 2(1976), pp. 308–320.

[19] Minto, S. and Murphy, G. C.: Recommending

Emergent Teams, in Proc. MSR, 2007, pp. 5–14.

[20] Mockus, A. and Herbsleb, J. D.: Expertise

Browser: A Quantitative Approach to Identifying

Expertise, in Proc. ICSE, 2002, pp. 503–512.

[21] Orso, A., Jones, J. and Harrold, M. J.: Visu-

alization of Program-Execution Data for Deployed

Software, in Proc. SoftVis, 2003, pp. 67–76.

[22] Perscheid, M., Cassou, D. and Hirschfeld, R.:

Test Quality Feedback: Improving Effectivity and

Efficiency of Unit Testing, in Proc. C5, 2012, pp. 60–

67.

[23] Perscheid, M., Steinert, B., Hirschfeld, R.,

Geller, F. and Haupt, M.: Immediacy through In-

teractivity: Online Analysis of Run-time Behavior,

in Proc. WCRE, 2010, pp. 77–86.

[24] Perscheid, M., Tibbe, D., Beck, M., Berger, S.,

Osburg, P., Eastman, J., Haupt, M. and Hirschfeld,

R.: An Introduction to Seaside, Software Architec-

ture Group (Hasso-Plattner-Institut), 2008.

[25] Pothier, G. and Tanter, E.: Summarized Trace

Indexing and Querying for Scalable Back-in-Time

Debugging, in Proc. ECOOP, 2011, pp. 558–582.

[26] Pothier, G., Tanter, E. and Piquer, J.: Scalable

Omniscient Debugging, in Proc. OOPSLA, 2007,

pp. 535–552.

[27] Queinnec, C.: The Influence of Browsers on

Evaluators or, Continuations to Program Web

Servers, in Proc. ICFP, 2000, pp. 23–33.

[28] Rawlinson, G. R.: The Significance of Letter Po-

sition in Word Recognition, PhD Thesis, University

of Nottingham, 1976.

[29] Renieres, M. and Reiss, S.: Fault Localization

with Nearest Neighbor Queries, in Proc. ASE, 2003,

pp. 30–39.

[30] Richardson, D. J. and Thompson, M. C.: An

Analysis of Test Data Selection Criteria Using the

RELAY Model of Fault Detection, IEEE Trans.

Soft. Eng., Vol. 19(1993), pp. 533–553.

[31] Shneiderman, B.: Tree Visualization with Tree-

Maps: 2-D Space-Filling Approach, ACM Trans.

Graph., Vol. 11, No. 1(1992), pp. 92–99.

[32] Steinert, B., Perscheid, M., Beck, M., Lincke,

J. and Hirschfeld, R.: Debugging into Examples:

Leveraging Tests for Program Comprehension, in

Proc. TestCom, 2009, pp. 235–240.

[33] Vessey, I.: Expertise in Debugging Computer

Programs: A Process Analysis, Int. J. Man Mach.

Stud., Vol. 23, No. 5(1985), pp. 459–494.

[34] Zeller, A.: Why Programs Fail: A Guide to Sys-

tematic Debugging, Morgan Kaufmann, 2006.

Michael Perscheid

Michael Perscheid (michael.

perscheid@hpi.uni-potsdam.de) is a

research assistant in the Soft-

ware Architecture Group at the

Hasso-Plattner-Institute (HPI) and

a member of the HPI Research School on Service-

Oriented Systems Engineering. He received a mas-

ter’s degree from the Hasso-Plattner-Institute, Uni-

versity of Potsdam, Germany.

Michael Haupt

Michael Haupt (michael.haupt@

oracle.com) is a member of the

Maxine team at Oracle Labs. The

work described in this paper was

performed while he was a postdoc-

toral research assistant and lecturer in the Software

Architecture Group at the Hasso-Plattner-Institute

(HPI). Michael holds a doctoral degree from Tech-

nische Universität Darmstadt, Germany.

Robert Hirschfeld

Robert Hirschfeld (robert.

hirschfeld@hpi.uni-potsdam.de) is

a Professor of Computer Science at

the Hasso-Plattner-Institut (HPI)

at the University of Potsdam. He

received a Ph.D. in Computer Science from the

Technical University of Ilmenau, Germany. See also

http://www.hpi.uni-potsdam.de/swa/.

Hidehiko Masuhara

Hidehiko Masuhara is an Associate

Professor at Graduate School of

Arts and Science, the University

of Tokyo. He received D.Sc. from

Department of Information Science,

the University of Tokyo.

