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“Debugging is the dirty little secret of computer science.”

— Henry Lieberman.

The Debugging Scandal and What to Do About It. 1997.

i



 



Abstract

The correction of software failures tends to be very cost-intensive because their debugging
is an often time-consuming development activity. During this activity, developers largely
attempt to understand what causes failures: Starting with a test case that reproduces
the observable failure they have to follow failure causes on the infection chain back to the
root cause (defect). This idealized procedure requires deep knowledge of the system and
its behavior because failures and defects can be far apart from each other. Unfortunately,
common debugging tools are inadequate for systematically investigating such infection
chains in detail. Thus, developers have to rely primarily on their intuition and the
localization of failure causes is not time-efficient. To prevent debugging by disorganized
trial and error, experienced developers apply the scientific method and its systematic
hypothesis-testing. However, even when using the scientific method, the search for failure
causes can still be a laborious task. First, lacking expertise about the system makes
it hard to understand incorrect behavior and to create reasonable hypotheses. Second,
contemporary debugging approaches provide no or only partial support for the scientific
method.

In this dissertation, we present test-driven fault navigation as a debugging guide for
localizing reproducible failures with the scientific method. Based on the analysis of
passing and failing test cases, we reveal anomalies and integrate them into a breadth-first
search that leads developers to defects. This systematic search consists of four specific
navigation techniques that together support the creation, evaluation, and refinement of
failure cause hypotheses for the scientific method. First, structure navigation localizes
suspicious system parts and restricts the initial search space. Second, team navigation
recommends experienced developers for helping with failures. Third, behavior navigation
allows developers to follow emphasized infection chains back to root causes. Fourth,
state navigation identifies corrupted state and reveals parts of the infection chain auto-
matically. We implement test-driven fault navigation in our Path Tools framework for
the Squeak/Smalltalk development environment and limit its computation cost with the
help of our incremental dynamic analysis. This lightweight dynamic analysis ensures
an immediate debugging experience with our tools by splitting the run-time overhead
over multiple test runs depending on developers’ needs. Hence, our test-driven fault
navigation in combination with our incremental dynamic analysis answers important
questions in a short time: where to start debugging, who understands failure causes best,
what happened before failures, and which state properties are infected.
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Zusammenfassung

Die Beseitigung von Softwarefehlern kann sehr kostenintensiv sein, da die Suche nach der
Fehlerursache meist sehr lange dauert. Während der Fehlersuche versuchen Entwickler vor
allem die Ursache für den Fehler zu verstehen: Angefangen mit einem Testfall, welcher den
sichtbaren Fehler reproduziert, folgen sie den Fehlerursachen entlang der Infektionskette
bis hin zum ursprünglichen Defekt. Dieses idealisierte Vorgehen benötigt ein grundlegendes
Verständnis über das Systemverhalten, da Fehler und Defekt sehr weit auseinander liegen
können. Bedauerlicherweise bieten jedoch gebräuchliche Entwicklungswerkzeuge wenig
Unterstützung, um solche Infektionsketten detailliert zu untersuchen. Dementsprechend
müssen Entwickler primär auf ihr Gespür vertrauen, so dass die Lokalisierung von
Fehlerursachen sehr viel Zeit in Anspruch nehmen kann. Um ein willkürliches Vorgehen
zu verhindern, verwenden erfahrene Entwickler deshalb die wissenschaftliche Methode,
um systematisch Hypothesen über Fehlerursachen zu prüfen. Jedoch kann auch noch
mittels der wissenschaftlichen Methode die Suche nach Fehlerursachen sehr mühsam sein,
da passende Hypothesen meist manuell und ohne die systematische Hilfe von Werkzeugen
aufgestellt werden müssen.

Diese Dissertation präsentiert die test-getriebene Fehlernavigation als einen zusammenhän-
genden Wegweiser zur Beseitigung von reproduzierbaren Fehlern mit Hilfe der wissenschaft-
lichen Methode. Basierend auf der Analyse von funktionierenden und fehlschlagenden
Testfällen werden Anomalien aufgedeckt und in eine Breitensuche integriert, um Ent-
wickler zum Defekt zu führen. Diese systematische Suche besteht aus vier spezifischen
Navigationstechniken, welche zusammen die Erstellung, Evaluierung und Verfeinerung
von Hypothesen für die wissenschaftliche Methode unterstützen. Erstens grenzt die Struk-
turnavigation verdächtige Systemteile und den initialen Suchraum ein. Zweitens empfiehlt
die Team-Navigation erfahrene Entwickler zur Behebung von Fehlern. Drittens erlaubt
es die Verhaltensnavigation Entwicklern, die hervorgehobene Infektionskette eines fehl-
schlagenden Testfalls zurückzuverfolgen. Viertens identifiziert die Zustandsnavigation
fehlerhafte Zustände, um automatisch Teile der Infektionskette offenzulegen. Alle vier
Navigationen wurden innerhalb des Path Tools Framework für die Squeak/Smalltalk
Entwicklungsumgebung implementiert. Dabei bauen alle Werkzeuge auf die inkrementelle
dynamische Analyse, welche die Berechnungskosten über mehrere Testdurchläufe abhängig
von den Bedürfnissen des Nutzers aufteilt und somit schnelle Ergebnisse während der
Fehlersuche liefert. Folglich können wichtige Fragen in kurzer Zeit beantwortet werden:
Wo wird mit der Fehlersuche begonnen? Wer versteht Fehlerursachen am Besten? Was
passierte bevor der Fehler auftrat? Welche Programmzustände sind betroffen?
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1
Introduction

Software failures are ubiquitous and their consequences tend to be very cost-intensive. Due
to the steadily growing complexity of software and time pressure during its development,
almost every program contains failures. A large number of reports confirm that even
professional applications are rarely free from errors [67, 136, 215, 219]. For example, the
Ariane 5 launch vehicle crashed because of a simple type-conversion error and so caused
damage of about $ 370million [60]. Software failures are expensive for both users and
software companies. In 2002, it was reported that software failures cost the U.S. economy
about $ 60 billion per year [185]. Regarding the costs for software companies, a survey
from 2008 found that the annual costs for solving software defects amount to $ 52,000 per
developer [23]. In other words, a company with 100 developers pays about $ 5million per
year just for the effects of software failures.

Apart from malfunctions in business critical software systems, one major reason for the
high costs of software failures is that debugging them is an extremely time-consuming
development activity. Debugging as the reproduction, identification, and correction of
failure causes is not trivial [67]; developers have to spend significant time to search for
failure causes and to fix defects [23]. They require between 37% [23] and 50% [29] time
solely to debugging activities. Companies report that up to 25 failures per year are so
hard to debug that they need multiple developers and several workdays for correction [23].
Consequently, testing, debugging, and verification activities can easily range from 50%
to 75% of the total development costs [97].

Software companies are gradually recognizing that their debugging concepts are inefficient
and, therefore improvements in debugging processes could provide significant cost-savings.
It is reported that 100 out of 139 North American companies consider their debugging
practices to be problematic [23]. Although many of them apply code reviews, static
analysis, and dynamic analysis tools, they often do not recognize defects and failure
causes. In particular, time pressure and inadequate tool support makes debugging a
challenging task. Developers and software organizations estimate that improvements in
testing and debugging could cut total development costs by a third [23, 185]. In order to
reduce the required time, effort, and cost of debugging, we argue that there is a need for
investigating new approaches for correcting defects.
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Introduction

1.1. The Laborious Search for Failure Causes

Debugging is largely an attempt to understand what causes failures [219]. Starting with
reproducing the observable failure in form of a test case, developers follow failure causes
and their effects on the infection chain back to the root cause (defect). To localize failure
causes, they examine involved program entities and distinguish relevant from irrelevant
behavior and clean from infected state. After understanding all details of failure causes
and their effects, developers are able to identify and correct the root cause. However,
this idealized procedure requires deep knowledge of the system and its behavior [209]
because failures and defects can be far apart from each other [137]. Developers may
not be familiar with the numerous program entities that are involved in long-running
infection chains. This forces them to understand source code they are less familiar with
and to determine whether the behavior is correct or not.

Localizing failure causes tends to be a tedious activity because developers are not
able to investigate infection chains in a systematic way. There are two main reasons:
deficiencies of standard development tools and inadequate knowledge about debugging
methods [90, 97, 150]. Common debugging tools—including symbolic debuggers and test
runners—do not support identification and tracking of infection chains [140]. Symbolic
debuggers only provide access to the last point of execution without access to the program
history or hints about suspicious behavior. Similarly, test runners only verify that
observable failures still exist. Both tools suffer from missing advice about causes and lack
the capability to systematically follow failures back to their defects. Thus, developers
have to work out on their own what is wrong and how to trace failure causes that occurred
in the past. Debugging with these outdated but still prevalent tools leads more to a
guessing game than a systematic procedure to localize failure causes. In addition to
this, lacking debugging knowledge also forces developers to apply disorganized trial and
error approaches [90, 150]. Programming courses often pay little attention to debugging
and specific debugging courses are rare and optional. Therefore, developers have to rely
exclusively on their experience and intuition. Without feedback about inefficient methods,
this often leads to large differences in debugging skills. Experienced developers are able
to locate defects up to three times faster and add fewer new failures than novices [88, 93].

Since common debugging tools are inadequate and developers rely primarily on their
intuition, the localization of failure causes is a laborious and time-consuming activity. We
summarize our problem statement with the still valid quotation:

Problem statement

“When something does go wrong, the people who write programs still lack
good ways of figuring out exactly what went wrong. Debugging is still, as it
was 30 years ago, largely a matter of trial and error.”

— Henry Lieberman, 1997 [138].
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Figure 1.1.: The scientific method supports a systematic procedure to debug infection
chains from observable failures back to defects.

To prevent debugging by disorganized trial and error, experienced developers apply the
scientific method and its systematic hypothesis-testing [219, 150]. With the help of
the scientific method as shown in Figure 1.1, developers are able to obtain thorough
explanations for failures by creating, evaluating, and refining failure cause hypotheses.
Starting with the observation of a reported failure, developers create an initial hypothesis
concerning the problem. With this hypothesis, they predict program behavior and validate
their expectations by experimenting with the system under observation. Depending on
these experimental results, developers draw a conclusion that leads to a refined or
alternative hypothesis. If this hypothesis is not able to explain earlier and predict future
observations, developers repeat the prediction, experiment, and conclusion step. In the
end, a conclusive hypothesis represents a diagnosis that determines the infection chain
and the root cause of the failure. As the scientific method is a general process, there are a
number of concrete debugging strategies that convert a hypothesis into a diagnosis [150].
Apart from strategies such as binary search, depth-first search, and deductive-analysis,
breadth-first search has proven itself as the most efficient for experts [209]. In this case,
developers start with a broad hypothesis about infected system parts that is increasingly
refined with detailed program comprehension until the root cause is found.

However, even when using the scientific method the search for failure causes can still
be a laborious task. In each iteration, developers have to choose from the countless
possibilities of failure causes to create and evaluate suitable hypotheses. The efficiency
of this procedure strongly depends on available expert knowledge and the abilities of
debugging tools.

Lacking expertise about the system makes it hard to understand incorrect behavior
and to create reasonable hypotheses [162]. Thus, inexperienced developers require more

5



Introduction

iterations, additional effort to conduct experiments, and a vast amount of time to find
failure causes. Even if more experienced developers may help with debugging specific
failures, their identification is challenging [11]. As infection chains and root causes are
still unknown, it is hard to find expert knowledge for debugging new failures. For these
reasons, assigned developers mostly have to debug on their own, independent of available
program comprehension about failure causes and effects.

In addition to lacking expertise, contemporary debugging tools provide no or only partial
support for the scientific method. For example, the prevalent symbolic debugger does not
support developers either in creating hypotheses or in observing the execution history
that leads to root causes. Furthermore, more state-of-the-art approaches do not focus
on the entire scientific method. For example, spectrum-based fault localization [122]
and likely invariant detection [68] reveal anomalies that may help in creating failure
cause hypotheses. By comparing coverage and state of passed and failed test cases,
such approaches produce prioritized lists of suspicious statements which restrict the
search space and reduce guessing. Unfortunately, anomalies are not defects—developers
have only numerous, unrelated starting points that must tediously be debugged one by
one. Another example of current debugging approaches are back-in-time or omniscient
debuggers [135]. These tools provide full access to past events so that developers can
directly experiment with the entire infection chain. They are able to observe everything
between the failure and its root cause. But back-in-time debuggers produce too much
data which bear little relation to failure causes and their recording of program behavior
comes with an expensive performance overhead. Thus, developers have no suggestions for
creating failure cause hypotheses and experimentation tends to be slow.

Currently, there are no debugging methodologies that support the scientific method in an
efficient way. For that reason, we summarize our research question as follows:

Research question

How can we efficiently support developers in creating, evaluating, and refin-
ing failure cause hypotheses so that we reduce time and effort required for
debugging?

We argue that the costs of debugging can be lower with better support for using the
scientific method. With the help of an integral debugging approach and its corresponding
tools, developers can systematically follow failures back to their root causes. Starting with
a breadth-first search, they understand failure causes step by step from infected system
parts to incorrect object states. Supported by integrated debugging tools that guide both
novices and experts along infection chains, developers are able to create, evaluate, and
refine failure cause hypotheses with less effort. Hence, such a systematic approach limits
the influence of disorganized trial and error debugging and focuses developers’ attention
on finding defects. So, developers localize failure causes more efficiently with the result
that they require less time and effort for the hardest part of debugging [90, 125, 150].

6



Our Approach

1.2. Our Approach

In this dissertation, we leverage test cases and analyze their hidden knowledge to propose
a new and systematic debugging method that efficiently guides developers to the root
causes of reproducible failures. Figure 1.2 summarizes our approach. Based on the idea of
debugging into examples which proposes new perspectives on test cases, our test-driven
fault navigation systematically leads developers to defects by combining the scientific
method with anomalous behavior and state. While debugging with this approach, our
incremental dynamic analysis efficiently collects and immediately presents the required
run-time data. Finally, our Path Tools framework implements both test-driven fault
navigation and incremental dynamic analysis for the Squeak development environment.

Debugging into examples provides new perspectives on test cases that form the basis of
our systematic debugging approach. We consider not only passing and failing test case
results, but also their deterministic and reproducible system behavior. Test cases are
small examples that describe how the system works or not. Assuming that test cases
provide entry points into reproducible system behavior, we are able to observe and analyze
their execution paths step by step. Thus, we provide access to execution histories of
reproducible failures instead of only their resulting error messages. So, developers are
able to understand entire infection chains of failing test cases.

Apart from the new perspective on one specific test case, we also consider the relationship
between several test cases and reveal their hidden knowledge. Test cases possess a valuable
source of information as they implicitly define expected and unexpected behavior all
over the system. During the execution of their exemplary assertions, they do not merely
cover directly-tested methods but rather large call sequences through internal parts of
the system. With an entire analysis and comparison of all behavior and state details on
these execution paths, we are able to expose several differences in passing and failing
runs. Such distinctions reveal anomalies that are valuable indications of failure causes.
In combination with the execution history of a failing test case, anomalies are able to
emphasize the infection chain and to guide developers along failure causes and their
effects.

Test-driven fault navigation is a debugging guide that integrates anomaly detection into
a breadth-first search for systematically creating, evaluating, and refining failure cause
hypotheses. Based on the scientific method and our new perspectives on test cases, we
define a novel and systematic debugging method that applies the hidden test knowledge
to support developers in localizing failure causes and understanding how failures come to
be. While the scientific method in the form of a breadth-first search provides a framework
for narrowing down failure causes, our anomalies automatically emphasize failure causes
within structure, behavior, and state of programs. Developers start by creating hypotheses
about suspicious system parts (structure navigation). Optionally, if developers need more
help, we recommend experts for proposing hypotheses and explaining causes (team
navigation). After that, suitable developers make predictions about anomalous behavior

7



Introduction

PathMap PathFinder

Refined Coverage Analysis Step-wise Run-time Analysis Inductive Analysis

Ty
pe

 H
ar

ve
st

er

pass

Test Cases as Entry Points System under Observation

pass

pass

pass

fail

fail

error
Run !

In
cr

em
en

ta
l 

Dy
na

m
ic 

An
al

ys
is

Te
st

-d
riv

en
 F

au
lt 

Na
vig

at
io

n
De

bu
gg

in
g 

in
to

 E
xa

m
pl

es

How Infection Chains 
Come to Be?

Ra
ng

e 
Ha

rv
es

te
r

...

?

?

?

?
?

??

?

Reproducing 
Failure

Test CasesTest Cases

Where to Start 
Debugging?

Recommending 
Experienced 
Developers

100%100%100%

50%

100% 50%

!Micha

Robert

Malte

60%

30%

10%
Team

Who Understands 
Failure Causes Best?

What Happened 
before Failures?

Which State Properties 
Are Infected?

Debugging 
Erroneous Test 

Cases Backwards

!

!

Behavior

Identifying 
Corrupted State in 
the Infection Chain

!

!

State

Support Debugging with the 
Help of Contact Person

!

!

PathBrowser

Th
e 

Pa
th

 T
oo

ls 
Fr

am
ew

or
k

Localizing 
Suspicious 

System Parts
A1

A3

A2

A5

A4

B7 B10

B8 B11
T
2

T
1

B6 B9

!

Structure

Figure 1.2.: An overview of our approach.

8



Our Approach

and experiment with the execution history of a failing test case (behavior navigation).
Finally, our anomalies reveal the infection chain and assist developers in the observation
of and conclusion about failure causes (state navigation).

Incremental dynamic analysis is a novel and lightweight dynamic analysis technique
that ensures an immediate experience when debugging with test-driven fault navigation.
Our navigation techniques require fast access to a wide variety of run-time information
in order to offer developers the requested guidance to failure causes as soon as possible.
However, applicable dynamic analysis tools are often associated with an inconvenient
overhead because they impose time-consuming in-depth analyses and expensive setups.
These issues render contemporary tools rather impractical for instant access to debugging
data [201]. For that reason, we employ a new approach to dynamic analysis that achieves
fast response times for requested run-time information that current tools are missing. Our
analysis ensures a high degree of scalability by automatically splitting and distributing the
dynamic analysis across multiple runs depending on the developers’ needs. We propose
an interactive approach to collect and present run-time data that leverages test cases
as reproducible entry points into the execution of programs. First, an initial analysis
provides immediate access to visualization of shallow run-time information. Second, as
users explore this information, it is incrementally refined on demand by executing and
analyzing corresponding test cases again. Our incremental dynamic analysis yields the low
response times necessary for an immediate debugging experience [201] while preserving
the quality of analysis results. Thus, we allow for a practical, spontaneous, and efficient
use of our test-driven fault navigation in order to reduce the required debugging time
further.

The Path Tools framework implements our test-driven fault navigation and incremental
dynamic analysis in the Squeak development environment [112], an implementation of
the Smalltalk programming language [87]. Our implementation consists of three tools
that are built on top of our flexible dynamic analysis framework. PathMap is an extended
test runner for supporting structure, team, and state navigation. It visualizes suspicious
system parts and identifies experienced developers for helping with failures. PathFinder
is our lightweight back-in-time debugger for navigating through specific test case behavior
and state. It assists developers in localizing root causes by accessing entire execution
histories, highlighting infection chains, and answering questions about object states.
PathBrowser connects the hidden test knowledge with a source code editor to further
support developers in program comprehension. The Path analysis framework provides the
basis for our tools. It is an extensible realization of our incremental dynamic analysis for
Smalltalk’s SUnit framework1. By leveraging unit tests as a basis for dynamic analysis, we
can ensure reproducibility and a high degree of automation, scalability, and performance
during debugging with our tools.

1We consider unit test frameworks, for example xUnit [27], as a technique for implementing different
kinds of test cases. Our approach works for combined testing including among others acceptance,
integration, and module tests.
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To evaluate our test-driven fault navigation, incremental dynamic analysis, and Path Tools
framework, we conduct several experiments to show its practicality, effectiveness, and
efficiency for debugging reproducible failures. First, we observe and compare developers
while debugging with common debugging tools and our Path Tools. In this user study, we
discover that test-driven fault navigation is not only able to decrease the total debugging
time, but also to lower the time differences between individual developers. The feedback
of our participants acknowledges that it was easier for them to find proper hypotheses
and to follow failures back to root causes. Second, we assess the effectiveness of our
test-driven heuristics for recommending experienced developers and revealing infection
chains. Our results are promising with respect to restricting the search space of several
mutated applications Even if root causes are still unknown, we propose suitable developers
and valuable hints for failure causes. Finally, we measure the efficiency of incremental
dynamic analysis and our Path Tools. We can ensure an experience of immediacy with
our tools because our analysis implies only a low performance overhead.

In addition to the results of our evaluation, we argue that our approach also limits the
drawbacks of common and state of the art debugging methods. We counter disorganized
trial and error debugging with our systematic breadth-first search based on the scientific
method. We reduce the influence of expert knowledge as we emphasize infection chains
for supporting developers in creating hypotheses. If the emphasis is not sufficient, we
further recommend other developers for help. Finally, instead of a symbolic debugger we
offer a lightweight back-in-time debugger that allows fast access to all execution details
and anomalous guidance through the large amount of trace data. Thus, we conclude that
our test-driven fault navigation and incremental dynamic analysis is able to reduce time
and effort required for debugging because we answer quickly where to start debugging,
who understands failure causes best, what happened before failures, and which state
properties are infected.

1.3. Contributions

We summarize the contributions of this dissertation as follows:

1. Test-driven fault navigation [167, 166, 197] is a debugging guide that integrates
anomaly detection into a breadth-first search for systematically creating, evaluating,
and refining failure cause hypotheses. With the analysis of the hidden knowledge
of reproducible test cases, our approach comprises four components that support
developers in following failure causes with the scientific method:

Structure navigation [167] localizes suspicious system parts and so supports the
creation of (initial) hypotheses. It emphasizes relationships between spectrum-
based anomalies and provides an overview of starting points that are likely to
include failure causes.

10
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Team navigation [167] recommends other developers for helping with creating, pre-
dicting, and later refining hypotheses. We restrict the search space to authors
of suspicious program entities only and thus we are able to suggest suitable
experts even if the defect is still unknown.

Behavior navigation [167] allows developers to experiment with the entire execution
history and to explore arbitrary object states. With the help of anomalies, it
further classifies erroneous behavior for facilitating the navigation through the
large amount of run-time data.

State navigation [103, 106] reveals parts of the infection chain and assists in the
observation of and conclusion about failure causes. After harvesting common
object properties of passing test cases, dynamically created contracts are
violated by failing test cases and uncover state anomalies between failure and
root cause.

2. Incremental dynamic analysis [165, 168, 103] is a novel and lightweight technique that
ensures an immediate debugging experience with test-driven fault navigation. The
following three approaches distribute dynamic analysis over multiple reproducible
test runs and recording run-time data only on demand:

Refined coverage analysis [165] allows fast access to test case coverage at methods
and optional refinements at statements. Depending on developers’ needs,
structure and team navigation require this data on different levels of detail.

Step-wise run-time analysis [168] splits the expensive run-time analysis of all test case
execution details into an initial shallow analysis and on-demand refinements.
For behavior navigation, developers only choose their relevant data that is
automatically recharged in next test case runs.

Inductive analysis [103] harvests and generalizes selected state properties of passing
test cases such as types and value ranges. In state navigation, this information
is able to reveal corrupted state on the infection chain of failing test cases.

3. The Path Tools framework [167, 165, 168, 197] implements our test-driven fault
navigation and the incremental dynamic analysis in the Squeak/Smalltalk de-
velopment environment on top of the SUnit framework. Build on top of our
flexible Path analysis framework, the tool suite consists of our enhanced test run-
ner PathMap [167, 165] for supporting structure, team, and state navigation, our
lightweight back-in-time debugger PathFinder for following infection chains through
behavior and state [167, 168], and our extended source code editor PathBrowser [197]
for presenting the hidden test knowledge.
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1.4. Outline

The remainder of this dissertation is structured as shown in Figure 1.3.
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Figure 1.3.: Overview of parts and chapters of the dissertation.

Chapter 2 introduces the debugging background of this work. We present a motivating
failure that is used as a throughout example, define the most important debugging terms,
and conclude with contemporary challenges in localizing failure causes.

Chapter 3 lays out the basic ideas behind our systematic debugging process. With the help
of test cases and their hidden knowledge, we introduce our test-driven fault navigation as
a breadth-first search for failure causes that assists developers with the scientific method.
In conclusion, we discuss software defect types that benefit from our approach.

Chapter 4 describes the four components of test-driven fault navigation in more detail.
Structure navigation identifies suspicious system parts that initially restrict the search
space. Team navigation recommends other developers for help even if failure causes are
still unknown. Behavior navigation allows developers to follow suspicious behavior from
the observable failure back to its root cause. State navigation reveals the infection chain
to support developers in creating hypotheses.
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Chapter 5 presents our incremental dynamic analysis and its three different techniques
that form an efficient basis for debugging with test-driven fault navigation. Refined
coverage analysis collects test coverage on different levels of detail that is required for
structure and team navigation. Step-wise run-time analysis enables behavior navigation
to explore a complete test case execution on demand. Inductive analysis delivers common
object properties of passing test cases for state navigation.

Chapter 6 outlines our Path Tools framework for the Squeak/Smalltalk development
environment. We present its architecture, describe our debugging tools, and sketch the
application of our incremental dynamic analysis framework. Finally, we conclude with a
discussion of introducing our approach into other environments.

Chapter 7 evaluates our test-driven fault navigation and incremental dynamic analysis.
We examine the practicality of our approach by conducting a user study that compares
our Path Tools with common debugging techniques. To assess the effectiveness of our
team and state navigation heuristics, we automatically mutate several applications with
random defects and analyze the proposed results. Furthermore, we measure the efficiency
of our Path Tools and the performance impact of our incremental dynamic analysis.

Chapter 8 presents related work with respect to testing, debugging, dynamic analysis,
and program comprehension approaches.

Chapter 9 offers some conclusions and discusses reasonable directions for future work.
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2
Finding Causes of Reproducible Failures

In this chapter, we present the essential background knowledge for our test-driven fault
navigation. First, we introduce a motivating error as a continuous example that explains
our approach later on (Section 2.1). Second, we define the most important terms and
explain how developers systematically follow infection chains from observable failures
back to their defects (Section 2.2). Finally, we summarize the challenges in testing and
debugging with respect to the scientific method and conclude that there is a need to
improve current approaches (Section 2.3).

2.1. Motivating Example: Typing Error in Seaside

We introduce a motivating example error taken from the Seaside Web framework [63, 169]
that serves as a basis for our discussion of debugging challenges and the explanation of
our test-driven fault navigation approach in the following chapters.

Seaside1 is an open source Web framework that provides a uniform, pure object-oriented
view of Web applications and combines a component-based with a continuation-based
approach [177]. With this, every component has its own control flow which leads to high
reusability, maintainability, and a high level of abstraction. Additionally, the fact that it
is written in Smalltalk [87] allows developers to debug and update applications on the
fly. It provides a layer over HTTP and HTML that allows developers to build highly
interactive Web applications that come very close to the implementation of real desktop
applications. Seaside consists of about 650 classes, 5,500 methods and a large test suite
with more than 700 test cases (see also Section 7.1).

We have inserted a defect into Seaside’s Web server and its request/response processing
logic (WABufferedResponse class, writeHeadersOn: method). Figure 2.1 illustrates the typing
error inside the header creation of buffered responses. Once a client opens a Seaside
Web application, its Web browser sends a request to the corresponding Web server. This
request is then processed by the framework leading to a corresponding response to the
browser. Depending on the Web application, this response is either a streamed or buffered
response object. While the first transfers the message body as a stream, the latter buffers
and sends the response as a whole. During the creation of buffered responses, there is a

1www.seaside.st
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Figure 2.1.: An inconspicuous typing error in writing buffered response headers leads to
faulty results of several client requests.

typing error in writing the header. The typing error in “Content-Lenght” is inconspicuous
but leads to invalid results in browser requests that demand buffered responses. Streamed
responses are not influenced and still work correctly. Although the typing error is simple
to characterize, observing it can be laborious: some clients hide the failure by tolerating
corrupted header information; compilers do not report an error because the response
header is built with concatenated strings; and developers tend to overlook such small
typing errors in text-based source code [178].

2.2. From Failures to Defects

The way from the observable failure to its defect comprises several testing and debugging
activities starting from reproducing the failure via understanding causes to correcting the
defect. The traffic principle (track, reproduce, automate, find, focus, isolate, and correct)
summarizes all these activities step by step in a systematic debugging guide [219]. As a
user reports a failure, developers first track the problem in their bug tracker system and
check if it is already known. In our Seaside example, a user complains about a specific
Web browser that does not allow access to its Web application. With the help of an
added problem report, developers reproduce the failure in their development environment.
They open Seaside’s start application with the mentioned browser and recognize the
same failure. With this knowledge, developers implement a preferably simple test case
that automatically reproduces the failure. For example, a test case sends a request to
the start application and verifies that the response is correct. Then, developers find
possible infection origins, focus on the most likely ones, and isolate the infection chain.
In other words, they apply the scientific method and several debugging tools to follow
the observable failure systematically back to its defect. In our typing error, developers
have to rely primarily on Smalltalk’s symbolic debugger. As this common tool supports
neither back-in-time capabilities nor advice on failure causes, the creation, evaluation,
and refinement of hypotheses become laborious tasks. Finally, if developers have found
the root cause, they can correct the corresponding defect in source code and check that
the failing test case now works as expected.
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Regarding the traffic principle, our test-driven fault navigation deals with the hardest
part of debugging, namely the localization of failure causes and defects. It builds up
reproduced failures in the form of automatic test cases and guides developers along
infection chains back to root causes. While our approach does not directly support the
correction of defects, it does provide all necessary information to understand and solve
the problem.

2.2.1. Reproducing and Testing Failures

Having a detailed problem report [33], testing is the first development activity in order to
reproduce and automate the failure. Although the implementation of test cases is often
not trivial, it comes with several benefits [219]. A proper test case describes the problem
in an executable specification that is reproducible and automatic. It supports debugging
by automatically verifying failures in less time, simplifying failure-inducing input, and
documenting the system. The entire development team profits from testing because it
can improve several other software development activities [6]. For the purpose of this
thesis, we define testing as follows:

Testing

“Testing is the process of determining whether a given set of inputs causes an
unacceptable behavior in a program.” [150]

Software testing is not only useful for reproducing failures, but also ensures that ap-
plications work as expected. As an essential development activity, developers specify
the proper state and interaction of objects in the form of test cases. In doing so, they
create large test bases that serve as safety nets for the early identification of erroneous
behavior [27]. However, testing is just the start for localizing failure causes because it
only verifies if an observable failure occurs or not.

2.2.2. Following the Infection Chain Backwards

To understand the problem, developers have to analyze the behavior of the failing test
case completely. They identify causes and effects of the failure and find the real root
cause. At the end, they can correct the corresponding source code and by this prevent
similar failures. We define debugging as a two-part process:

Debugging

“Debugging is the process of determining why a given set of inputs causes an
unacceptable behavior in a program and what must be changed to cause the
behavior to be acceptable.” [150]

17



Finding Causes of Reproducible Failures

2 3 4 5 7 8

1 2 3 4 5 6 7 8

1 3 5 6 7 8

1 2 3 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 6 7 8

1 2 3 4 5 6 7

1 2 3 4 5 6 7

!

1 3 4 5 6 7 8

9 10 11

9 10 11

9 10 11

9 10 11

9 11

9 10 11

9 10 11

9 10 11

9 10 11

1 2 3 4 5 6 7 8

2 4 5 6 7 8

10 11

9 10

4

8

2

10

1time

methods

3

1

8

9

11

2

4

5

!

6

highlighted 
infection chain

#! defect in method #

# failure in method #

#

method calls of
failing test 
behavior

# not executed method #

executed method # 

Figure 2.2.: Developers have to follow the infection chain (grey border) from the observ-
able failure (method 11, bottom right corner) back to the defect (method 4, center left).

Although “debugging” includes the term “bug”, we prevent this word because of its
ambiguity. It is imprecise and can mean incorrect program code, state, or results.
For that reason, we apply the following adapted definitions of failure, infection, and
defect2 [219]:

Failure

“A failure is an externally observable incorrect program result.”

Infection

“An infection is an incorrect program state or misleading behavior.”

Defect

“A defect is an incorrect program code and corresponds to the root cause.”

2There are similar wordings from other research communities. For example, faults correspond to defects
and errors indicate infections.
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All three terms together create the so-called infection chain. After a developer has created
a defect in source code, the incorrect code is executed and causes an infection that is
capable of being propagated until an observable failure is thrown. To understand how
the failure comes to be, developers have to systematically follow this infection chain
backwards [219]. Beginning with the failure-reproducing behavior, in the form of at least
one failing test case, developers trace the observable failure via its infection chain back to
the responsible defect. The small example in Figure 2.2 illustrates the infection chain
with the observable failure (method 11, bottom right corner) and the defect (method 4,
center left). Each row shows all eleven methods and highlights the specific method that is
executed at this point in time. The grey area highlights the infection chain. Localization
of the initial failure cause requires developers to decide what the corrupted state or
behavior is at each executed method so that they are able to follow the infection chain
backwards. These decisions are necessary to understand failure causes completely and to
identify the root cause finally.

2.2.3. Correcting the Root Cause

The second part of debugging is to correct the root cause in such a way that the original
or similar failures do not reappear. Although we do not focus on this topic, we argue that
it is important to comprehend the entire infection chain in order to solve the problem
completely [219]. For that purpose, developers isolate the infection chain and understand
what causes the failure. With the help of the scientific method, they work on a diagnosis of
the defect that explains previous and predicts further observations. In doing so, developers
have to ensure that they find the root cause and not only an earlier failure cause on
the infection chain. Otherwise, developers tend to correct rather symptoms instead of
defects [219]. Thus, they can introduce new failures or the same failure occurs again
under slightly different circumstances. For example, developers may solve our Seaside
typing error either in the generic response class which could negatively influence also
streamed responses, or they correctly fix the root cause in the write header method of
buffered responses. After all, they can fix the defect, prove that the failure has gone, and
make the failure-reproducing test case passed.

2.3. Challenges of Testing and Debugging

To prevent a guessing game during debugging, developers apply the scientific method to
narrow down defects systematically [219]. Often debugging includes much guesswork—
novice developers in particular follow more their unskillful intuition than a systematic
procedure. They simply start with a depth-first search and try to debug the program
here and there. This often leads to wrong decisions that require additional time and make
fault localization a laborious and error-prone task. For that reason, experts systematically
follow the failure back to its root cause with the help of the scientific method in the form

19



Finding Causes of Reproducible Failures

Test runner Expert Back-in-time Automatic
and debugger Anomalies knowledge debugger debugging

Hypothesis - + o - +
Prediction - o o o +

Experiment o - - + -
Observation o - - + -

Diagnosis o o o - o
Section 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5

Table 2.1.: Comparison of contemporary debugging approaches for applying the scientific
method (+ good / o partial / - bad support).

of a breadth-first search [209]. Starting with an initial hypothesis, they make predictions
concerning the problem and experiment with the system to observe discrepancies in
their assumptions. Based on this information, they refine or reject their hypotheses
until a diagnosis is found. It has been shown that this systematic hypothesis-testing is
more promising and requires less time in debugging than disorganized trial and error
approaches [150, 219].

However, even though the scientific method is known as a valuable procedure for localizing
failure causes, contemporary debugging approaches provide no or only partial support
for it. Table 2.1 summarizes our assessment for the state of the art in debugging and its
assistance during hypothesis-testing. No approach completely covers all aspects of the
scientific method. Often it focuses only on one specific aspect such as creating hypotheses
or experimentation. The following subsections explain each approach and its issues in
general. A comprehensive discussion of related work can be found in Chapter 8.

2.3.1. Test Runner and Debugger: How to Apply the Scientific Method?

In general, debugging of test cases with standard tools faces several challenges with
respect to localizing failure causes and defects. Nowadays, almost all development
environments include test runners and symbolic debuggers as their debugging tools of
choice. Unfortunately, these tools are not only around 50 years old [138] but they are
also not well-suited for the systematic following of infection chains backwards to their
root causes.

Test runners only execute test cases and verify if failures occur or not. There is no
additional information such as differences between failing and passing tests. Hence,
developers cannot restrict the search space to suspicious program entities that could
help in creating initial hypotheses and making predictions. Furthermore, they can only
experiment with test runners to a limited extent. For example, developers are not able to
observe which parts of the program are being executed. This task typically requires other
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Figure 2.3.: Localizing failure causes with standard tools (Unit test runner (1), symbolic
debugger (2), and object explorer (3)) is cumbersome.

tools such as symbolic debuggers. Only the test result feedback is helpful for a diagnosis
because the correctness of fixes is directly reflected in passing test cases.

Symbolic debuggers suffer from missing advice on failure causes and back-in-time capa-
bilities. They only allow developers to stop a program and to access the run-time stack
at a particular point in time. Neither do they report what is going wrong, nor do they
offer capabilities to follow infection chains backwards. A probable outcome of this is that
developers rely primarily on their intuition for creating hypotheses and experiment with
the system only in the forward direction even though the defect is located in the past.
Since it is hard to understand failure causes and how they come to be, we argue that
developers rather follow a disorganized trial and error when debugging with these tools.

Also, the localization of our typing error with standard tools is cumbersome. Figure 2.3
depicts a typical debugging session after the observable failure has been reproduced
by several test cases. Seaside’s test suite answers with 9 failed and 53 passed test
cases for all response tests (1). Since all failing runs are part of WABufferedResponseTest,
developers might expect the cause within buffered responses. However, this hypothesis
lacks evidence such as a list of covered response methods being executed by all failed tests.
Experimenting with the standard debugger on a failing test shows a violated assertion
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Figure 2.4.: Spectrum-based fault localization reveals a set of suspicious source code
entities that could be responsible for failure causes.

within the test method itself (2). This, however, means that developers only observe the
failure instead of its origin. Only the current stack is available, but our typing error is far
away from the observable malfunction. The thrown assertion suggests that something
is different from the expected response (3). Developers have to introspect the complete
response object for localizing the typing error. There are no pointers to the corrupted
state or its infection chain. Remarkably, the response status is still valid (200, OK). In our
example we assume that developers are aware of Seaside’s request/response processing.
However, developers’ expertise significantly influences the required debugging effort;
for instance, less experienced developers need more time for comprehending Seaside’s
continuation-based communication [177].

2.3.2. Anomalies: Where to Start Debugging?

Anomalies support the creation of initial hypotheses by comparing program spectra.
Program spectra represent which program parts were active during a specific execution
and include several behavioral information from method coverage to state predicates [101].
By comparing spectra of passing and failing test cases, differences reveal anomalies as a
property that differs from expectations and is likely to include failure causes. Not each
anomaly is a failure cause, but its occurrence can be a valuable indication. For example,
spectrum-based fault localization techniques [2, 122] reveal anomalies by comparing the
differences of test case coverage. These approaches produce a prioritized list of suspicious
statements which restricts the search space and reduces initial speculations for creating
proper hypotheses.

Figure 2.4 shows the analysis of the spectrum-based anomalies for our previous infection
chain example. The static structure shows the eleven methods (represented as boxes)
in their source code definition order. We compute a percentage value determining the
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failure cause probability for each method with the help of the Tarantula metric [122].
In other words, the higher the number of covered failing with respect to passing test
cases the higher its probability to include failure causes. For example, method 2 is only
covered by one failing test and owns the highest suspiciousness score, while method 6 is
covered by both and has a 50% failure cause probability. These suspiciousness scores can
also be mapped to colors. So, each covered method box is highlighted with its failure
cause probability from red (high) to green (low). Finally, the set of suspicious source
code entities restricts the search space to 4 out of 11 methods and so supports developers
in creating initial hypotheses.

Although anomalies restrict the search space by providing excellent hints for finding
hypotheses, they provide no further information for evaluating them. Unfortunately,
anomalies are not failure causes—developers only have numerous starting points that
must be debugged one by one. They offer only an initial indication that is able to limit
the search space to around 20% of the program [2]. By experimenting and observing
these suspicious source code entities with standard tools, anomalies and failure causes
are not related to each other. Thus, developers have to deal with a number of difficult
questions to make predictions and to follow infection chains backwards: which anomalies
include failure causes or maybe the defect; what are the relations between anomalies
and failing test cases; how are infected state and anomalous behavior propagated so that
failures come to be. In particular, the delocalization issue of object-oriented programming
languages makes a diagnosis non-trivial because the required information is spread all
over the source code [65]. In our small example in Figure 2.4, there are four methods with
the same high suspiciousness value (red color) and it is not clear how they are related
to failure causes, to each other, and which statements are responsible for the failing
behavior. For example, it is not clear that method 2 is executed before the defect (method
4) and thus works as expected (compare to Figure 2.2). In addition to this problem,
spectrum-based fault localization techniques also suffer from a scalability problem [121].
Either they provide anomalies at the statement-level, whose dynamic analysis comes
along with a perceivable performance decrease [213] and creates numerous results, or
they include other program entities, such as methods or classes, which miss important
fine-granular information.

Our Seaside typing error reports 54 anomalous methods including four anomalies with
the highest suspiciousness score. All four methods are part of the buffered response
class and so focus hypothesis-testing to this source code snippet. However, developers
do not know which method includes the root cause; how anomalies are related to each
other; and how the infection chain looks like. Existing techniques do not consider the
infection chain at all and so developers have to laboriously debug unrelated anomalies
one by one. As defects do not often come first, analyzing spectrum-based anomalies can
be time-consuming and strongly depends on program comprehension.
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2.3.3. Expert Knowledge: Who Understands Failure Causes Best?

For the debugging of failure causes or the interpretation of suspicious entities, developers’
expertise significantly influences the required effort [11]. More experienced developers
create better hypotheses and predictions, require fewer iterations, and reveal failure causes
faster than novices that do not know the code base [93, 210]. There are several automatic
approaches that deal with the identification of proper expert knowledge with respect to a
reported failure. They analyze bug and source code repositories and assign new failures
to similar bug reports and their previous developers.

Unfortunately, the identification of corresponding experts is quite challenging since
observable failures do not explicitly reveal infected system parts. Although we seek out
experts for understanding the infection chain with its failure causes and the defect, existing
approaches only analyze observable failures. For that reason, recommended developers
are seldom good matches for debugging specific failures. Furthermore, these approaches
consider either the entire source code or similar failure reports to automatically assign
bug reports to more experienced developers. Thus, they consider a too large search space
or they require a comprehensive bug tracker database with already fixed failures. Even if
proper experts are found, these developers still have to rely on cumbersome debugging
tools for observing and experimenting with a program’s run-time.

In our Seaside example, we are looking for an expert that understands the processing
of buffered responses. However, with a bug report about invalid results in a specific
browser, we will probably find developers with a strong background in Web browsers.
Even though this result is not bad, we argue that the original developers of buffered
responses would localize failure causes more easily because they better know what is
expected and unexpected behavior.

2.3.4. Back-in-time: What Happened before Failures?

In contrast to symbolic debuggers, back-in-time debuggers help to understand complete
infection chains and to follow failure causes back to their defects. As the reasons for
observable failures happened in the past, these debuggers record all run-time information
before the failure occurs and then present it afterwards. Developers start with the
observable failure, step backward, and search for infections at each point in the program’s
execution history. By asking questions about a program’s run-time such as: “Where did
the value of a variable change?”, they can develop a deeper understanding of infection
chains step by step until it is clear how failures come to be. Since back-in-time debugger
provide access to the complete infection chain, they are particularly suitable for the
experimentation and observation activities of the scientific method.

However, starting debugging at observable failures still compels developers to analyze
a great number of failure causes and their effects until they found the root cause [137].
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Back-in-time debuggers do not support a direct navigation along the infection chain [104];
developers have to examine an enormous amount of data manually in order to create
proper hypotheses. The missing classification of suspicious and harmless behavior leads
to numerous and often laborious decisions which execution subtree to follow [219]. Fur-
thermore, most back-in-time debuggers often come with a performance overhead [135]
or a more complicated setup [175] that does not allow a seamless and immediate access
to run-time information [201]. Unfortunately, this overhead renders these tools rather
impractical for frequent use. Thus, the infection chain is hard to follow, developers require
much time, and debugging the entire test case execution becomes a laborious activity.

In our small Seaside example, a back-in-time debugger helps in revealing the execution
history with the drawbacks of missing guidance along the infection chain and a dramat-
ically slow-down during test case execution. Post-mortem back-in-time debuggers for
Smalltalk [108, 142] produce an enormous amount of data because they record large
parts of the run-time behavior and state changes until the test case fails. Although this
information contains everything that is required for localizing the infection, developers
have no support for systematically browsing the large amount of data and to create proper
hypotheses. Moreover, the recording of all run-time events can slow down the program
execution by a factor of up to 300 [135]. The most simplified test case requires around
200 ms for its pure execution and around one minute with a back-in-time debugger. For
these reasons, we argue that guidance and immediate access to run-time behavior are
important in order to prevent time-consuming back-in-time debugging sessions.

2.3.5. Automatic Debugging: Which State Properties Are Infected?

Automatic debugging approaches support developers in identifying failure causes or
even the defect. There are several approaches that reveal parts of the infection chain
automatically. Likely invariants [70] derive generalized contracts from passing test cases
and compare them with failing test cases. Differences reveal state anomalies with a high
probability of including failure causes. Delta debugging [217] pinpoints causes between
similar failing and passing test cases until the defect is found. Algorithmic debugging [193]
partially automates the debugging process by systematically creating hypotheses. All
of these approaches help in narrowing down the search space by answering which state
properties are infected. They provide valuable hints for creating hypotheses and support
the prediction by revealing parts of the infection chain.

In general, automatic debugging approaches are able to find failure causes, but the
complete identification of defects often requires more investigation. Although they are
able to shorten the infection chain, developers still have to experiment and observe the
rest of a failing behavior to finally find a proper diagnosis. During these steps, it is
hard to understand the entire infection chain because its first part is often unknown and
the remaining part still has to be analyzed with inconvenient debugging tools. What is
more, all automatic approaches have some drawbacks with respect to their quality and
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scalability. The analysis of likely invariants requires both a comprehensive test base and
a vast amount of time. Delta debugging expects a high similarity between failing and
passing test cases, otherwise its results are imprecise. Finally, algorithmic debugging has
not been shown to be efficient in real-world applications because it does not scale with
complex object structures [219].

In our Seaside example, the automatic approaches identify some infected state properties
but they cannot localize the defect. Likely invariants produce a set of unrelated state
anomalies that may help in starting debugging. Delta debugging reduces the response
object to the typing error but without revealing the corresponding method. Declarative
debugging creates an initial hypothesis about the wrong response objects but misses
valuable details about the typing error.

2.4. Summary

We introduced the background in testing and debugging being specific for our work. We
started with a motivating example describing a typing error in the request/response
processing of the Seaside Web framework. After that we defined the most important
terms and ideally followed the infection chain from the observable failure to its defect.
Finally, we discussed the challenges with the state of the art in debugging and that these
approaches provide no or only partial support for the scientific method.

We argue that hypothesis-testing is a promising method for systematically localizing
failure causes, but there is a need for improving current debugging approaches. The search
for defects requires the integration of several perspectives in order to comprehensively
support the scientific method. Existing approaches are limited to a particular debugging
task so that the further investigation requires manual work. For example, back-in-time
debuggers provide access to the entire execution history but they do not reveal the
infection chain in the large amount of run-time data. For these reasons, this evidence
is conclusive that developers need a more comprehensive and integrated support for
hypothesis-testing. Hence, they are able to answer important debugging questions on
their way to root causes, such as how to apply the scientific method; where to start
debugging; who understands failure causes best; what happened before failures; and
which state properties are infected?
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3
Debugging into Examples

In this chapter, we present the basic ideas behind our test-driven fault navigation for
improving debugging of failure-reproducing test cases. We start with the essential
assumption that test cases yield a hidden and valuable source of information that is
able to enhance debugging of reproducible failures (Section 3.1). Based on this idea, we
introduce the systematic top-down debugging process of our test-driven fault navigation
which integrates the hidden test knowledge in order to guide developers to failure causes
(Section 3.2). Finally, we discuss the types of software defects which our novel test-driven
fault navigation approach is applicable to (Section 3.3).

3.1. Leveraging Test Cases for Debugging

Although test cases have several benefits, developers often pay little attention to them
for debugging and localizing defects. Every test case can be understood as an executable
specification of a requirement and its expected program behavior. Developers can execute
them as often as necessary and check if failures occur. For this reason, test cases have to be
reproducible, fast, and without any side-effects after their execution. However, developers
only consider the results of test cases that reveal observable failures. Even though
failing tests include all information required for analyzing entire infection chains [182],
developers utilize them only to a limited extent for localizing failure causes. The first
part of Figure 3.1 illustrates this current practice. On the left, several test cases exercise
parts of the system under observation on the right. In doing so, some test cases report
failures and errors and reveal their last point of execution, namely the observable failure.
This point relates to a violated assertion or exception and is often far away from the
failure-inducing root cause. As there are no obvious relations between defect and failure,
developers cannot follow infection chains of failing test cases backwards. They only have
symbolic debuggers that start the debugging session at the failure without any possibilities
to get back to the defect.

We propose two new perspectives that also consider test cases as behavioral paths
through the system. First, we see test cases as entry points into reproducible behavioral
examples [197]. By running a specific test case and analyzing its execution path, developers
make sense of the entire behavior and debug into examples. The second part of Figure 3.1
shows the uncovered behavioral paths of our test cases. As all failing tests include the
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we also consider test cases as reproducible entry points into behavioral examples (2) and
reveal their hidden knowledge (3).
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defect, we allow developers to follow specific infection chains back to their root causes.
Second, passing test cases verify not only the correctness of their explicit assertions, but
also define implicit assertions along their execution [103]. If a test case is valid, then all
executed program statements and used objects can also be seen as sufficiently correct.
Comparing this hidden test knowledge with failing test paths automatically reveals
anomalies and parts of the infection chain. In the third part of Figure 3.1, uncovered
anomalies guide developers along executed test cases. Both of these new perspectives
give a valuable source of information for debugging failing test cases back to their defects.

3.1.1. Entry Points into Reproducible Behavioral Examples

We suggest test cases as entry points into behavioral examples that support developers in
comprehending and debugging programs. The IEEE glossary defines an entry point as “a
point in a software module at which execution of the module can begin” [159]. Following
this definition, we regard test cases as natural entry points into source code because they
are executable specifications of expected system behavior that is further reproducible and
deterministic [66, 149].

To provide developers access to these entry points not only at the test case definition
but also at arbitrary methods of the system under observation, we need to uncover the
implicit test coverage relationship. In order to establish these links, we trace and record
all methods that are executed during a test case run. Having these run-time data, we
can provide the set of test cases that cover a specific method. Thus, we make coverage
information explicit and provide developers with the required entry points to trigger an
execution path and debug into source code at arbitrary program entities.

With entry points all over the program, developers can better understand the abstract
source code with small and concrete examples. Usually, comprehending source code is
an essential and important part of software development. Extending, modifying, and
debugging a system requires an in-depth understanding, ranging from the intended use
of interfaces to the interplay of multiple, interdependent objects. However, program
comprehension from source code alone is difficult because it abstracts from concrete
execution paths, every single class and method contributes to a large-scale collaboration
of run-time objects, and object-oriented language concepts such as late binding make
following a message flow more difficult [65]. As behavioral properties can only be
determined precisely at run-time [14], we argue that developers require execution examples
to understand programs entirely. Such examples can be provided by test case entry points
that allow developers to inspect how a covered method is used in reality. If developers are
interested in a specific example, we start a covering test case, interrupt its execution at the
corresponding method, and offer the opportunity to comprehend source code by means
of debugging tools. Developers can now understand method arguments, collaborating
objects, and the run-time stack [197].
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Apart from behavioral examples at one specific method, test cases also provide access to
complete execution paths. A test case executes one specific path through the system which
can be recorded with all its behavior and state to understand the complete execution
history. In other words, during debugging a failing test case, its path also contains the
important infection chain with the observable failure and the defect. However, traditional
approaches for analyzing a program’s run-time are time-consuming and expensive. They
capture comprehensive information about the entire execution up-front, which is in large
parts not required at all. We solve this problem with the reproducible and deterministic
properties of test cases. We assume that a test case always takes the same path through
the system so that each execution comprises the same behavior and state information.
With this insight, we are able to split the expensive analysis of a program’s run-time over
multiple test runs. Based on developers’ decisions, we divide the analysis into multiple
steps: A high-level analysis followed by on-demand refinements. Thus, we incrementally
collect only the data developers are interested in and so reduce the analysis overhead to
a minimum while preserving instantaneous access to detailed information.

3.1.2. The Hidden Test Knowledge

Each test case path includes numerous method calls and state changes which are a valuable
but hidden source of information for several software engineering activities. During their
execution, test cases check not only the explicit assertions in their definitions but also
establish implicit assertions in all other used program entities. As long as test cases
finish with correct results, we assume that everything on their execution paths is also
valid1. Thus, we can inductively derive from the specific and correct run-time values
more generalized properties that reveal these implicit assertions. With this hidden test
knowledge, developers have additional information for understanding their programs. For
example, our type harvesting exploits test cases to obtain type information for a code
base automatically [103]. We derive type data from the concrete objects used during test
case executions and provide developers this hidden information to assist in navigating
source code and using application programming interfaces (APIs) correctly.

The hidden test knowledge can also support debugging by comparing its generalized and
valid state properties with failing test cases. We convert the revealed but still implicit
assertions into explicit contracts for all program entities of passing test cases. If contracts
are violated during the execution of failing test cases, then they reveal anomalies that
can highlight parts of the infection chain. Such anomalies describe differences between
execution paths in their behavior and state properties that have a high probability to
include failure causes [70, 121]. Thus, they provide developers helpful advice to reduce
their speculations and strengthen their hypotheses.

1Even if defects can cancel and so do not result in observable failures, we argue that this assumption is
sufficiently correct in the vast majority of cases [70, 121]
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Figure 3.2.: Our test-driven fault navigation debugging process guides developers with
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of the system under observation.

3.2. A Debugging Guide based on Anomalies

With the help of the new perspectives on test cases and our experiences from the challenges
in testing and debugging, we introduce a novel systematic top-down debugging process
with corresponding tools called test-driven fault navigation. It does not only support
the scientific method with a breadth-first search [209] but also integrates the hidden test
knowledge for guiding developers to failure causes. Starting with a failure-reproducing
test case as entry point, we reveal suspicious system parts, identify experienced developers
for help, and navigate developers along the infection chain step by step. In doing
so, anomalies highlight corrupted behavior and state and so assist developers in their
systematic hypothesis-testing. Figure 3.2 summarizes our complete test-driven fault
navigation process and its primary activities:

Reproducing failure: As a precondition for all following activities, developers have to
reproduce the observable failure in the form of at least one test case. Apart from
the beneficial verification of resolved failures, we require tests above all as entry
points for analyzing erroneous behavior. For this activity, we have chosen unit
test frameworks because of their importance in current development projects. Our
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approach is neither limited to unit testing nor does it require minimal test cases as
proposed by some guidelines [27]. In the case of our Seaside example, developers
have to implement a simple integration test that sends a server request and waits
for a corrupted response which cannot be parsed correctly.

Localizing suspicious system parts (Structure navigation) Having at least one failing test,
developers can compare its execution with other test cases and identify structural
problem areas that help in creating initial hypotheses. By analyzing failed and
passed test behavior, possible failure causes are automatically localized within a few
suspicious methods so that the necessary search space is significantly reduced. We
have developed an extended test runner called PathMap that supports spectrum-
based fault localization within the system structure. It provides a scalable tree map
visualization and a low overhead analysis framework that computes spectrum-based
anomalies at methods and refines results at statements on demand. In our Seaside
example, all failing tests overlap within response handling classes and failure causes
of our typing error can be isolated within a few methods.

Recommending experienced developers (Team navigation) Some failures require additional
expertise to help developers in creating proper hypotheses. By combining localized
problem areas with source code management information, we provide a novel
developer ranking metric that identifies the most qualified experts for fixing a failure
even if the defect is still unknown. Developers having changed the most suspicious
methods are more likely to be experts than authors of non-infected system parts. We
have integrated our metric within PathMap providing navigation to suitable team
members. In our example, the developer ranking metric proposes contact persons
who have recently worked on the most suspicious buffered response methods.

Debugging erroneous test cases backwards (Behavior navigation) To refine the understand-
ing of erroneous behavior, developers experiment with the execution and state
history of a failing test case. To follow the infection chain back to the defect, they
choose a proper entry point such as the failing test or one of its suspicious methods
and start PathFinder, our lightweight back-in-time debugger. If anomalies are
available, we classify the executed trace and so allow developers to create proper
hypotheses that assist the behavioral navigation to defects. In our example, devel-
opers examine the request-response processing of a failing test in detail. Due to a
classified trace, they can shorten the search for corrupted behavior to the creation
of buffered response objects.

Identifying corrupted state in the infection chain (State navigation) In addition to the clas-
sification of executed behavior with spectrum-based anomalies, we highlight parts
of the infection chain with the help of state anomalies. We derive state properties
from the hidden knowledge of passing test cases, create generalized contracts, and
compare them with failing tests. Such likely invariants reveal state anomalies by
directly violating contracts on the executed infection chain and so assist developers
in creating and refining hypotheses. For this state navigation, our PathMap auto-
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matically harvests objects and creates contracts while our PathFinder integrates
the violations into the execution history. In our Seaside typing error, we first collect
likely invariants from all streamed response tests and then execute our failing test
case. Thereby, we obtain two arguments with a spell checker violation close by the
defective method.

Apart from the systematic top down process for debugging reproducible failures, the
combination of test cases and anomalies also provides the foundation for interconnected
navigation with a high degree of automation. All four navigation activities and their
anomalous results are affiliated with each other and so allow developers to explore failure
causes from combined perspectives. An integration helps developers to answer more
difficult questions and allows other debugging tasks to benefit even from anomalies.
Linked views between suspicious source code entities, erroneous behavior, and corrupted
state help not only to localize causes more efficiently but also to identify the most qualified
developers for understanding the current failure. Our Path Tools support these points of
view in a practical and scalable manner with the help of our incremental dynamic analysis.
With a few user interactions, we split the high cost of dynamic analysis over multiple
test runs and varying granularity levels so that we can provide both short response times
and suitable results. Thus, developers are able to answer with less effort: where to start
debugging; who understands failure causes best; what happened before failures; and
which state properties are infected.

3.3. Limitations of Software Defect Types

In general, our test-driven fault navigation approach is applicable to software defects that
can be reproduced by at least one test case. As developers follow this failing test case back
to its defect step by step, this test case also needs to be deterministic for our approach.
In other words, it always executes the same behavior and creates the same state so we can
ensure that our incremental dynamic analysis works correctly and provides the requested
results on demand. In most cases, this test case property is valid because most parts
of the system work deterministically. If this is not the case, techniques such as record
and replay [48] are able to make non-determinism reproducible by storing the first return
value and answering the same value in all further runs. In addition to the reproducibility
of test cases, our approach further requires a large test base. Without enough passing test
cases, the reference test knowledge for our structure and state navigation is missing and
we cannot reveal anomalies that guide developers along the infection chain. Nevertheless,
developers are still able to debug the entire execution history of a failing test case.

There is a comprehensive classification scheme for software defects that we can also satisfy
with our approach [150]. This scheme describes for all kinds of programming languages the
most important reasons for failures and distinguishes between design and coding errors.
While the first describes defects during the design phase such as wrong data structures,
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algorithms, and specifications, the latter considers defects during the coding phase such
as problems with object-orientation, dynamic data structures, and control flow. The root
cause checklist consists of five design and 15 coding error categories among which we
can completely localize four design and 13 coding error categories without any problems.
The remaining design error category deals with hardware problems which we cannot
reproduce and check easily. The coding error categories (finalization errors and memory
problems) are not relevant in our context because Smalltalk includes automatic memory
management. Except the hardware problems, we argue that the other two software defect
categories can also be localized with our test-driven fault navigation because they also
satisfy the requirement of being reproducible.

However, there are also some defects that our approach cannot entirely handle so far. First,
we are limited to one thread of control and thus we cannot correct concurrency issues
with multiple processes or network communications. Second, not every non-determinism
behavior can be reproduced by record and replay approaches so that our tools do not
work reliably. Finally, Heisenbugs [219] are not observable by debugging tools because
their analysis changes the corresponding failing behavior. During the development and
evaluation of our approach, we have not found any of these specific defects. Nevertheless,
we consider such problems as a valuable direction for future work.

3.4. Summary

We answered the question what we can learn from testing in order to improve debugging.
We introduced two new perspectives for test cases and their included execution paths.
First, we considered them as reproducible and deterministic entry points into behavioral
examples that grant incremental access to entire execution histories. Second, we revealed
the hidden test knowledge by deriving generalized program properties from valid execution
paths which uncover anomalies in failing test cases. Based on these new perspectives,
we presented our test-driven fault navigation as a debugging guide to localize failure
causes in failing test cases. Our systematic debugging process combined test cases,
their execution histories, and the hidden test knowledge into a systematic breadth-first
search. With the help of anomalies, four navigation techniques guided developers to
failure causes in structure, team, behavior, and state of software systems. Finally, we
discussed the limitations of our perspectives, approach, and its assumptions with respect
to various software defect types. In doing so, we found out that we are able to debug
most reproducible failures with our test-driven fault navigation.
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In this chapter, we introduce each of our four test-driven fault navigation techniques
in more detail. Structure navigation localizes suspicious system parts and restricts the
search space for creating initial hypotheses (Section 4.1). Team navigation recommends
experienced developers that can help with debugging a specific failure even if the root cause
is still unknown (Section 4.2). Behavior navigation guides developers along infection chains
by debugging failing test cases back in time and highlighting erroneous program behavior
(Section 4.3). State navigation identifies corrupted object properties and automatically
reveals parts of infection chains (Section 4.4).

4.1. Structure Navigation: Localizing Suspicious System Parts

To support the creation of initial hypotheses, our structure navigation provides an overview
of the system under observation that highlights problematic areas and restricts the search
space. Developers are able to perceive at a glance relations between all methods and
their probability to include failure causes. This enables feedback about suspicious system
parts so developers know where to start debugging.

With the help of spectrum-based fault localization [2, 122], which predicts failure causes
by the ratio of failed and passed tests at covered program entities, we analyze overlapping
test behavior, localize suspicious methods, and visualize their results in form of a compact
and interactive tree map. In doing so, our structure navigation allows not only fast
access to spectrum-based anomalies within methods but also on-demand refinements to
more expensive results concerning statements. As the method-level and our optional
refinements provide a good trade-off between performance and comprehensibility, we offer
a scalable solution for spectrum-based fault localization in larger systems.

4.1.1. Compact System Overview of Classes and Methods

A structural system overview and its relation to test execution in the form of a compact
and scalable tree map [119] allows for a higher information density compared to a list
or class diagram. Figure 4.1 presents a schematic tree map visualization for the system
structure of our infection chain example. The visualization represents packages as columns
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Figure 4.1.: A schematic tree map visualization for a system structure consisting of
packages, classes, method categories, methods, and tests.

and their classes as rows. Each class represents each of its methods as a box. In addition
to it, methods are ordered in columns with respect to their method category1. The
allocated space is proportional to the number of methods per node. Packages, classes,
and methods are sorted alphabetically and for a clear separation we distinguish between
test classes on the left-hand side and application classes on the right-hand side. The
alphabetic organization makes finding a particular element simple, even for large systems.
Developers can systematically explore the visualization and interactively obtain more
details about specific method boxes such as its name and covering tests. Moreover,
each method can be colored with a hue element between green and red for reflecting its
suspiciousness score and a saturation element for its confidence. As a result, a method
box with a high failure cause probability possesses a full red color and requires attention
from developers. In addition to that, the visualization colors a test method in green,
yellow, or red if the test respectively succeeds or fails.

The tree map visualization can represent applications with thousands of methods on a
standard screen because of a high information density at minimal required display space.
For example, a tree map that allows minimal boxes of 4×4 pixels is able to scale up
to 4,000 methods on 500×500 pixels space. Even though this should suffice for most
medium-sized applications, we allow for filtering specific methods such as accessors and

1We provide Smalltalk’s method categories as an optional layer, too.
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Figure 4.2.: Based on covering tests per method (1), spectrum-based fault localization
reveals anomalies by computing suspiciousness scores for each program entity (2). Our
structure navigation maps these results onto the system structure (3) and summarizes
suspicious system parts in the form of a tree map (4).

summarizing large classes to cope with even larger systems. If methods have not enough
space in a class, a developer can open the corresponding box to obtain a new and separate
tree map visualization dedicated to the class and all its implementation details.

4.1.2. Spectrum-based Anomalies of Unit Tests

Our structure navigation originates in the spectrum-based fault localization approach [2,
122] and maps their revealed anomalies onto our compact system overview. Figure 4.2
summarizes our structure navigation including the comparison of passing and failing tests
at covered methods, the computation of spectrum-based anomalies, and the localization
of suspicious system parts.

We require for each method the number and results of their covering test cases. For
that reason, we run all test cases, collect which methods are being executed, and store
the final test result. So, we create a mapping between a test case, its result, and all
involved methods. For example, method 6 has been executed by a passing and a failing
test case. To reduce the performance overhead of run-time observation, our dynamic
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analysis restricts the instrumentation to relevant system parts and the granularity level of
methods. With the focus on selected categories we filter irrelevant code such as libraries
where the defect is scarcely to be expected. Such partial traces [91] are also the foundation
for rendering our structural tree map.

With the help of the collected test coverage, spectrum-based fault localization [2, 122]
automatically identifies anomalies and colors suspicious program entities in source code.
Spectrum-based anomalies and their failure cause probabilities are estimated by the
ratio of all failing tests to the number of test results per covered source code entity.
Thus, methods are more likely to include the defect if they are executed by a high
number of failing and a low number of passing tests. Each method distinguishes between
a suspiciousness and a confidence score. While the former scores the failure cause
probability with respect to covered tests and their results, the latter measures the degree
of significance related to the number of all test cases. With time, several metrics for
spectrum-based fault localization have been proposed among which Ochiai has shown to
be the most efficient one [2].

suspiciousnessOf (m) = failedAt(m)√
totalFailedTests ∗ (failedAt(m) + passedAt(m))

This formula divides the number of failing tests at a method m by the square root of the
number of all failing tests multiplied with the sum of the number of failed and passed tests
at the same method. If at least one failing test is available, it returns a value between 0
and 1 for each tested method. To visualize these results, spectrum-based fault localization
further colors covered program entities with a hue value between green (120) and red (0).
For example, method 6 has a suspiciousness score of 0.5 and a yellow color.

hueOf (m) = 120 ∗ (1.0− suspiciousnessOf (m))

To assess the significance of a suspiciousness value, we apply a slightly adapted confidence
metric. It only considers the relation between failed tests per method and all failing tests
in order to hide correct behavior for fault localization.

confidenceOf (m) = failedAt(m)
totalFailedTests

The returned value is directly mapped to the saturation component of already colored
method nodes. By looking only at faulty entities, we reduce the visual clutter of too
many colors and results. For example, a method covered by three out of six failing tests is
grayed out. Finally, the entire source code can be colored with anomalies and developers
see at first sight which program entities are potential failure causes. Unfortunately, the
source code organization does not primarily reflect the system architecture. Hence, the
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understanding of unrelated and wide-spread anomalies tends to be difficult and requires
a vast amount of time.

For these reasons, we combine spectrum-based anomalies with a compact system overview
to further reveal relationships between anomalies and the architecture. We analyze the
source code and identify program entities that belong together. Packages, classes, method
categories, and methods help to group anomalies and to show their interconnections to
the logical program structure. For example in Figure 4.2, there are three very suspicious
anomalies in class A, while class B is also checked by passing test cases. To further
increase the information density, a compact system overview summarizes all spectrum-
based anomalies in the form of a tree map. This visualization allows for scalability with
respect to the system architecture, anomalies, and their relationships. So, developers
obtain a better overview about suspicious system parts which lowers the effort for program
comprehension and restricts the search space for initial hypotheses.

Adapting spectrum-based fault localization to unit testing limits the influence of multiple
faults. The efficiency of existing spectrum-based approaches suffers from overlapping test
cases describing different failures as well as coincidentally correct test cases which execute
defects but do not verify their appearance. The selection of suitable test suites allows for
ignoring such problematic tests and to focus on a single point of failure. As the collection
of test cases plays an important role in how efficiently a fault is localized, we argue
that especially unit testing frameworks assist developers in making a good choice [216].
Each test suite verifies a specific system part and is easily selectable in test runners.
Furthermore, based on the origination condition of single faults [182], which means each
failure must evaluate the defect, we allow developers to optionally filter methods which
were not executed by all failing tests. If developers can ensure that they work on one
failure, we hide all anomalies with a confidence score smaller than one because they have
been covered only by a subset of all failing test cases. Consequently, developers can choose
designated unit test suites, further reduce fault localization results, and concentrate on
one specific failure at a time.

4.1.3. Refinement of Anomalies at Statement-level

We ensure scalability of spectrum-based fault localization by efficiently recording test
coverage at methods and refining statement coverage on demand. So far, spectrum-based
fault localization techniques record covered statements to provide fine-granular information
about suspicious source code entities. However, the dynamic analysis of statement coverage
tends to be slow and neighboring program entities often have identical anomalous scores
because they are executed in sequence. Therefore, current spectrum-based approaches
do not scale very well with large systems and provide too much information for an
initial overview of the system. To limit the run-time overhead and to provide a compact
visualization, we first collect spectrum-based anomalies at methods. Nevertheless, we also
support the identification of failure causes in full detail by refining coverage information
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Figure 4.3.: We collect spectrum-based anomalies at methods first. If developers are
interested, we refine the results at statements by executing covering tests again.

inside specific methods on demand. If developers request additional information for
a method, we run all its covering tests, obtain the required statement coverage, and
compute spectrum-based anomalies with the same formulas as for methods. This approach
restricts the performance decrease of statement-level analysis only to methods of interest.
Developers have fast access to anomalous methods and optional refinements for all details
of suspicious statements. Combining spectrum-based fault localization and our refined
coverage analysis provides a good trade-off between performance and fault localization
details. Figure 4.3 illustrates our optional refinement of suspicious statements. Only after
developers are interested in the details of the very suspicious and complex method 4, we
re-execute its failing test and collect its covered statements. With this information, only
this specific method computes spectrum-based anomalies and highlights the suspicious
statements inside.

4.1.4. Example: Localizing Suspicious Response Objects

In our motivating typing error, we localize several anomalies within Seaside’s response
methods. Figure 4.4 presents the tree map visualization of Seaside2 with test classes
on the left side and application classes on the right side (1). After running Seaside’s
response test suite with the result of 53 passed and 9 failed tests, our structure navigation
colors methods with their suspiciousness scores and reveals anomalous areas of the system.
For example, the interactively explorable yellow box (2) illustrates that all nine failing
tests are part of the buffered test suite. In contrast, the green box below includes the
passed streaming tests. The more important information for localizing failure causes is

2For the purpose of clarity, we limit the system under observation to Seaside’s core packages.
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Figure 4.4.: In our Seaside example, our structure navigation restricts the search space
to a few very suspicious methods in buffered responses.

visualized at the upper right corner (3). There are three red and three orange methods
providing confidence that the failure is included in the WABufferedResponse class. To that
effect, the search space is reduced to six methods. However, a detailed investigation of
the writeContentOn: and content method shows that they share the same characteristics
as our failure cause in writeHeadersOn:. At this point, it is not clear from a static point of
view how these suspicious methods are related to each other; developers need additional
help in order to understand how the failure comes to be.

4.2. Team Navigation: Recommending Experienced Developers

As understanding anomalies and failure causes requires thorough familiarity with sus-
picious system parts, our team navigation proposes a new metric for identifying expert
knowledge even if defects are still unknown. More experienced developers tend to invent
better hypotheses [11] and so require less time for debugging compared to novices [88].
Typically, in large projects where one developer cannot keep track of all program details,
an important task is to find experts that are likely able to explain erroneous behavior
or even fix the defect itself. Assuming that the author of the still unknown defect is
the most qualified contact person, we restrict the search space to suspicious system
parts and approximate developers that have recently worked on corresponding methods.
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Figure 4.5.: Our team navigation sums up all authors of spectrum-based anomalies and
recommends a list of experienced developers.

Consequently, as anomalies have a high probability to include failure causes [122], our
anomaly-based metric recommends developers that comprehensively understand infections
or possibly the defect itself. Figure 4.5 summarizes our developer ranking metric and
its relationship to spectrum-based anomalies of our structure navigation. To calculate
the developer ranking, we sum up suspicious and confident methods for each developer,
compute the harmonic mean for preventing outliers, and constitute the proportion to
all suspicious system parts. As Michael has developed the most suspicious methods (2,
4, and 5), he tends to be an expert for debugging this failure. He causes not only the
defect in method 4 but also understands large parts of the infection chain. Even if Robert
is responsible for the observable failure in method 11, Michael fits better as an expert
because he is able to explain failure causes entirely.

4.2.1. Anomaly-based Developer Ranking

Our team navigation proposes a novel developer ranking metric that restricts the search
space for expert knowledge to spectrum-based anomalies. First, we extrapolate a new
set of methods from the system under observation (MSystem) which includes those also
identified by spectrum-based fault localization.

MSuspiciousness = {m ∈MSystem | suspiciousnessOf (m) > 0}

Second, with the help of Smalltalk’s source code management system we identify developers
that have implemented at least one of these suspicious methods. Having this list, we
divide suspicious methods into one set per developer based on the method’s most active
author. The function authorOf() is independent of our approach and can be replaced
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by arbitrary heuristics that return expert knowledge for a specific method such as most
activity, last access, and initial implementation.

MDeveloper = {m ∈MSuspiciousness | authorOf (m) = Developer}

Third, for a specified set of methods we sum up suspiciousness and confidence scores
and create a weighted average of both. The harmonic mean combines both values and
prevents outliers such as high suspiciousness but low confidence and vice versa [205].

FMeasure(M) = 2 ·

( ∑
m∈M

suspiciousnessOf (m)
)
·
( ∑
m∈M

confidenceOf (m)
)

∑
m∈M

suspiciousnessOf (m) + confidenceOf (m)

Fourth, we normalize individual developer scores by comparing them with the value of all
suspicious methods.

developerRanking(Developer) = FMeasure(MDeveloper)
FMeasure(MSuspiciousness)

Finally, we sort all developers by their achieved expert knowledge for the anomalous
system parts so that we estimate the most qualified contact persons even though the
defect is not yet known.

4.2.2. Example: Finding Experienced Seaside Developers for Help

With respect to our typing error, we reduce the number of potential contact persons
to 4 out of 24 Seaside developers, whereby the author of the failure-inducing method
(Developer A3) is marked as particularly important. The table in Figure 4.6 summarizes
the (interim) results of the developer ranking metric and suggests Developer A for fixing
the defect by a wide margin. Compared to a coverage-based metric, which simply sums up
covered methods of failing tests per developer, our results are more precise with respect
to debugging. A’s lead would be shrinking (only 55%), C (24%) changes place with B
(19%), and the list is extended with a fifth developer (1%). It should be noted that
our team navigation does not blame developers. We expect that the individual skills
of experts help in comprehending and fixing failure causes more easily and thus might
reduce the overall cost of debugging.

3Developers’ names have been anonymized.
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Figure 4.6.: Our developer ranking classifies (anonymized) experts. After analyzing
the authors of spectrum-based anomalies, a ranked list presents possible experts that
understand failure causes best.

4.3. Behavior Navigation: Debugging Erroneous Test Cases Backwards

To understand what happens before failures, our behavior navigation offers both fast
access to execution histories and guidance along suspicious run-time data. Developers can
experiment and observe the entire infection chain of a failing test case and systematically
follow it back to its root cause. Based on the idea of test cases as reproducible and
deterministic entry points, we split the expensive dynamic analysis over multiple test
runs. Depending on developers’ needs, we refine the execution trace step by step and
so ensure an experience of immediacy when exploring behavior. In addition to it, we
reuse spectrum-based anomalies to classify the large amount of trace data and so assist
developers in tracking down failure causes. Thus, we provide back-in-time capabilities for
failing unit tests with a special focus on fault localization.

The integration of anomalies into execution traces solves the shortcomings of spectrum-
based fault localization and back-in-time debugging. As previously mentioned, isolated
anomalies provide only unrelated starting points into debugging because the structural
overview cannot relate them to failure causes. We argue that developers require an
additional view to reveal how suspicious methods and malicious behavior belong together.
Such a view is especially supported by back-in-time debuggers as they can map and
arrange anomalies along execution histories. On the other side, back-in-time debugging
produces large and confusing execution traces. If developers follow the infection chain
step by step, they have to make countless decisions on how to follow corrupted behavior
and state. To reduce the effort required, spectrum-based anomalies can highlight infection
chains in order to run like a common thread through the large amount of run-time data.
By combining anomalies and execution traces, our behavior navigation assists developers
in both understanding anomalies and following failure causes back.
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4.3.1. Following the Infection Chain Backwards

For the purpose of localizing failure causes, we offer developers access to the entire
execution history of a failing test case. Starting with a test case as a reproducible entry
point, we record its behavior, present the run-time data in form of an explorable call
tree, and so allow developers to follow the infection chain back to its root cause. In
doing so, we provide arbitrary navigation through method call trees and their state
spaces in both forward and backward direction. We restrict dynamic analysis to partial
traces and, primarily, to the granularity level of methods [91]. Apart from common
back-in-time features, such as a query engine for getting a deeper understanding of
what happened, our approach possesses two distinguishing characteristics. First, our
incremental dynamic analysis allows for immediate access to run-time information of
reproducible and deterministic test cases. Second, the integration of anomalies classifies
suspicious trace data and so facilitates navigation in large traces.

We ensure an immediate debugging experience when exploring behavior by splitting
run-time analysis of test cases over multiple runs [168]. Usually, developers comprehend
program behavior by starting with an initial overview of all run-time information and
continuing with inspecting details. This systematic method guides our approach to
dynamic analysis; run-time data is captured when needed. Step-wise run-time analysis as
part of our incremental dynamic analysis consists of a first shallow analysis that represents
an overview of a test run (a pure method call tree) and additional refinement analysis runs
that record user-relevant details (state of variables, profiling data, statement coverage)
on demand. Thereby, test cases fulfill the requirement to reproduce arbitrary points of
a program execution in a short time [197]. Thus, by distributing dynamic analysis cost
into multiple test runs, we ensure quick access to relevant run-time information without
collecting needless data up front.

4.3.2. Anomalous Behavior Guides Developers to Defects

We classify behavior with respect to suspiciousness scores of methods for an efficient
localization of failure causes in large traces. To divide the trace into more or less erroneous
behavior, we either reuse the already ranked methods of our structure navigation or rerun
the spectrum-based fault localization on traced methods again. On the analogy of our
structure navigation, we color the trace with suspiciousness and confidence scores at each
executed method. Moreover, a query mechanism supports the navigation to erroneous
behavior. We expect that developers identify failure causes in our classified traces more
quickly because they allow abbreviations to methods that are likely to include failure
causes. As a result, we support developers during hypothesis-testing and their laborious
decisions on how to follow infection chains backwards.

Figure 4.7 illustrates the integration of anomalies into execution histories of failing test
cases. The infection chain is classified with anomalies and developers can directly start
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Figure 4.7.: Our behavior navigation gives developers helpful advice on how to follow
the infection chain backwards. The execution history includes information about failure
cause probabilities at each single method so that developers can decide how anomalies are
related to each other and where to focus debugging.

debugging on the left sub tree that forms a suspicious behavior. As methods 8 and 6
are less suspicious, developers can shorten the infection chain to methods 5, 4, and 2.
Furthermore, as method 2 is called before the defect in method 4, developers following
erroneous behavior backwards do not need to check this anomaly because they have
already found the root cause. So, we support the understanding on how suspicious
structure and behavior belong together.

In addition to the classification of execution histories, anomalies also help in choosing
the plainest entry point if there are several failing test cases available. Often a defect
causes more than one test case to fail, which means developers have to decide by their
own which execution history to follow. Without feedback about test case behavior, it is
pure coincidence if they choose the shortest or largest infection chain. As all failing test
cases include the defect, it is important to identify the plainest entry point because a
shorter infection chain also implies less effort during debugging. For that reason, a new
metric that estimates the infection chain length per failing test case is preferable.
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InfectionLengthOfTest(MTest) =
∑

m∈MTest

suspiciousnessOf (m)

For each failing test case, we compute its covering methods and sum up their suspiciousness
scores. In doing so, we assume that failing test cases with fewer anomalies have shorter
infection chains than test cases that cover numerous suspicious methods until they fail.
In other words, the lower the value of our metric, the shorter the infection chain and the
required debugging effort. We sort all test cases in ascending order so that we rank the
test case with the lowest number of anomalies first. This test case should be preferred to
start debugging.

4.3.3. Example: Understanding How the Failure Comes to Be

In our Seaside example, we highlight the erroneous execution history of creating buffered
responses and support developers in understanding how suspicious methods belong
together. Following Figure 4.8, developers focus on the failing testIsCommitted behavior
and follow the shortest infection chain from the observable failure back to its root cause.
They begin with the search for executed methods with a failure cause probability larger
than 90 %. The trace includes and highlights four methods matching this query. Since
the writeContentOn: method (1) has been executed shortly before the failure occurred, it
should be favored for exploring corrupted state and behavior first4. A detailed inspection
of the receiver object reveals that the typing error already exists before executing this
method. Following the infection chain backwards, more than three methods can be
neglected before the next suspicious method is found (2)5. Considering writeHeadersOn:

manifests the failure cause in the same way. If necessary, developers are able to refine
fault localization at the statement-level analogous to our structure navigation and see
that only the first line of the test case is always executed, thus triggering the fault (3).

4.4. State Navigation: Identifying Corrupted State in Infection Chains

While our behavior navigation highlights suspicious and executed methods, our state
navigation further identifies corrupted state in the infection chain. To detect state
anomalies, we first analyze the hidden test knowledge of passing tests, then create
contracts with their common object properties, and finally compare them with failing test
case paths. Differences between concrete and common state reveal anomalies that have

4The simple accessor method contents can be neglected at this point.
5If developers follow the flow of the corrupted receiver object step by step, they also have to check all
methods in between.
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Figure 4.8.: The classified execution history of our Seaside typing error.

a high probability to include failure causes. The entire process of our state navigation
works automatically and only requires a comprehensive test suite with several passing
test cases. Analogous to our spectrum-based anomalies, we embed the uncovered state
anomalies into the execution history and so highlight how corrupted state is related to
each other and the infection chain. As a result, we further restrict the search space and
assist developers in observing and experimenting with failure causes. With respect to the
scientific method, our state navigation provides another valuable opportunity to refine
hypotheses and to make conclusions about root causes.

4.4.1. Harvesting Likely Invariants from Passing Test Cases

We start our state navigation by revealing the hidden test knowledge and harvesting
invariants. To learn common object properties, we first identify all passing test cases,
execute them, and collect their used objects. For each method called, we check its
arguments, the return value, and the receiver object. Having a concrete object, we
accumulate its specific properties into generalized invariants that hold with previously
observed objects at the same program entity. We analyze several properties that are
important for program comprehension from type information to value ranges of numbers,
collections, and strings. During the execution of this inductive analysis, we steadily
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Figure 4.9.: The hidden test knowledge of passing test runs forms with its concrete val-
ues implicit invariants of the system under observation.

expand likely invariants once concrete objects come along with new properties that are
not covered so far. For example, an instance variable contains both integer and float
objects in different executions. In this case, we first collect an integer type as likely
invariant. Later, when the float object occurs, we expand the likely invariant to the
number type as their common super class. By harvesting concrete objects during the
execution of test cases, we gather enough data for pre- and post-conditions of methods
as well as invariants of accessed instance variables that support developers not only in
understanding software.

In Figure 4.9, we illustrate the concrete objects of a passing test case example. In different
executions, method 6 is called with 1.0, 5.2, and 10 at the same argument. During the
first method call, we collect a float type in the value range of 1.0 to 1.0. With the second
execution, we extend the value range to 5.2. With the last integer argument, we change
the type to the super class Number and enlarge the value range again. Thus, we have a
generalized object property for this argument that expects numbers between 1 and 10.
We also harvest likely invariants by all other called method, their arguments, return
values, and receiver objects. Method 8 allows integer arguments between 1 and 30 and
always returns a receiver object with the same specific class type. All observable objects
of method 9 are the same true booleans and for that reason they uncover a possibility for
writing new tests.
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Although the collected information is helpful with respect to program comprehension and
later debugging, its quality strongly depends on the test base. We assume that concrete
objects have meaningful values and that tests check the entire code base comprehensively.
The first assumption is valid because test cases check all kinds of border cases and so
they include the most important information for program comprehension. Our harvesting
tries to recover these implicit cases in form of likely invariants that represent equivalence
classes of testing approaches. The second assumption sometimes has limitations when
specific methods are executed one time only. If test cases are not extensive enough, our
invariants tend to be too specific and close to concrete objects. Nevertheless, we argue
that this information is still a valuable source for understanding the system even if the
run-time data does not include large value ranges.

4.4.2. Detection of State Violations with Dynamic Contracts

With harvested invariants, our state navigation generates dynamic contracts that auto-
matically detect corrupted state in failing test cases. For each generalized object property,
we create suitable assertions and aggregate them into contracts. Depending on the
covered program entity, we add contracts for arguments as pre-conditions to methods,
return values as post-conditions to methods, and receiver state as invariants to their
corresponding classes. With the help of these assertions, developers are able to run test
cases with activated contracts and check them for state anomalies. While passing test
cases should work correctly, failing test cases tend to create violations if their state is not
in accordance to our harvested and correct invariants. Such differences between expected
and anomalous state have a high probability to include failure causes so that developers
can rely on this information for creating their hypotheses. To further reveal parts of the
infection chain and to understand how anomalies relate to each other, we map these state
violations again to the execution history. Thus, developers can experiment and observe
the failing test case behavior and our state navigation guides them along the infection
chain.

In Figure 4.10, we present how dynamic contracts are able to detect state anomalies.
Based on the harvested invariants, our failing test case calls method 8 with 0 as argument
and violates the contract. While the type assertion is still valid, the value range assertion
allows only numbers between 1 and 30. This state anomaly is a valuable indication for a
hypothesis and with its mapping on the execution history, it further reveals a part of the
infection chain. Developers are able to understand the corrupted state and its origin.

Our dynamic contracts support the classic design by contract [151] and extend it with
some specific features that are required for our state navigation [106]. We provide
invariants for a class and pre- and post-conditions for methods. Invariants belong to
a class and hold when an object is in a valid state. We evaluate invariants before and
after every call to a (public) method. Preconditions ensure that the input values for a
method have the right properties and the invariant holds. Postconditions ensure that
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Figure 4.10.: Differences between the derived invariants and failing test cases reveal
state anomalies that are likely to include failure causes.

the return values have the right properties and that the receiver object is still in a
valid state after returning to its caller. This also includes the comparison of old values,
representing state before the method was executed, with newly computed values after the
execution. In addition to these features, we extend the flexibility of current design by
contract approaches in three ways. Grouping contracts and their selective activation keep
things together and reduce the required performance overhead. Instead of checking the
entire system, developers can apply contract groups to only verify system parts that have
something to do with the observed failure. Criteria for forming such groups are up to
developers, but we offer pre-built groups for packages and all kinds of assertions. Scoping
only activates contracts for the local thread of execution. This is especially useful while
debugging production systems, where developers test system behavior without influencing
the execution flow of concurrent clients. We limit the scope of our dynamic contracts to
processes started from test runners. Dynamic contract enforcement facilitates contract
activation and deactivation at run-time. There is no need to recompile the entire system
in order to switch contracts on or off. Due to these three features we are able to limit
the performance overhead of checking contracts to suspicious methods. Other methods
with dynamic contracts run with nearly full speed because we check the observed group,
scope, or enforcement property at method activation only once.
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Figure 4.11.: State anomalies highlight the typing error and reveal the infection chain
near the defect.

4.4.3. Example: Coming Closer to the Typing Error

In our Seaside typing error, our state navigation is able to reveal two anomalies close by
the root cause. By analyzing all passing tests from the still working streamed responses,
we are able to collect type and value ranges of all applied objects. Among others, we check
whether all string objects are spelled correctly or not. After that, we derive common
invariants from the concrete objects and create corresponding contracts. We propagate
the implicit assertions of the response tests to each covered method and automatically
generate assertions for pre-/post-conditions and invariants of the corresponding class.
Each assertion summarizes common object properties such as types, value ranges of
numbers, and permissions of undefined objects. Lastly, we execute the same failing test
case as in our behavior navigation, but now with enabled contracts. As soon as a contract
is violated, we mark the corresponding exception in the execution history and so reveal
two state anomalies for our testIsCommitted that are close to the defect.

Figure 4.11 summarizes the result of our state navigation. We mark method calls triggering
a violation with small purple exclamation marks (1). Developers can further inspect
these violations and see that a precondition fails. There is a spelling violation in the first
argument of this method—all streamed responses used correctly spelled identifier keys
for their header information. The corrupted state is opened for further exploration on
the right (2). As our typing error in “content-lenght” is automatically revealed, our state
navigation gives developers helpful advice about the real failure cause. Another spelling
violation is close by and developers can easily follow the infection chain back (3). Finally,
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the next very suspicious spectrum-based anomaly at writeHeadersOn: highlights the last
step to the root cause. Following both state and spectrum-based anomalies directly guides
developers to the defect of our Seaside typing error and also allows them to understand
what caused the failure.

4.5. Summary

We explained the four specific techniques of our test-driven fault navigation and its
relation to the scientific method in more detail. Structure navigation localizes suspicious
system parts and so supports the creation of hypotheses. It emphasizes relationships
between spectrum-based anomalies and provides an overview of starting points that are
likely to failure causes. Team navigation recommends other developers for helping with
creating, predicting, and later refining hypotheses. We restrict the search space to authors
of suspicious program entities only and suggest suitable experts even if the defect is still
unknown. Behavior navigation allows developers to experiment with the entire execution
history and to explore arbitrary object states. With the help of anomalies, it further
classifies erroneous behavior for facilitating the navigation through the large amount of
run-time data. State navigation reveals parts of the infection chain and assists in the
observation of and conclusion about failure causes. After harvesting invariants of passing
test cases, dynamically created contracts violate failing test cases and uncover state
anomalies in the infection chain. With all four navigations, developers have a systematic
and comprehensive approach for debugging failures back to their root causes.
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5
Incremental Dynamic Analysis

In this chapter, we introduce our incremental dynamic analysis which provides the
required run-time data for our test-driven fault navigation in a short amount of time.
We start with the foundations of our approach and how it ensures an experience of
immediacy when debugging later with our tools (Section 5.1). After that, we present
our three specific incremental dynamic analysis techniques in more detail. For structure
navigation, our refined coverage analysis provides fast access to method coverage and
optionally refinements at statements (Section 5.2). For behavior navigation, our step-wise
run-time analysis splits the expensive dynamic analysis of complete execution histories
over multiple test runs (Section 5.3). For state navigation, our inductive analysis just
harvests generalized object properties that developers need for their current debugging
task (Section 5.4).

5.1. Immediacy through Interactivity

Traditional dynamic analysis techniques such as post-mortem debuggers [135] are typically
inefficient and time-consuming. Most approaches are designed for general analysis purposes
and thus they capture comprehensive information about the entire execution up-front [56].
Unfortunately, the required run-time analysis is often associated with an inconvenient
overhead that renders their current tools impractical for frequent use [58].

We argue that the overhead imposed by current approaches to dynamic analysis is uncalled-
for and that immediate accessibility of run-time information is beneficial to developers.
Continuous and effortless access to run-time views supports developers in acquiring and
evaluating their understanding for debugging. For that reason, the overhead caused
by dynamic analysis has to be minimal. If analyzing test behavior is time-consuming,
developers will either not run them very often or reject the entire approach.

Debugging tools that provide run-time information require an experience of immediacy
to encourage their frequent use [168, 201]. To that effect, two essential characteristics
need to be met. First, debugging tools have to be integral parts of the programming
environment. Developers would welcome a tool carrying them from method source code
to the actual run of the same method interactively. Second, response times have to
be low. Visualized run-time information has to be available within some hundreds of
milliseconds rather than minutes [190]. However, immediacy must not hamper the level
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of detail available from views. We intend to support debugging by reducing the effort of
accessing run-time information. We aim to encourage developers to use our test-driven
fault navigation approach frequently. Developers shall be able to avoid guesswork and
validate assumptions by inspecting actual run-time information immediately.

We employ a new approach to dynamic analysis that enables an experience of immediacy
that current tools are missing. Our incremental dynamic analysis is an interactive and
incremental approach to collect and present run-time data. Low cost can be achieved
by structuring program analysis according to user interaction. More specifically, user
interaction allows for dividing the analysis into multiple steps: A high-level analysis
followed by on-demand refinements. An initial analysis provides for immediate access
to visualizations of run-time information. As users explore this information, it is incre-
mentally refined on demand. This distinction reduces the overhead to provide run-time
information while preserving instantaneous access to detailed data. Splitting the dynamic
analysis over multiple runs is meaningful because developers typically follow a systematic
approach to understand program behavior. More generally, program comprehension is
often tackled by exploring an overview of all run-time information, and continuing to
inspect details [209]. This systematic approach to program comprehension guides our
incremental dynamic analysis: Run-time data is captured when needed.

This interactive approach to dynamic analysis requires the ability to reproduce arbitrary
points in a program execution. In order to refine run-time information in additional runs,
we assume the existence of entry points that specify deterministic program executions. For
our implementation, we leverage test cases as such entry points because they commonly
satisfy this requirement [149]. However, our incremental dynamic analysis is applicable
to all entry points that describe reproducible behavior.

We analyze the execution of entry points by instrumenting the code using flexible method
wrappers [40]. Method wrappers are lightweight first-class entities that transparently
replace methods with alternative implementations and can delegate to the original
(wrapped) implementation. They can be handled like ordinary objects, allowing for
simple extensions of method behavior as well as dynamic installation and deinstallation.
We use different kinds of wrappers to decorate methods with additional functionality
required during recording run-time data at different levels of detail. Moreover, we restrict
instrumentation of application code to relevant methods. Library and framework methods
being of no interest are excluded from wrapping, yielding partial traces. The selection of
relevant packages and exclusion of others further avoids unnecessary overhead [91].

Based on the idea of distributing the dynamic analysis effort across multiple runs, our
incremental dynamic analysis offers three specific techniques for our test-driven fault
navigation to collect coverage, execution histories, and object properties on demand.
Refined coverage analysis provides test coverage at methods and optional refinements at
statements. In doing so, our structure navigation owns both fast access to suspicious
system parts and if desired full details of anomalous source code. Step-wise run-time
analysis first collects an initial call tree and allows developers to refine further details later
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Figure 5.1.: Our refined coverage analysis first collects method coverage and later refines
results at statements on demand.

on. For our behavior navigation, developers immediately retrieve a shallow overview of the
execution history that is increasingly expanded with user-relevant run-time data. Inductive
analysis splits the expensive recording of all object properties to specific debugging needs.
In state navigation, developers do not record all possible objects at once but rather choose
from several harvesting types and complete missing data in succeeding runs.

5.2. Refined Coverage Analysis

We collect coverage information at different levels of detail to ensure scalability for
our structure navigation and its spectrum-based fault localization. Although the pure
collection of statement-level coverage delivers the most detailed results, their analysis
often includes an unjustified overhead. The dynamic analysis slows down the execution
by a factor of up to 100 and so requires too much time for revealing anomalies [103].
Moreover, we argue that object-oriented method implementations often include only
sequences so that their covered statements are equal to entirely covered methods. For
these reasons, we restrict the performance decrease to methods and only collect statement
coverage on demand. Starting with a complete but fast analysis of method coverage,
we reveal the relationship between test cases and their executed methods. After that,
if required, developers can refine statement coverage of specific methods. Based on
reproducible test cases, we re-execute all tests that execute this method and analyze the
covered statements only for the method of interest. In doing so, we offer developers both
fast access to method coverage and optionally refined statement coverage.

Figure 5.1 summarizes our refined coverage analysis with a subset of our Seaside typing er-
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ror example. We incrementally analyze coverage of the most suspicious WABufferedResponse
class, its methods, and selected statements. We split the dynamic analysis into a fast
collection of method coverage and subsequent refinements of statement coverage of specific
methods:

Method coverage reveals the relationship between test cases and their executed methods
of the system under observation. The first part of our refined coverage analysis
starts with wrapping all application methods. In doing so, we limit the analysis
scope to the parts of the system in which developers are interested in. So, we
filter irrelevant methods and restrict the performance decrease for the dynamic
analysis in advance. For example, in Figure 5.1 we limit the coverage scope to
our WABufferedResponse class and its eight methods only. Having an instrumented
system, we run each test case on its own. As soon as a wrapped method is called,
we send a coverage event to our method tracer that then stores the link between
the test case and the executed method. Having all covered events of a specific
test, we store all coverage relationships, cache the final test result, and make them
available to any interested tool. In Figure 5.1, we cover six out of eight methods
after executing all test cases. Two methods have not been executed at all, three
methods are covered by both kinds of test results, and the last three methods are
only related to failing test cases. Based on this data, our structure navigation can
already compute and present the suspicious system parts that help developers to
restrict the initial search space.

Statement coverage allows developers to optionally refine covered methods at the source
code level. To compute on-demand statement-level coverage for a specific method,
we wrap it with a special simulation wrapper and rerun only its covering tests in
background. The simulation wrapper records covered statements by executing the
method’s byte code with Smalltalk’s interpreter engine. As soon as this method
is executed, we start the interpreter and store all executed byte codes which we
can later map to covered statements. If the method implementation calls another
method or returns, we suspend the interpreter and the system runs with full speed
until we return to the wrapped method again. In Figure 5.1, we refine two methods.
The first method has been covered by passing and failing tests and we can refine
spectrum-based fault localization at statements. The second method is only executed
by failing tests, thus, we only reveal that all statements are equally covered and
consequently suspicious as the entire method.

Our refined coverage analysis allows developers fast access to initial results and full details
on demand. During the method coverage, the performance only decreases by a factor
of two on average, which we argue is usually less perceivable than a factor of 100 by a
simulated interpreter. To obtain full details, it is the developer’s decision to refine the
coverage information step by step. As a consequence, we also prevent a large amount of
unimportant coverage data. For these reasons, our refined coverage analysis also forms
a basis for the scalability of spectrum-based fault localization. We allow fast access
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to anomalies at covered methods, collect only requested data, and still allow access to
fine-granular suspicious statements. Thus, our on-demand coverage analysis provides a
good trade-off between performance and the levels of detail (see Section 7.5 for detailed
benchmarks).

5.3. Step-wise Run-time Analysis

For our behavior navigation, we provide an incremental dynamic analysis technique
that supports the exploration of complete execution histories of specific test cases. Our
step-wise run-time analysis allows interactively access to a behavioral path through the
system. Thus, developers are able to follow infection chains back to their root causes and
entirely understand the problem. Our step-wise run-time analysis splits the exploration
of a whole test case execution into an initial shallow analysis and detached refinement
analyses:

Shallow analysis focuses on the information that is required for presenting an overview
of a program’s execution history. For example, method and receiver names are
sufficient to render an initial call tree. Further information about method arguments
or instance variables is not recorded. The amount of required data for generating
an initial overview is limited compared to the information that is generated in an
entire program run. More specifically, the overhead for collecting method name and
receiver information is significantly less than performing a full analysis.

Refinement analysis records user-relevant details of the execution history in detached
program runs. As developers interact with the initial call tree, they identify interest
in individual objects which are then loaded on demand in additional analysis steps.
Such subsequent refinement steps involve recording of object state at the specified
point in the execution. For example, if developers indicate interest in a specific
method argument, the refinement analysis executes the entry point again and only
collects this object. Due to reproducible and deterministic entry points, we can
ensure the same behavioral path and object space for each execution. Furthermore,
a refinement step imposes a minimal overhead by focussing on a single object at
a particular execution step. This means that refinement analysis is hardly more
expensive than execution without instrumentation.

Our step-wise run-time analysis distributes the effort for dynamic analysis across multiple
runs and allows developers to recover complete execution histories step by step. The
information required for debugging is arguably a subset of what a full analysis of a
program execution can provide. While our approach entails multiple runs, the additional
effort is kept to a minimum, especially when compared to a full analysis that has no
knowledge of which data is relevant to the user. We reduce the cost by loading information
only when the user identifies interest. This provides for quick access to relevant run-time
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Figure 5.2.: Building the initial call tree with our step-wise run-time analysis for our
Seaside typing error.

information and execution histories without collecting needless data (see Section 7.5 for
detailed benchmarks).

5.3.1. Shallow Analysis: Building the Call Tree

Shallow analysis ensures low start-up costs by building upon a lightweight call tree that
is later on refined with additional information. In Figure 5.2, we sketch the initial call
tree construction of our Seaside typing error. At first, we create a tracer object for
the test case entry point in question. The tracer object is responsible for constructing
and managing the call tree. During the execution of entry points, method call wrappers
signalize events that lead to new nodes being inserted into the call tree. Initially, the
call tree consists of a sole root node (with ID 0) representing the test case entry point
(WABufferedResponseTest»testIsCommitted). All subsequent nodes are attached to the root
or its children.

Next, we instrument all methods of relevant packages as specified by developers with
method call wrappers. These reference the aforementioned tracer object and report
collected data to it in the form of tracing events, which they signal as soon as each
wrapped method is invoked. Now, the entry point is executed, leading to the production
of tracing events and their consumption by the tracer object. The information carried
by tracing events consists of the current method reference, the number of already traced
calls to that method, and optionally the receiver’s type. The latter is only included if
it differs from that of the class declaring the method. The number of previous calls is
relevant for later refinement analyses. In Figure 5.2, the tracer has already constructed
the call tree up to the headerAt:put: method. The WAResponse»headers method is currently
being run and the corresponding event consumed by the tracer.
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From each tracing event, a new call node with a consecutive unique ID is created and
inserted into the call tree. The relationship between a node in the tree and its children is
bidirectional; downward links denote method calls, while upward links denote senders.
To facilitate quick node insertion, the tracer object maintains a reference to the most
recently inserted call node, called the “current node”. A new node is inserted below the
current node, and the current node is updated to reference the newly inserted node after
that. This way, call node insertion takes place in constant time. In the figure, a new call
node (with ID 14 and grey background) has just been inserted below the current node
(ID 13). The new node represents the method headers in WAResponse, which has not been
called before (the call counter is 0).

When methods terminate, the tracer is notified by the corresponding wrappers and reacts
by adjusting the current node reference accordingly. The unique call node IDs are used
to correctly drive this adjustment in case of recursive method calls and non-local returns.
Once the entry point itself terminates, the shallow analysis is completed and all wrappers
related to the given entry point are deinstalled.

5.3.2. Refinement Analysis: Refining Call Nodes

Our refinement analysis guarantees fast lookup and re-execution of entry points during
which call tree nodes are augmented with deep copies of relevant objects. Once a call node
for which details are requested is known, the method whose activation is represented by
the node is instrumented with an explore wrapper. Explore wrappers, like call wrappers,
signal tracing events to the tracer object; however, their payload consists of deep copies
of relevant objects such as the receiver and method call arguments. Next, the tracer
executes the entry point containing the call node in question. Since the explore wrapper
wraps an entire method, it will be triggered multiple times during call tree re-execution.
It must, however, produce tracing events only when the activation corresponding to the
call node in question is met. This is realized by means of the count of already traced
calls to the respective method: the wrapper maintains an internal activation counter,
checking whether its value matches that of the call node’s counter. As soon as the desired
activation is recognized, the required deep copies are created and attached to the call
node.

When refinement affects an object for the first time, a very deep copy is created right
away1, even though not all depth levels of the object’s structure are of interest at this
point in time. While this approach is arguably more memory-consuming than necessary,
it is straightforward to implement. Investigation of a more fine-grained solution that
copies object elements only as needed is deferred to future work. Furthermore, it should
be noted that the structure of the call tree itself does not change at all during refinement
analysis—it is merely augmented with new data. The wrapper is deinstalled once the
requested information has been delivered.

1We rely on Smalltalk’s veryDeepCopy method that automatically duplicates an entire object tree.
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In the example in Figure 5.2, we assume that developers request additional informa-
tion about the receiver object for the node with ID 10. In this case, we decorate the
WABufferedResponseTest»response method with an explore wrapper and trigger re-execution
at the test case entry point node (ID 0). Re-execution of the wrapped method at node
2 will not lead to augmentation because we are looking for the second method call.
Reaching node 10 triggers deep copying of the relevant receiver object and adding it to
the corresponding call tree node.

5.4. Inductive Analysis

Our inductive analysis harvests common object properties from passing test cases for
our state navigation. With the help of these properties, we are able to create dynamic
contracts that compare objects of failing test runs and so reveal state anomalies as parts
of infection chains. However, the dynamic analysis of all object properties tends to be
time-consuming [70]. During the analysis, we explore each object at each execution point
in full detail in order to detect likely invariants. In large systems this method is not only
expensive but also results in a vast amount of data that is not always relevant for a specific
debugging task. For these reasons, our inductive analysis allows developers to collect
object properties incrementally. We analyze not all data at once but rather developers
choices depend on what interests them. They select the system under observation and
decide about the specific object properties that should be harvested. If desired, they can
refine the results later on by focusing on other object properties and re-executing our
reproducible test cases again. Thus, we split our inductive analysis over multiple runs
and provide selected results in a short time (see Section 7.5 for detailed benchmarks).

Figure 5.3 summarizes our inductive analysis approach and how method wrappers, the
tracer with its harvesters, and dynamic contracts relate to each other.

On the left, developers first define the system parts from which they want generalized
object properties. Based on this information, we instrument each of the selected classes
and their methods with harvester wrappers. After that, we execute all passing test cases
that cover the system under observation. If a wrapped method is executed, we send
object events to our inductive analysis tracer. These events include the concrete run-time
objects that this method receives as arguments, applies as instance variables, or returns
as result. In the example of Figure 5.3, developers are only interested in generalized
object properties of the suspicious WABufferedResponse class and its methods. If a passing
test case calls the wrapped method initializeOn:, we send the concrete ReadWriteStream

object as its first argument to our inductive analysis tracer.

In the middle, our inductive analysis tracer receives numerous object events and forwards
them to its harvesters that derive generalized object properties. Depending on the
developer’s choice, our tracer includes several harvesters for different properties. Each
harvester receives object events from the tracer and then generalizes specific object
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properties from concrete states. In doing so, we note already collected properties in
so-called buckets to align upcoming object events with them. Each bucket consists
of dictionaries for observed method arguments, return values, and instance variables.
Furthermore, each bucket includes mappings from the generalized object properties to
the program entities where the concrete objects occur. With the help of harvesters and
their buckets, we first derive common properties from concrete object events and compare
them with already stored properties in the bucket. If a new object event includes a
broader scope than stored in the bucket, we have to align the corresponding property.
For example, the first concrete object is an integer with the value 1. So, we derive a
value range for numbers from 1 to 1. If the second object event for the same program
entity is a 10, we expand its value range from 1 to 10. After that a new object event
with the number 5 would not influence the generalized object property. In our Figure 5.3,
developers indicate interest in type and value range properties. Therefore, our inductive
analysis tracer includes the two corresponding harvesters. While the first collects from
concrete objects their most common super class type, the latter explores value ranges
of primitive objects such as numbers, strings, and streams. In the type bucket, we find
for the first argument of initializeOn: the common super class of all Stream types. In
the range bucket, we store generalized stream properties such as information about its
content and if it is already closed or not.

On the right, the inductive analysis is done and the collected object properties can be
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accessed by arbitrary tools. For our state navigation, we request this data in order to
create dynamic contracts. We iterate over all generalized object properties and create
contracts by calling a specific method at stored properties. This method returns a source
code snippet that reflects the generalized object property as assertion. With the help of a
contract builder [85], we aggregate all of these assertions into corresponding contracts
for pre- and postconditions and invariants. For example, Figure 5.3 presents the created
source code snippets for the Stream type and its value range. These assertions are then
compiled as a contract and added to the corresponding initializeOn: method of the
WABufferedResponse class.

Based on this architecture, we can implement arbitrary harvesters that collect generalized
object properties for our dynamic contracts. Therefore, developers specify a new harvester
that defines how common properties are derived from concrete objects and stored into the
bucket. If this harvester is installed in our inductive tracer, object events automatically
call corresponding interface methods for arguments, return values, and instance variables.
Further on, each object property should implement a printContract method that converts
its generalized data into source code assertions. Thus, we can automatically create
dynamic contracts independent from the collected object properties. With the help of
this framework, we have already implemented two specific harvesters which we describe
in the following sections.

5.4.1. Type Harvester: Collecting Type Information

Our type harvesting gathers detailed type information of covered and executed program
entities [103]. This is especially helpful in dynamically typed programming languages
such as Smalltalk where type information is not explicitly represented in source code.
For each method argument, return value, and instance variable that is executed during
running tests, our type harvester receives the corresponding object event and derives its
most common super class. We collect generalized type information by checking the type
of the concrete object and comparing it to the deposited information in our type bucket.
In the case that our bucket does not know the related program entity, we note the new
type. If both types are equal or the new type inherits from the stored type, we do nothing
because the stored information already comprises the new type. In all other cases, we
store the common super class of both types. Therefore, we examine the class hierarchy
and look for a class that both types inherit from2. Furthermore, our type harvesting
also collects type information of container objects such as collections and dictionaries.
Analogous to simple objects, we harvest each container element and summarize their
types into a special container type. For the creation of dynamic contracts, we provide a
generic implementation of the printContract method that creates the corresponding type
assertions for all classes of the system.

In addition to our state navigation, we also reuse this type information for supporting
2In Smalltalk, there is a root class named Object that all objects have at least in common.
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several other software engineering activities [103, 165]. With the help of additional type
information, development tools can be improved by reducing result sets, checking for API
conformance, and deducing concrete run-time behavior more precisely. This can help
limit the scopes of search, navigation, and auto-completion tools to types actually used
instead of all possible matching message signatures. Static analysis tools can check API
usage to indicate related problems to give developers instant feedback about accidental
mistakes while writing code. Also, program comprehension can be improved because
developers know what types can be expected at dynamically typed variables.

5.4.2. Range Harvester: Checking Value Ranges of Objects

Value range harvesting collects common object properties for primitive data types such as
numbers, collections, and strings. This information supports developers in understanding
the value range of run-time objects, revealing violations in infection chains, and pointing
out tests for missing corner cases. Table 5.1 summarizes all properties for primitive
objects that we currently harvest. For example, in the case of number objects, we store
its value range and check if it contains a zero value. If a specific object also includes the
behavior of other primitive types, we check all of the corresponding properties, too. Since
numbers inherit the behavior of objects, we also harvest whether number objects contain
only constants and allow nil values.

To harvest all these common properties, we apply Smalltalk’s libraries and meta-
programming facilities. Having an object event from our harvester wrappers, we first
check which behavior the corresponding object includes. With this data, we collect the
common object properties with several libraries and reflection mechanisms. For example,
the spelling okay property is verified by a spell checker that gets the string object as
input. After that, we look up in our value range bucket whether other common object
properties already exist. If not, we create a new range property with the first value ranges
for this concrete object. Otherwise, we compare the new and existing value ranges and,
if necessary, expand the common object properties. For example, we assume that nil

objects are not allowed; however, as soon as an object event includes an undefined object
we change this value to true. In this case, the object property denotes a final value that
cannot be changed by subsequent events that do not include nil objects. In this way, we
record object properties and generalize them step by step. Finally, to generate contracts,
we represent each value range as a specific object that summarizes common properties for
primitive types. Each range property implements the printContract method and knows
how to convert its generalized data into proper assertions.
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Behavior of Property Value range
Object constant value true/false

nil allowed true/false
Number range -∞ – ∞

includes zero true/false
Character range 1 – 256

includes letters true/false
includes digits true/false
includes separators true/false
includes specials true/false
is lowercase true/false
is uppercase true/false
is http safe true/false

String length 0 – ∞
spelling okay true/false
includes numbers true/false
includes separators true/false
is ascii string true/false
content types DateAndTime, Duration,

Number, Time, FileDirectory
Collection number of elements 0 – ∞

fixed size true/false
empty allowed true/false

Stream contents Set of classes
is closed true/false

DateAndTime minimum date 0 – ∞
maximum date 0 – ∞
days of the week 1 – 7
is leap year true/false
time zones -11 – 12

Duration seconds range 0 – ∞
nano range 0 – ∞
is positive true/false
is negative true/false
is zero true/false

Table 5.1.: Harvested value ranges of primitive Smalltalk objects.
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5.5. Summary

We presented our incremental dynamic analysis that provides the required run-time data
for our test-driven fault navigation in a short time. We split the overhead of expensive
dynamic analyses over multiple test runs and so ensure an experience of immediacy when
debugging with our approach. This immediacy characteristic is realized by an interactive
approach where developers incrementally decide about their needs. With these decisions,
we automatically split the dynamic analysis over reproducible test runs and collect only
the required information. Based on this idea, our incremental dynamic analysis consists
of three specific techniques: Refined coverage analysis provides fast access to method
coverage and on-demand refinements at statements for our structure navigation. Step-wise
run-time analysis incrementally accesses the execution history of a specific test run for
our behavior navigation. Inductive analysis harvests selected objects and generalizes their
properties for our state navigation. All techniques have in common that they only collect
initial data which developers can later incrementally refine on demand. As a result, we
restrict not only the amount of data to the most necessary information, but also offer
fast access to analysis results.
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6
The Path Tools Framework

In this chapter, we outline the implementation of our Path Tools framework which realizes
our test-driven fault navigation and incremental dynamic analysis. First, we start with
an architectural overview of Path (Section 6.1), followed by a detailed description of our
tool suite for the Squeak/Smalltalk development environment (Section 6.2). After that,
we sketch the basic structure of our underlying incremental dynamic analysis framework
(Section 6.3). Finally, we discuss our implementation with respect to other programming
languages and its introduction costs to existing software systems (Section 6.4).

6.1. Architecture of Path

Test-driven fault navigation is based on our Path Tools framework which consists of
41 packages, 252 classes, 3,307 methods, and 17,559 lines of code. Figure 6.1 illus-
trates its architecture with respect to the underlying Squeak/Smalltalk1 development
environment [112].

At the top, our Path tool suite consists of the small helper tool PathProject; the ex-
tended test runner PathMap and its integrated developer ranking metric; the lightweight
back-in-time debugger PathFinder; and the test-based source code editor PathBrowser.
PathProject defines the scope of all further Path Tools and our incremental dynamic
analysis. Therefore, this tool requires access to the source code in order to specify the
system under observation. PathMap realizes both the structure and the state navigation
of our approach. It needs Smalltalk’s testing API to control the underlying unit test
framework, the reflection API to determine a tree map of the system’s structure, and
the incremental dynamic analysis API to reveal anomalies with the refined coverage and
inductive analysis. Our developer ranking metric is embedded into PathMap and combines
its anomalies with author information of the source code change history. PathFinder
allows developers to experiment with the execution history of specific test behavior and
to follow infection chains back. It applies the testing and reflection API to control specific
test runs and to show source code in corresponding call trees. Such call trees are built
with the help of our incremental dynamic analysis API that starts step-wise run-time
analysis and assigns anomalies. Finally, PathBrowser as our test-based source code editor
provides access to entry points and invariants. It connects source code with already

1http://www.squeak.org
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Figure 6.1.: The Path Tools framework is integrated into the Squeak/Smalltalk develop-
ment environment and consists of a dynamic analysis framework and our tool suite.

recorded test coverage and generated assertions of our inductive analysis.

In the middle of our architecture, the Path analysis framework supports the observation
of unit test behavior by implementing our incremental dynamic analysis. The refined
coverage analysis rapidly records the relationship between unit tests and executed methods
and refines statement coverage of selected methods on demand by re-executing their
corresponding test cases. With the help of this analysis, PathMap reveals anomalies
for our structural navigation within a short amount of time and at different levels of
detail. Step-wise run-time analysis divides the dynamic analysis of one specific test case
over multiple runs. PathFinder applies this analysis to record a simple method call tree,
highlight anomalies in the execution history, and refine additional behavioral information.
Inductive analysis harvests generic object properties and generates dynamic contracts
of passing test cases for our state navigation. PathMap starts harvesting and creates
contracts; PathFinder shows state anomalies if contracts are violated; and PathBrowser
allows access to the generated assertions. We rely on method wrappers and Smalltalk’s
interpreter simulation for recording run-time information. At the level of methods, we
collect run-time information with flexible method wrappers [40]: a wrapper introduces
new behavior before and after the execution of a specific method without changing its
original behavior. Depending on the chosen analysis technique, wrappers collect among
others coverage, method calls, and state refinements. To record statements of a specific
method, a special wrapper starts and stops Smalltalk’s simulation engine that analyzes
dedicated byte codes only. Both analysis techniques are necessary since a full simulation
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would slow down the execution by a factor of at least 100 [103]. Finally, the framework
stores all collected measurements and makes this data available to any interested tool.
For example, PathFinder can reuse comprehensive coverage information for highlighting
anomalies in test case behavior.

At the bottom, we have implemented our Path Tools framework into the Squeak/Smalltalk
development environment. Squeak is an open source implementation of the dynamic
object-oriented programming language Smalltalk which only consists of objects and is
image-based. This means that the complete system with all of its objects is persistently
stored on disk. Thus, it is possible to enrich arbitrary objects with additional information
such as their execution in test cases and to preserve this knowledge for later purposes.
Squeak further offers a comprehensive development environment, a flexible and extendable
user interface, and rich meta-programming facilities. As everything is written in Smalltalk,
we have full access to all implementation details so that we can easily analyze, debug, and
change the entire system. Squeak is used in a wide range of projects ranging from Web
applications to several research prototypes. We also use this platform for teaching our
students object-oriented programming by implementing small games and Web applications.
For all these reasons, Squeak is an ideal basis for building our own debugging tools and
to evaluate our approach with the help of our students and the community.

Our Path Tools framework only requires source code, unit tests, and a corresponding
source code change history from the Squeak/Smalltalk system. We access and analyze
these three program artifacts with our four different APIs. First, the version API
allows access to the source code history that we require to determine experts for our
developer ranking metric. In Squeak, all changes are automatically recorded by a built-in
source code management system. After each change, author credentials, timestamp, and
modifications are stored in a new version of the related program entity. Second, the
testing and reflection API is required by all Path Tools in order to access unit tests and
the structure of the system. It controls test executions, introspects program entities, and
activates dynamic contracts. Third, the method wrappers and simulation API summarizes
all meta-programming features for our incremental dynamic analysis. It offers a flexible
way to implement arbitrary tracers and data structures that record run-time behavior
such as call trees and invariants. Fourth, the code generation API is only required after
harvesting invariants and allows for creating corresponding dynamic contracts in source
code.

6.2. The Path Tool Suite

Our Path tool suite consists of four tools that together realize our test-driven fault
navigation and offer worthwhile insights into program behavior. Before developers can
start debugging with our approach, they have to define the system under observation
and limit the scope of our incremental dynamic analysis. With PathProject, developers
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Figure 6.2.: With PathProject, developers define the analysis scope of their system un-
der observation with respect to packages and classes.

manage their different Smalltalk projects and describe which program entities are part of
them. Having a project and a reproducible failure, all further Path Tools are ready to use.
PathMap is our extended test runner that provides valuable feedback for restricting the
initial search space. It realizes our structure navigation by computing spectrum-based
anomalies and presenting the results in form of a tree map. Based on these results,
it integrates our team navigation and its developer ranking metric. In addition to it,
developers also start the inductive analysis for our state navigation from here, which
harvests passing test cases in order to create contracts. Following our test-driven fault
navigation process, PathFinder supports developers in debugging failing test cases back-
in-time and highlighting the infection chain. It analyzes one specific test case and grants
interactive access to its entire execution history. By mapping spectrum-based and state
anomalies on it, we accomplish our behavior and state navigation. The last tool is not
completely necessary for our test-driven fault navigation; however, it does connect the
revealed test knowledge with source code and so supports program comprehension not
only for debugging activities. PathBrowser offers test cases as entry points to arbitrary
methods, enhances program entities with harvested run-time information, and shows the
dynamically created contracts.

6.2.1. PathProject: Definition of the System under Observation

PathProject is a small helper tool in order to define the system under observation. Before
developers can apply our Path Tools, they have to specify the project scope once by
choosing their source code and testing packages of interest. As Squeak always allows
access to the entire system with all its libraries, applications, and frameworks, we request
developers to limit the analysis of our test-driven fault navigation to their needs. A project
defines a partial trace that defines the system under observation and ignores remaining
parts that are little likely to include failure causes. Nevertheless, if necessary the project
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Figure 6.3.: PathMap is our extended test runner that analyzes test case behavior and
visualizes suspicious methods of the system under observation.

scope can easily be extended by adding new source code packages. For example, in our
typing error we limit the analysis to Seaside’s core packages. In addition to partial traces,
we use projects to cache specific meta data such as test coverage, anomalies, and harvested
invariants. This data is specific to a project and is often required by multiple tools. So,
we are able to interconnect our Path Tools and allow them access to already collected
information. For example, PathFinder maps PathMap’s spectrum-based anomalies into
the execution history. Figure 6.2 presents our PathProject helper tool. Developers see all
projects on the left and the corresponding packages of the selected project on the right.
The buttons on the top serve to manage projects and to define the scope. The current
project declares the active system under observation for our Path Tools.

6.2.2. PathMap: Extended Test Runner Feedback

PathMap is an extended unit test runner for implementing our structure, team, and state
navigation. Figure 6.3 shows our PathMap assigned to the Seaside Web framework. It
does not only verify test cases but also localizes failure causes. Its integral components
are from left to right a testing control panel, a compact tree map visualization of the
software system, and several flaps for accessing various feedback techniques such as our
structure navigation.
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The testing control panel (1) provides nearly the same functionality as a standard test
runner. Developers can choose from different test suites of the selected project and
run them. Execution of test cases with enabled dynamic contracts can also be offered
if assertions are available from the state navigation. In this case, we would highlight
violations in our tree map analogous to the behavior navigation with small exclamation
marks.

The compact visualization (2) provides valuable feedback about the project and its test
cases. The tree map in the middle presents the structure of the system under observation
with its packages, classes, and methods. Each small method box can be colored to
represent test case and analysis results. It is possible for developers to interact with
the tree map: hovering on a box results in the name of the attached method, its class,
and its package; clicking on a box results in a menu being displayed. This menu allows
developers to request additional information about the method such as its source code
with refined statement coverage and the exact values of colored metrics (as shown in the
message box). The menu also lets developers inspect the run-time behavior of the method
by starting a covered test case entry point either with our PathFinder or a symbolic
debugger. Furthermore, the test runner also presents a status bar on the top displaying
a summary of the test suites execution and a status bar on the bottom displaying a
summary of project metrics about the system.

Flaps on the right (3) set PathMap into specific analysis modes for collecting valuable
feedback during the execution of test cases. Without an opened flap, PathMap acts like a
standard test runner and only colors test case results in the tree map. In Figure 6.3, the
fault localization flap is open and allows developers to start the structure navigation. If
developers run selected tests, we automatically record their coverage, compute spectrum-
based anomalies, and color the map with suspiciousness and confidence scores. Within the
flap, developers can choose a proper spectrum-based metric such as Ochiai, see a legend
explaining the colors in our tree map, and enable filtering of partially covered methods
for single faults. Furthermore, the highscore lists all anomalies in descending order of
failure cause probabilities and the developer ranking integrates our team navigation. After
asking for a specific authorship metric, we collect all anomalies and present a ranked list
of experts.

We offer several other flaps to further reveal hidden test knowledge and to control test
runner feedback. The state navigation flap allows developers to harvest invariants from
passing test cases. After choosing a specific harvester, our inductive analysis automatically
collects generalized object properties and stores them in dynamic contracts later on. The
test quality feedback flap [165] reveals the effectivity and efficiency of test cases. While
the first relates coverage with static source code metrics for correcting low-quality tests,
the latter finds common performance bottlenecks during the execution of test cases. The
traceability flap connects test cases with arbitrary concerns and recovers the relationship
to software artifacts. For example, we can link use cases with their acceptance tests and
so reveal requirements traceability [105]. Moreover, we offer a global options flap that
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Figure 6.4.: PathFinder is a lightweight back-in-time debugger that classifies failing test
behavior for supporting developers in navigating to failure causes.

allows developers to filter primitive methods, ignore test setups, visualize intermediate
steps, show test results, and optimize harvesting.

6.2.3. PathFinder: Lightweight Back-in-time Debugger for Test Cases

PathFinder is our lightweight back-in-time debugger for introspecting specific test case
executions with a special focus on fault localization. Not only does it provide immediate
access to run-time information, but also classifies traces with suspicious behavior and
state. To localize failure causes in behavior, developers start exploration either directly
at a failing test case or out of covered suspicious methods as provided by PathMap.
Subsequently, PathFinder opens at the chosen method as shown in Figure 6.4 and allows
for following the infection chain back to the failure cause. Its main components are a
control panel on the top and the test case call tree representing its execution history.

At the first index in Figure 6.4, PathFinder provides a control panel to set up the dynamic
analysis of test cases and to support the navigation through the large amount of run-time
data. From left to right, it offers the following functionality. The yellow box presents the
final test result and allows developers to explicitly choose and rerun test cases. Views
and profiling information influence the shallow analysis of our step-wise run-time analysis
and enhance the results of initial call trees. While views record more details about called
receiver objects such as names and identities, profiling precisely measures the required
time for executing a test case. Although both techniques are useful with respect to follow
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a particular object or to identify performance bottlenecks, their analyses require more
time. For that reason, developers can optionally refine the call tree with this additional
data. A small query engine and history buttons complete the control panel by providing
functionality for navigating through an execution trace. So far, the query engine allows
developers to search for called methods, anomalies, and additional information such as
views and profiling information.

At the bottom of Figure 6.4, the visualized information primarily consists of a call tree
that reflects a particular test case run. A call tree provides comprehensive information
of the entire program execution and shows how methods call each other to fulfill the
test case behavior. From top to bottom, each node represents one method call and their
subtrees describe its called methods. Each method call node consists of a colored box
with a percentage value for its suspiciousness score and a name representing receiver
class, implementation class in parentheses, and method name. Optionally, this name
also includes view and profiling information. We provide arbitrary navigation through
method call trees and their state spaces. Developers can follow traces in both directions
and expand and collapse subtrees interactively. For a better distinction, we alternate the
background colors of called methods depending on their stack depth.

Some of the tree nodes have been expanded to reveal details about the method im-
plementation and the applied state. At the second index in Figure 6.4, an expanded
method call node shows its source code, a control panel for requesting details and refining
run-time data, and the return value. Most notably, the control panel allows developers
to start a source code editor and a symbolic debugger, obtain additional information
about anomalies, refine coverage and spectrum-based fault navigation at statements, and
explore object states. After indicating interest in a specific argument, receiver, or return
object, we reexecute the test case, make a deep copy of the requested object, and present
it in an object explorer on the right. Developers can explore all object properties and
compare them to other method nodes in the execution history.

The third index in Figure 6.4 refers to our highlighted state navigation. We map violated
contracts to traces by adding small purple exclamation marks to method nodes. We
choose this color because of its availability and good visibility. Developers can further
inspect such exclamation marks and receive detailed information about the exact violation.
For example, the shown label presents the spelling violation of our Seaside typing error.

6.2.4. PathBrowser: Connection of Source Code and Hidden Test Knowledge

PathBrowser extends Squeak’s standard source code browser with hidden test knowledge
to improve further program comprehension. Figure 6.5 shows our two extensions. First,
we offer test cases as entry points into behavioral examples of specific methods. We reuse
the already collected test coverage data from PathMap and present it in the new pane on
the right side. With a click on a corresponding test case, developers can start a symbolic
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Figure 6.5.: PathBrowser connects the hidden test knowledge with source code.

debugger or our PathFinder. Both tools stop their execution at the first call of the selected
method and provide insights into its concrete run-time behavior. Thus, developers learn
how a method works and so comprehend source code abstractions by debugging into
examples. Second, we integrate the hidden test knowledge into source code by presenting
invariants and dynamic contracts of our state navigation. If a specific program entity
possesses generalized object properties, then a label automatically shows its exploited
run-time information while editing source code. For example, we harvested the ByteString

class as type for the argument aValue. This information allows developers to understand
source code better, especially in dynamically typed languages such as Smalltalk where
type information is rather implicit. Furthermore, we extend the browser with our dynamic
contracts. There are buttons for displaying the source code of invariants (inv), pre- and
post-conditions (pre/post). The Smalltalk code at the bottom shows all the generated
assertions from our collected invariants. Developers can also add manual assertions to
this source code. In the example of Figure 6.5, we present the pre-condition contract for
the method WAResponse»headerAt:put:. The assertion DCContract expectCorrectSpellingOf:

aString (line 9) throws a violation in our Seaside typing error and reveals the crucial state
anomaly.

6.3. The Path Analysis Framework

Path also provides a flexible and extendable framework for implementing our incremental
dynamic analysis techniques. We offer a generic infrastructure with several hooks that
supports the experimentation of new dynamic analysis techniques. Figure 6.6 sketches a
simplified version of Path’s core classes and template methods [85].
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+ postProcessing
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TestCaseEntryPoint
+ testClass 
+ selector 
+ lastResult
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execute
    self lastResult: (self testClass selector: self selector) run.
     ^ self lastResult

Wrapper
*

wrappers

1

tracer

+ beforeMethod
+ afterMethod
+ valueWithReceiver:arguments:

valueWithReceiver: anObject arguments: anArrayOfObjects
    self beforeMethod.
    ^ [self clientMethod valueWithReceiver: anObject arguments: anArrayOfObjects] 
        ensure: [self afterMethod]

run
    [self preProcessing.
    self createWrappers.
    self entryPoints do: [:each | 
        | result |
        self beginExecutionOf: each.
        self startTracing.
        result := each execute.
        self stopTracing.
        self endExecutionOf: each withResult: result]] 
    ensure: [self removeWrappers].
    self postProcessing.

Figure 6.6.: The simplified core of our Path analysis framework consists of projects,
entry points, tracers, and wrappers.

Project is a helper and data class that represents the partial trace of the system under
observation. After developers have defined the analysis scope with PathProject, a
corresponding project object represents its name, packages, and related classes. Each
tracer applies the current project to not only read its information but also to finally cache
the analyzed results. Hence, all Path Tools have access to gathered run-time data and
can reuse it.

EntryPoint represents our concept of starting points into reproducible and deterministic
behavioral paths through the system. It is an abstract class because we offer several kinds
of reproducible entry points such as test cases, source code scripts, and business-readable
acceptance tests [45]. Since our test-driven fault navigation requires test cases as entry
points, we focus on the corresponding subclass. TestCaseEntryPoint is an adapter [85]
that encapsulates a test case with its class and selector. Furthermore, it stores the last
test result to promptly compute anomalies without the need of running test cases again.
Finally, the execute method implements the EntryPoint hook by executing the included
test case and caching its result.

Tracer is the centerpiece of our framework as it controls the dynamic analysis process. It
is a generic and adaptable coordinator that defines which system parts are observed and
what information is collected. Based on the project scope, a specific tracer creates and
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removes method wrappers, executes assigned entry points, and aggregates the run-time
data being collected by its method wrappers. The run method summarizes this process
and provides several template methods [85] that can be implemented by subclasses to
fulfill their specific dynamic analysis needs. We start with a preprocessing that can
adapt the system under observation or initialize data structures such as call trees and
harvesting buckets. After that, we create and install wrappers all over the system under
observation. In doing so, subclasses define the specific wrapper class and can further
adapt the analysis scope. Having an instrumented system, we execute each entry point
for its own. In the course of this, we offer hooks before and after each execution and for
the activation of tracing. For example, subclasses can declare interest in partial results
and delay the activation to ignore the analysis of setup code. After running all entry
points, we have to ensure that all wrappers are removed from the system in order to
prevent inconsistencies. Finally, a last postprocessing step allows subclasses to finally
aggregate and present collected run-time values.

We analyze the execution of test cases by instrumenting the code using method wrap-
pers [40]. Wrapper is a very lightweight construct that transparently replace methods with
alternative implementations and can delegate to the original (wrapped) functionality.
As long as a wrapper is dynamically installed, its valueWithReceiver:arguments: method
is called instead of the original method. With this hook, subclasses can collect specific
run-time data before and after they forward the call to the client method. In doing so,
each wrapper has access to its tracer object in order to send collected events. The tracer
summarizes all wrapper events and aggregates the run-time data together.

As an example of our framework, we sketch the concrete implementation of our refined
coverage analysis that allows fast access to method coverage and on-demand refinements
at statements. Figure 6.7 illustrates the specific tracers and their implemented hooks. The
TestRunnerTracer inherits the basic functionality of tracer, connects it to our PathMap
tool, and provides a generic data structure for test results. This tracer only executes test
cases, stores their results, and visualizes them in PathMap’s tree map. It is a standard
test runner implementation that executes test cases and renders their results without any
further analysis. In addition to it, the class offers a generic data structure for all following
incremental dynamic analysis tracers called testResults. With the help of a dictionary,
the tracer puts test cases and their results as keys and further analysis data as values. The
CoverageTracer implements the refined coverage analysis. For each test case run, it stores
covered methods with optional statement refinements in the coveredMethods dictionary.
While keys reflect covered methods, values can describe covered statements. At the end
of each test case run, this dictionary is stored as value in the generic testResult data
structure. To fill the coveredMethods dictionary, we offer two add methods being called by
executed method wrappers. As long as the tracer is active, addToCoveredMethods: simply
stores covered method references and addCoveredByteCodes:toMethod: further adds covered
byte codes as additional data2. Our tracer offers two kinds of wrappers to record coverage

2The storage of byte codes allows for deriving covered statements later on. Furthermore, the simplified
addCoveredByteCodes:toMethod: implementation hides the merge of previously covered byte codes.
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TestRunnerTracer

CoverageTracer

+ pathMap
+ testResults

+ coveredMethods
+ addToCoveredMethods:
+ addCoveredByteCodes:toMethod:
+ getWrapperClass
+ postProcessing

addCoveredByteCodes: aSet toMethod: aMethodReference
    self isActive
        ifTrue: [self coveredMethods at: aMethodReference put: aSet].

addToCoveredMethods: aMethodReference
    self isActive
        ifTrue: [self coveredMethods at: aMethodReference put: nil].

getWrapperClass
    self options typeOfCoverage = #statements 
        ifTrue: [^ StatementCoverageWrapper].
    ^ CoverageWrapper

postProcessing
    self project coverageCache: self testResults.
    self testRunner updateResults.
    self visualizeAllInformation.
    self pathMap changed.

Figure 6.7.: Path’s specific tracers for our refined coverage analysis.

at methods and statements. Depending on developers’ needs, the method getWrapperClass

returns the corresponding wrapper type. Furthermore, in the case of the more specialized
StatementCoverageWrapper we also limit the instrumentation to the chosen method only. At
the end, the postprocessing stores the final results into the coverageCache and triggers
the visualization of the collected information in PathMap.

Figure 6.8 shows the related two wrappers for our refinement analysis. CoverageWrapper

only has to implement the beforeMethod that is always executed before the original
method. It sends a message event to its corresponding tracer that the wrapped method
is covered. The StatementCoverageWrapper is more complicated because the refinement of
covered statements requires Smalltalk’s byte code simulation. Such a bytecode simulator
executes code in a simulated mode that allows additional functionality to intercept and
analyze execution at each interpreter step. However, this kind of dynamic analysis is
expensive and should be limited to important methods only. For that reason, we only
analyze methods that developers request. In our StatementCoverageWrapper, the method
valueWithReceiver:arguments: is overwritten and calls the original method in simulation
mode. At each new context, we store the executed byte code with respect to the program
counter. After the simulation, we forward the recorded byte code to our tracer and return
the result of the original method.

To implement our incremental dynamic analysis completely, we provide several specific
subclasses of Tracer and Wrapper. Table 6.1 gives an overview for each analysis. Our
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Tracer
+ active : Boolean
+ run
+ preProcessing
+ getWrapperClass
+ beginExecutionOf:
+ endExecutionOf:withResult:
+ postProcessing

Wrapper
*

wrappers

1

tracer

CoverageWrapper

+ beforeMethod
+ afterMethod
+ valueWithReceiver:arguments:

+ beforeMethod
beforeMethod
    self tracer addToCoveredMethods: 
        self asMethodReference.

StatementCoverageWrapper
+ valueWithReceiver:arguments:

valueWithReceiver: anObject arguments: anArrayOfObjects
    | result |
    self beforeMethod.
    ^ [| result byteCodes |
        byteCodes := Set new.
        result := thisContext
                          runSimulatedMethodOnly: [self clientMethod 
                                                                          valueWithReceiver: anObject
                                                                          arguments: anArrayOfObjects]
                          contextAtEachStep: [ :ctx | 
                              self compiledMethod == ctx method ifTrue: [byteCodes add: ctx pc]].
    self tracer addCoveredByteCodes: byteCodes toMethod: self asMethodReference.
    result] 
        ensure: [self afterMethod]

Figure 6.8.: Path’s specific wrappers for our refined coverage analysis.

refined coverage analysis requires a coverage tracer for collecting the pure relationship
between tests and methods and a more specialized fault localization tracer for additionally
computing anomalies. It also requires two wrappers to collect coverage at different levels
of detail. Our step-wise run-time analysis has one tracer that builds and refines the call
tree step by step. For that purpose, it relies on different kinds of method wrappers to
decorate methods with additional functionality required during our shallow and refinement
analysis. While the call wrapper and its subclasses view and profiling wrapper collect
data for constructing the call tree, all other wrappers are specific to one method for
debugging it or exploring deep copies of objects. Our inductive analysis encapsulates
harvester buckets and aggregates object states from harvester wrappers. Furthermore, all
tracers have a common super class named TestRunnerTracer. This class connects tracers
with PathMap and provides basic functionality to execute test cases, record their results,
and visualize them in our tree map. In summary, we have implemented all incremental
dynamic analysis techniques with the same framework, which demonstrates its flexibility
and extensibility. We argue that our framework is also able to implement other dynamic
analyses such as efficiency of test case [165] and requirements traceability [105].
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Incremental dynamic analysis Tracer Wrapper
Refined coverage analysis CoverageTracer CoverageWrapper

FaultLocalizationTracer StatementCoverageWrapper

Step-wise run-time analysis CalltreeTracer CallWrapper

ViewWrapper

ProfilingWrapper

SpecificWrapper

DebugWrapper

ExploreWrapper

Inductive analysis InductiveAnalysisTracer HarvesterWrapper

Table 6.1.: Specific subclasses of tracer and wrapper for implementing our incremental
dynamic analysis.

6.4. Discussion

We argue that our approach can easily be adapted to other object-oriented programming
languages that include a unit test framework. To implement our Path Tools framework,
the language and its libraries have to support dynamic and static analysis techniques.
While the dynamic analysis of method executions can be implemented with aspect-
oriented programming [91], statement-level coverage depends on language features. For
example, in C++ many coverage tools insert probes into the source code. In Python, the
interpreter offers a simple hook function for a fine-grained run-time analysis. Regarding
static analysis, developers can rely on several external analysis tools or the reflection
capabilities of their language. Also, many version control systems such as subversion
offer interfaces to request author information of previous changes. Finally, our Path tool
suite to large parts is a visualization concept whose implementation only depends on the
underlying user interface of the development environment. For example, Eclipse could
also be extended with a plug-in for rendering the tree map and its anomalies.

The introduction costs for test-driven fault navigation are low in the beginning but it will
take some time to become well acquainted with our Path Tools. These costs are largely
composed of adapting the underlying software system, teaching our new debugging process,
and practicing with our tools. The preparation effort for the underlying software system
is negligible. Once our Path Tools framework is available for a specific programming
language, it only requires access to source code, unit tests, and the change history. We
have already analyzed numerous Smalltalk projects without any problems. Only in very
few instances, did we have to revise non-deterministic unit tests or we could not analyze
the system because of extensive reflection mechanisms. The new concepts of our test-
driven fault navigation process are easy to understand because they are similar to other
debugging activities. In comparison to the traffic principle [219], developers also start
with a breadth-first search and they systematically follow the infection chain back. For
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example, after presenting our approach in a 90-minutes lecture, our undergraduate students
confirmed that they have understood our approach. They praised the possibilities to
refine hypotheses with anomalies and to navigate the infection chain backwards. However,
we also learned from our students that practice with our Path tool suite needs some
time. Although they become acquainted with the main features within a few hours, an
efficient debugging session still looks different. On the one hand, highlighted anomalies
in PathMap and PathFinder as well as the developer ranking are easily applicable. On
the other hand, debugging back in time and searching anomalies in large traces require a
difficult change of thinking when localizing more complicated failure causes. For these
reasons, we will prepare additional tutorials for getting started with the more advanced
features of our tools.

6.5. Summary

We introduced the implementation of our Path Tools framework for the Smalltalk program-
ming language and Squeak development environment. Path realizes both our test-driven
fault navigation for debugging reproducible failures and our incremental dynamic analysis
to ensure an immediate experience when applying our tools. We started with a com-
pact overview of its architecture presenting the relationships and APIs between Path
Tools, our analysis framework, and the underlying Squeak/Smalltalk system. Based on
this architecture, we explained each Path tool in more detail. PathProject is a little
helper tool to define the analysis scope and the system under observation. PathMap is
our extended test runner for starting debugging with our test-driven fault navigation.
PathFinder is our lightweight back-in-time debugger for following failing test cases back
to their root causes. PathBrowser connects the hidden test knowledge with source code
and so enhances several program comprehension tasks. After the description of our
tools, we sketched the analysis framework by introducing its core classes and their hooks.
Tracers in combination with method wrappers allow for implementing arbitrary dynamic
analysis techniques. We showed the flexibility and extensibility of this mechanism by
explaining the refined coverage in more detail and presenting the concrete subclasses
for each incremental dynamic analysis technique briefly. At the end, we discussed our
approach with respect to porting it to other programming languages and its introduction
costs into existing projects.
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7
Studies and Experiments

In this chapter, we evaluate our test-driven fault navigation and incremental dynamic
analysis with respect to its practicality, effectiveness, and efficiency. With the help of our
Path Tools framework, we examine several Smalltalk projects (Section 7.1) and numerous
failures in order to prove that our approach is able to reduce time and effort required
for debugging. We start with a user study (Section 7.2) that observes and compares
developers during debugging with a symbolic debugger and our Path Tools. After that,
we consider the quality of our automatic test-driven heuristics, in particular our developer
ranking metric (Section 7.3) and inductive analysis (Section 7.4). Finally, we measure
the performance characteristics of our implementation (Section 7.5). In summary, we
learn that our novel debugging approach and its corresponding tools reduce not only the
required debugging time but also assist developers in efficiently creating, evaluating, and
refining failure cause hypotheses.

7.1. Projects Studied

To evaluate our approach, we applied test-driven fault navigation and its corresponding
Path Tools framework to six Smalltalk projects. The properties of the mid-sized projects
and their specific evaluation purposes are summarized in Table 7.1. Of the six projects,
two (AweSOM and zEmu) are research prototypes developed in our group, one project
(4Conferences) is a long-lived student project, and the remaining three are external,
production-quality projects. All projects are well tested, not implemented by the author
of this dissertation, and in daily use in software development and business activities.
Their acceptance, integration, and unit tests cover large parts of the system, imposing
different computational cost. These projects involve various application domains such as
end-user Web frameworks, development tools, and virtual machines. As a consequence, we
argue that our Path Tools framework is applicable to a broad range of different software
systems.

Seaside [64, 169] is an open source and industrial Web framework1 that includes our
motivating typing error. In its version 3.0, Seaside allows the easy creation of powerful
Web applications using high-level abstractions on the application components and on the
underlying hypertext transfer protocol. In doing so, it builds upon the strengths of the

1http://www.seaside.st
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Seaside iCalendar 4Conferences
Classes 657 77 175

Methods 5564 1347 2540
Tests 711 115 89

Coverage 41.4% 72.9% 69.3%
Evaluation Motivating example User study Team navigation

Efficiency Efficiency Efficiency
Section 2.1, 7.5 7.2, 7.5 7.3, 7.5

AweSOM Compiler zEmu
Classes 68 64 47

Methods 750 1294 1012
Tests 125 49 349

Coverage 81.8% 51.1% 91.7%
Evaluation State navigation Efficiency Efficiency

Efficiency
Section 7.4, 7.5 7.5 7.5

Table 7.1.: Project characteristics for our user, effectiveness, and efficiency studies.

Smalltalk object-oriented programming language and transcends many of the common
practices needed in other, less dynamic languages.

We choose Squeak’s iCalendar project2 as the underlying software system for our user
study. iCalendar is a library that supports the identically named file format for sharing
meeting requests and tasks independent of specific calendar applications. The project
implements import and export functionality of the file format including a parser, a
domain-specific object model, and I/O handling. It is an external, open source, and
real-world project that is used in several other applications. We choose iCalendar because
of its maturity, already included and comprehensive test base, understandable domain,
and ideal project size that is neither too small nor too large.

4Conferences supports the web-based management of conferences and determines the
accuracy of our developer ranking metric. The conference management system permits
activities such as the registration of attendees, the organization of payments, the printing
of badges, and the planning of talks. It has been developed by five undergraduate student
projects in the context of two software engineering courses in the last two years. In these
courses, we acted as customers for the 28 involved students. The students implemented
4Conferences with the help of Extreme Programming. Due to agile practices such as
collective code ownership, all developers had access to the entire code base and each

2http://www.squeaksource.com/ical/
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method was implemented by a number of students. Thus, this project has a sufficient
distribution of developers for evaluating our team navigation.

AweSOM [102] is a research prototype developed in our group that realizes a virtual
machine for running and interpreting SOM’s file-based Smalltalk dialect on top of the
Squeak system. We evaluate the quality of our state navigation in the context of this
project as it is very well suited for such a task for two reasons. First, there are two
independent test suites provided by different authors that can serve as measured and
reference sets for our evaluation. The acceptance test suite consists of a collection of
SOM Smalltalk applications that are executed by the virtual machine; they are real-world
examples whose execution involves the entire virtual machine. The unit and integration
test suite verifies the internal virtual machine components and their collaboration. Second,
the domain of a virtual machine implementation brings about several different object
states that can exhaust our harvesters.

The remaining two (Compiler and zEmu) are additional projects that have also profited
from our Path Tools framework during their maintenance. While the first project refers
to Squeak’s standard Smalltalk compiler, the second is an emulator prototype for an
experimental programming language from our group. We consider both projects only for
performance characteristics.

Apart from these six projects, we have used our Path Tools framework in a number of other
projects not covered in this evaluation. For several terms, students have applied our tools
in our software engineering courses and bachelor projects. With the help of our approach,
they gained valuable feedback about their implemented games, Web applications, and
research prototypes. For example, the Orca Web application framework [199], which
translates Smalltalk code to JavaScript, solved many difficult failures with our test-driven
fault navigation. In almost all projects, results showed that our Path Tools could be
used in place of the standard test runner and debugger without any adaptions to the
underlying system.

7.2. User Study: Practicality of Test-driven Fault Navigation

To evaluate test-driven fault navigation and its corresponding tools, we conduct a user
study within the scope of the iCalendar project (see Section 7.1). We observe six
developers while debugging six failures and compare PathMap and PathFinder with
Smalltalk’s test runner and symbolic debugger. In summary, we discover that test-driven
fault navigation is able to decrease debugging cost with respect to required time and
developer’s effort.
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Infection Suspicious
Failure Description Difficulty chain length method rank

1 Reversed comparison operator of
event objects

Easy 1 1

2 Wrong conditional statement in
handling address parameters

Easy 27 22

3 Unintended string constant in
phone types

Normal 5 68

4 Forgotten deletion of obsolete cal-
endar events

Normal 84 10

5 Missing separator for parsing
event files

Hard 520 31

6 Return of improper but poly-
morph objects for storing alarms

Hard 2133 42

Table 7.2.: Description of iCalendar’s failures.

7.2.1. Experimental Setup

For our user study, we observe six developers with a similar background knowledge. The
participants are computer science students in the 5th semester. All of them have between
3 and 11 years of programming experience and professional expertise with symbolic
debuggers. In the last year, they attended two of our software engineering courses, in
which we intensively taught object-oriented programming with the help of Smalltalk. In
this time, they built a new system from scratch, maintained an existing application, and
passed the courses with excellent grades. The chosen students have similar development
skills and become acquainted with iCalendar in our user study for the first time. Thus,
we can ensure that the required debugging effort is not much influenced by individual
skills and knowledge about the system.

During the study, these students are supposed to localize six failures with different levels
of difficulty, which are described in Table 7.2. We insert these six defects all over the
iCalendar system, whereby we described them obviously. For example, we comment
important statements instead of deleting them. So, it is easier for our developers to verify
defects after they have followed the infection chain backwards. For each failure, we assess
a level of difficulty that estimates the required effort to localize its defect. On the one
hand, we choose this level depending on our own debugging experience; on the other
hand, it also reflects the number of call nodes between failure and defect (infection chain
length) and the position of the defect in the list of anomalies (suspicious method rank).
Finally, we have two failures from each of the six, which are easy, normal, and hard to
debug. All failures can be reproduced with 1-10 failing test cases, which do not trivially
include defects as part of their stack traces.
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7.2.2. User Study Procedure

Prior to our user study, we presented a software engineering course in which all students
had already access to our Path Tools for a period of three months. In this course,
we also taught them advanced debugging concepts [219] and we introduced test-driven
fault navigation as an exemplary approach. To find participants for our user study, we
performed a short questionnaire with all students, which takes into account years of
programming experience, reviews of course projects, and grades. Based on these results,
we selected six excellent students with a similar background knowledge. However, the
questionnaire also revealed that the students’ main preoccupation was effecting test-driven
fault navigation because of the new debugging concept and neglected guidance from our
part.

For the preparation of our participants, we introduced test-driven fault navigation again
and we allowed them to become acquainted with iCalendar. Within two hours, we first
presented our Seaside typing error followed by an instructed and comprehensive practice
with our tools. The students debugged one example failure in iCalendar under our
guidance. In doing so, they understood iCalendar’s basic concepts, investigated its source
code, and learned to debug with test-driven fault navigation.

We conducted the user study by observing our developers while debugging iCalendar’s
failures with different tools. First, all developers debugged three failures with Squeak’s
standard debugging tools. After that, they debugged the remaining three failures with
our Path Tools. While using test-driven fault navigation, we provided assistance with
handling PathFinder’s user interface and its features. The process of localizing failure
remained free of influence. For all six failures, we measured the complete debugging
time, including everything from time to consider source code to execution time of applied
tools. Additionally, for test-driven fault navigation we noticed the point in time when
our developers started PathFinder to follow the infection chain back. If the defect was
not localized after 15 minutes, we marked the failure as not solved.

To evaluate our approach, we assigned each developer three failures for debugging with
standard tools (symbolic debugger and test runner) and three failures for test-driven
fault navigation (PathFinder and PathMap). For each of the six failures, we ensured a
unique combination of developers and applied tools. At each level of difficulty, a developer
debugged one failure with standard tools and the other one with our Path Tools.

After the study, we interviewed each student and asked for feedback with respect to our
approach and Path Tools.

7.2.3. Discussion of Study Results

With the help of our user study, we reveal that test-driven fault navigation is able to
reduce the required effort for localizing failure causes. Compared to standard debugging
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Figure 7.1.: Required debugging time with symbolic debugger and test runner compared
to PathFinder and PathMap.

tools, developers who apply our Path Tools need in the majority of cases less time for
debugging. Figure 7.1 summarizes the required debugging time for each failure with
standard tools and our Path Tools. The time includes all applied debugging activities
such as running tests, time to consider source code, and execution time of tools. For each
level of difficulty, the position of a bar corresponds to the same developer with respect to
the applied tools per failure. For example, the second bar in normal failure 3 standard
debugging and the second bar in normal failure 4 test-driven fault navigation represent
the same developer.

In the case of the first two easy failures, developers with test-driven fault navigation
are about one minute faster compared to developers with symbolic debuggers and test
runners only. For example, while failure 1 requires at least three minutes to debug with
standard tools, our Path Tools are able to localize the defect in less than two minutes.
Even if all developers exchange their tools for failure 2—from standard tools to Path
Tools and vice versa—test-driven fault navigation is almost always faster. Thus, our
performance increase is independent of the expert knowledge of individual developers.

We have similar results with the next two normal failures, but the differences in required
debugging time are considerably larger. In particular, developers with standard tools
have some problems in localizing failure causes. Three students could not find the defect
within 15 minutes because they did not comprehend what is going wrong. In contrast, two
other developers required only a short time for debugging with standard tools. While one
developer knows the infected source code very well from the preparation phase, the other
developer instantly had a proper intuition. Nevertheless, test-driven fault navigation is
once more better and allows all developers to localize failure 3 in less than four minutes
and failure 4 in less than two minutes. Compared to standard debugging tools, the
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integration of anomalies into a systematic breadth-first search is very helpful and restricts
the search space a lot. With the help of PathFinder, developers easily understood how
the failure came to be and were able to directly jump into erroneous state and behavior.

The last two hard failures required much more time with all tools and could not be
solved in five debugging sessions including one with our Path Tools. We argue that these
two failures are very hard to debug because the corresponding test cases fail far away
from the failure-inducing defect. In the case of failure 5, all test-driven fault navigation
participants were able to identify the defect within six to eight minutes, while standard
debugging tools either could not solve this failure or need still more time. Failure 6 was
so difficult that no developer could solve it with standard tools. With our Path Tools,
two developers were able to find this failure after about twelve minutes. The remaining
student came very close but could not solve it within 15 minutes. The same student
already failed with standard tools at failure 5 but in this case he was also far apart from
the root cause. Principally, PathFinder’s assistance with following the infection chain
backwards in combination with emphasized anomalies supported developers in isolating
failure causes.

During debugging, we observed the participants and noticed some interesting insights.
Developers with standard tools relied primarily on their intuition. Often, they guessed
reasons for failure causes such as wrong behavior and infected state. In doing so, some
developers had proper hypotheses about failure causes, but no developer was consistently
better at guessing than another one. This observation was also reflected in the differences
of required debugging time. In contrast, our test-driven fault navigation allowed developers
to rely on a systematic debugging process and the advice of our tools. Developers linked
the corresponding anomalies with their hypotheses and followed the infection chain
backwards. All developers took advantage of the combined perspectives of our Path
Tools. They usually started with a breadth-first search in PathMap and then followed
the infection chain through suspicious behavior. As a consequence, the differences in
debugging time were often marginal.

To assess the effectiveness of PathMap and PathFinder, we noted the point in time
when developers switched from localizing suspicious system parts to debugging erroneous
behavior back in time. For each failure, we marked this point in time with small lines in
the corresponding columns of Figure 7.1. Usually, PathMap was applied for a breadth-first
search in the first two minutes. During this time, developers obtained a first impression
of anomalous system parts and they built first hypotheses about failure causes. In some
cases (failure 1 and 4), these hypotheses were sufficient to localize defects without the
help of PathFinder. In both failures, the defective method was ranked in a very suspicious
anomaly (compare to Table 7.2) so that developers saw from the visualization alone where
the defect might be located. However, these developers could not explain why defects
result in observable failures. If defects could not be found directly, developers started
PathFinder and followed the infection chain back. The required debugging time ranged
from one to twelve minutes and strongly depended on the difficulty of failures and at
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which anomalous method developers opened a failing test case.

In summary, our test-driven fault navigation and its corresponding Path Tools are efficient
for debugging because they allow developers to reduce the search space step by step until
the root cause is found. With the help of our user study, we conclude that we are able to
decrease debugging cost with respect to required time and developer’s effort.

7.2.4. Feedback of Participants

After the user study, we interviewed the participants and asked them for critical as well
as positive feedback on our approach and tools. All developers liked our Path Tools
and conceived them as very valuable for debugging. A participant summarized it as
follows: “In particular for the debugging of non-trivial faults, I have the feeling that the
failure localization requires less time. The classification of anomalies allowed me to create
better hypotheses about the failure cause and to abbreviate the execution history.” Another
student stated: “The tools are fast and very well integrated with each other. The coloring
of map and trace has helped a lot in focusing on suspicious entities.” A third developer
mentioned: “Compared to a standard debugger, I had no problem to take a look into a
complete program execution and it was easy to understand how a failure comes to be.”
Last but not least, one of them concluded “I can very well imagine that the Path Tools
improve debugging of our real failures, too.”

In addition to the positive feedback, they suggested usability improvements for our tools.
They proposed promising new user interface elements and advanced query mechanisms
for searching the call tree and its states. We will implement most of the recommendations
in the future. Another point dealt with test-driven fault navigation as a new debugging
method and its required change of thinking. They wished more practice with our Path
Tools in order to debug even better. For this reason, we will make our approach available
within our next software engineering course. Moreover, we will extend our upcoming
debugging lecture with a test-driven fault navigation tutorial.

Finally, all developers confirmed that our approach had been promising for debugging
with less effort. With our test-driven fault navigation, they received helpful advice for
strengthening their hypotheses about failure causes and it appeared easier for them to
follow infection chains backwards.

7.3. Effectiveness Study: Accuracy of Recommended Developers

To evaluate our team navigation, we assess the quality of our developer ranking metric
by inserting numerous failures into a project, examining the accuracy of recommended
experts, and comparing the results with a coverage metric that sums up authors of all
methods executed by failing tests. If defects are unknown, our anomaly-based heuristic

96



Effectiveness Study: Accuracy of Recommended Developers

463	  methods	  
18%	  

291	  methods	  
11%	  

236	  methods	  
9%	  

177	  methods	  
7%	  174	  methods	  

7%	  
161	  methods	  

6%	  

151	  methods	  
6%	  

129	  methods	  
5%	  

124	  methods	  
5%	  

109	  methods	  
4%	  

75	  
3%	  

67	  
3%	  

52	  
2%	  

50	  
2%	  

45	  
2%	  

43	  
2%	  

42	  
2%	   37	  

1%	  
33	  
1%	  

24	  
1%	  

21	  
1%	  

7	  other	  
developers	  
35	  methods	  

1%	  

Distribu(on	  of	  	  
methods	  per	  author	  

Figure 7.2.: Results for developer recommendation based on method distribution.

notably outperforms other approaches and proposes suitable developers with a probability
of 80 % in the first five ranks.

To measure the accuracy of our developer ranking metric, we introduce a considerable
number of defects into 4Conferences (see Section 7.1). We randomly choose 100 covered
methods that are neither part of test code nor trivial (e. g., getters) and create a defect
with a mutation engine3 for each method. For example, we hide the method body and
return the receiver object instead of executing the original functionality. We ensure the
occurrence of each failure by observing corrupted test cases. For each of the 100 defects,
we automatically run PathMap, compute a sorted list of recommended developers, and
compare it with the most active author of the faulty method. In this evaluation, we
consider such an author as the most qualified expert for understanding the specific defect.

Figure 7.2 shows the distribution of methods per author, where a method is always
associated to its most active author. This distribution reveals that 4Conferences has been
uniformly implemented by our 28 students. Only two developers have developed more
than 10 % of the system, respectively 18 % and 11 %, and eleven developers have realized
less than 2 % of all methods. If we randomly insert defects into 4Conferences, we have a
chance of up to 18 % to pick the most qualified developer from the static distribution
of expert knowledge. Furthermore, there is a maximum probability of 38 % to have the
expert within the first three choices.

Figure 7.3 illustrates developer recommendations of a simple coverage metric that takes

3http://www.hpi.uni-potsdam.de/hirschfeld/squeaksource/MutationEngine.html
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Figure 7.3.: Results for developer recommendation based on covered methods of failing
test cases.

into account only covered methods of failing tests. This metric restricts the search
space to erroneous related methods and sums up their authors. The chart shows the
position of the most qualified developer in the list of recommended experts. In less than
20 % of all defects, the expert is found within the first three ranks. Compared to the
static distribution of methods per developer, this value is below the 38 % of choosing an
arbitrary expert. Only if we consider at least six recommendations and ignore the five
false suggested experts, this metric seems to be better.

Figure 7.4 presents the position of the most qualified expert in the list of recommendations
for our team navigation with its anomaly-based developer ranking metric. For almost a
third of all defects, the responsible developer of the faulty method is ranked in the first
place. With a probability of 60 %, we suggest the expert within the first three ranks
and with a probability of 80 % in the first five ranks. As we restrict the search space to
anomalies and their involved developers, our metric is able to outperform the two other
approaches. For example, we achieve a probability of 60 % followed by 38 % of developer
distribution and 19 % of the coverage metric for recommending experts in the first three
ranks. Even if developers responsible for the failure are not listed at the top, we expect
that their higher ranked colleagues are also familiar with suspiciously related system
parts. Considering that failure causes are still unknown, our developer ranking metric
achieves very satisfactory results with respect to the accuracy of recommended experts.

98



Effectiveness Study: Correctness of State Anomalies

 1.	  
34%	  

 2.	  
10%	  

 3.	  
16%	  

 4.	  
10%	  

 5.	  
10%	  

 6.	  
5%	  

 7.	  
4%	  

 8.	  
3%	  

 9.	  
1%	  

	  
10.	  
1%	  

 >	  10.	  
6%	  

Rank	  of	  the	  most	  qualified	  developer	  
recommended	  by	  anomalies	  

Figure 7.4.: Results for developer recommendation based on anomalies.

7.4. Effectiveness Study: Correctness of State Anomalies

As our inductive analysis harvests and generalizes common object properties from passing
test cases, it is important to examine the quantity and correctness of these results for our
state navigation. On the one hand, our harvesters need to determine as many generalized
object properties from concrete objects as possible. On the other hand, falsely suggested
object properties should be reduced to a minimum so that we only reveal true-positive
state anomalies. For that reason, we compare our harvested object states with real used
objects and discover that our inductive analysis results in promising recall and precision
scores of almost 95%. Thus, we reveal numerous helpful object properties whose mostly
correct assertions support the emphasis of infection chains.

7.4.1. Experimental Setup

We measure the quality of harvested information by comparing two independent test
suites of the AweSOM project (see Section 7.1). AweSOM possesses both unit tests,
which verify the virtual machine functionality from the implementation perspective, and
acceptance tests, which represent “real-world” scenarios. The acceptance test suite is
written in SOM Smalltalk4 and has been evolved over several SOM virtual machine
implementations [102]. To ensure a high test quality, it checks the entire specification by

4SOM Smalltalk is a specific dialect that is used for all virtual machines of the SOM product family [102].
It is not directly executable by Squeak/Smalltalk.
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Figure 7.5.: Comparison sets for harvested object properties.

providing typical usage examples for specific features and actual runs of the complete
SOM virtual machine. For our type and value range harvester, we execute both test
suites at the same time and collect unit test object states (τunit) as the measured set and
acceptance test object states (τaccept) as the reference set. During harvesting, we consider
only the system under observation and ignore test code for our inductive analysis. At
each executed code element (meaning member variables, method arguments, and method
returns) we collect the occurring objects and derive their common properties such as type
information, size of collections, and spelling of strings. Comparing each object property
in the measured and reference set leads to seven disjoint relationships that allow for a
qualitative assessment of the specific harvester results. Figure 7.5 illustrates these seven
relationships.

1. The code element was not covered by any test. No object information is available.

2. Only the unit test object (τunit) is available. No acceptance test has covered this
element.

3. Only the acceptance test object (τaccept) is available. No unit test has covered this
element.

4. Both object properties are available and identical (perfect match).

5. Both object properties are available but τunit is more specific than τaccept (imperfect
match). This property has a broader scope in reality than covered by our unit
tests. In other words, unit tests do not check the entire specification. In our state
navigation, it might lead to contract violations such as types that are more general
and collections that include more elements than expected.
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6. Both object properties are available but τaccept is more specific than τunit (acceptable
match). In this case, the results are still acceptable because unit tests just verify and
generalize more than required. For our state navigation, it indicates that more spe-
cific objects could occur at observed code entities; for example, SequencableCollection
is harvested, and OrderedCollection or SortedCollection are used in reality.

7. Both object properties are not compatible to each other. For example, two different
types that do not inherit from each other.

For good harvesting results, as much state information as possible must be collected
(coverage) including most of the reference set (recall), and harvested object properties
should be identical or at least related to each other (precision). We define the three
metrics (coverage, recall, and precision referring to information retrieval [205]) based on
the object property relationships of code elements as follows (numbers denote the sets Si
from above and illustrated in Figure 7.5):

coverage = |τunit available|
|code elements| =

∣∣∣⋃i=2,4,5,6,7 Si
∣∣∣∣∣∣⋃7

i=1 Si
∣∣∣

recall = |τunit and τaccept available|
|τaccept available|

=

∣∣∣⋃7
i=4 Si

∣∣∣∣∣∣⋃7
i=3 Si

∣∣∣

precision = |τunit = τaccept and τunit :> τaccept|
|τunit and τaccept available|

=

∣∣∣⋃i=4,6 Si
∣∣∣∣∣∣⋃7

i=4 Si
∣∣∣

Coverage is the extent to which the system includes harvested object properties. To
maximize coverage, sets S1 and S3 must be minimized as they do not include state
information from unit tests. Recall is the proportion of harvested (measured set) and
used-in-reality object properties (reference set). To ensure a high value, set S3 should be
as small as possible. Last but not least, precision is the proportion of retrieved object
properties that are perfect or acceptable matches. This metric evaluates the quality of
state matches. For that reason, sets S5 and S7 should be small in comparison to sets S4
and S6. In particular, set S7 should be nearly empty as properties contained therein are
incomparable to each other.
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Harvester Type Range Both
Element Member Argument Return Member Argument Return All

S1 2 109 45 2 109 45 312
S2 1 21 39 11 62 96 230
S3 0 30 16 0 30 16 92
S4 92 400 230 228 674 672 2,296
S5 0 6 7 23 51 72 159
S6 4 21 20 22 43 46 156
S7 0 0 0 0 0 0 0

Coverage 97.9% 76.3% 82.9% 99.3% 85.7% 93.6% 87.6%
Recall 100% 93.4% 94.1% 100% 96.2% 98.0% 96.6%

Precision 100% 98.6% 97.3% 91.6% 93.3% 90.9% 93.9%

Table 7.3.: Type and value range harvesting correctness. S1–S7 represent object state
subsets (compare to Figure 7.5).

7.4.2. Harvesting Results

The results of our experiments are summarized in Table 7.3. It presents the absolute
sizes of all harvested subsets and the computed values for coverage, recall, and precision5.
The sets S1, S2, and S3 show that some portions of the system are not or only partially
covered. This was to be expected given a method coverage of about 82%. Moreover, it
can be seen that the parts covered by unit or acceptance tests only (sets S2 and S3) are
small compared to the total. In particular, set S3 has less than 100 entries meaning that
only a few real used objects are not checked by unit tests. Set S4, representing perfect
matches, is the most important one, and also the largest. Sets S5 and S6, which have
about the same low size, represent imperfect and acceptable matches. While acceptance
tests (set S5) require in some cases more generic types and larger value ranges, unit tests
(set S6) tend to be more fine-grained in that they check more alternatives than might be
needed in “real-world” acceptance test scenarios. Looking at the detailed results, it can be
noted that the same combinations repeatedly occur: for example, OrderedCollection and
SequencableCollection (a test checks more than just the actually used collection), False
and Boolean (a test does not cover one conditional branch), nil values (unit tests check
robustness of methods), or collection size (acceptance tests base on larger “real-world”
data sets). These cases are good suggestions for providing more and better tests. The set
S7 is empty. There are no conflicts between unit and acceptance tests to the effect that
the system is not executed in a completely different way.

The coverage results in Table 7.3 allow our harvesters to extensively observe object states.
AweSOM possesses with about 87.6% a good unit test coverage that is a core requirement
for our approach. The very high recall with 96.6% shows that the unit tests largely

5Compared to type harvester’s original evaluation [103], we present improved results because of additional
unit tests that have been proposed by our test quality feedback approach later on [165].
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cover the acceptance tests and thus the unit test quality is rather high. The remaining
uncovered parts of AweSOM largely consist of code not used in reality; for example, legacy
implementation artifacts or helper methods for debugging purposes. However, compared
to the 82% method coverage (see Table 7.1), our measured results are almost larger due
to differences in computing coverage. For example, value range harvesting collects at one
covered method more than one object state so that it may lead to a positive distortion in
coverage6. Nevertheless, our coverage results support our harvesters in deriving valuable
information for almost all important objects.

Recall and precision are crucial for evaluating harvesting quality, as they represent object
properties used in reality, and the correctness of identified matches. The results obtained
for these metrics are very good, at over 90%. For recall, this means that most of the object
states used in reality are actually found by unit tests. For precision, we can conclude
that when an object property is harvested in a unit test, it will very likely occur in real
code. This metric especially should be close to 100%, as such a high value indicates
to developers that harvested information is in accordance with reality. In other words,
uncovered anomalies, contradicting harvested object properties, have a high probability
of identifying corrupted state in the infection chain. We propose a false positive anomaly
only with a probability of 6.1%. As this value strongly depends on the quality of unit
tests, we argue that it can be improved by providing more tests. For example, developers
can compare harvested object properties with error-free usage scenarios and look for
violated contracts. Although both metrics do not completely reach 100%, they are very
satisfactory with respect to our state navigation.

All three metrics—coverage, recall, and precision—should yield high values to ensure the
quantity and correctness of our results. In particular, recall and precision should be close
to 100% as they best reflect the accordance between harvested information and reality.
On average, for all harvested object properties, we obtain a coverage of 87.6% (all possible
object states), a recall of 96.6% (overlapping of harvested objects with reality), and a
precision of 93.9% (perfectly and acceptably harvested properties), which underlines
applicability and feasibility of our harvesting approach.

7.4.3. Emphasis of Infection Chains

With the help of our harvested object properties and their derived contracts, we finally
evaluate our state navigation feature and its capability to emphasize infection chains. We
add 50 failures to AweSOM and examine violated contracts between the observable failure
and its root cause. We insert fifty times a defect with our mutation engine, run all tests,
and analyze the violated contracts of all failing test cases. For each failing test case, we
start our lightweight back-in-time debugger with enabled contracts and inspect upcoming
state anomalies along the infection chain. During our experiment, the 50 non-trivial

6 Without harvesting information, we do not know the exact number of potential object properties so
that we have to mark such missing values in the corresponding sets (1) and (3) as only one.
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Invariant Postcondition Precondition
Type violation 83032 31646 7353
Size violation 6066 7 0

Range violation 720 297 203
Is or includes violation 1 44 4

Nil violation 0 272 4

Table 7.4.: Violation and contract types of all state anomalies in AweSOM.

failures lead to numerous state anomalies in long-running infection chains. Overall, we
identify 763 failing tests cases with more than 129,500 contract violations. These failing
tests include average traces of about 7,000 method calls and infection chains of about
1,750 method calls. On average, each mutated failure triggers 15.26 failing test cases and
each test case includes around 169.92 state anomalies that emphasize 9.73% of its entire
infection chain. In the following, we look at the different types of state anomalies and
their positions in infection chains.

Table 7.4 summarizes all state anomalies in AweSOM with respect to their contract and
violation type. The most violated contract type is invariant with 69%, followed by 25%
postcondition and 6% precondition. Regarding the specific violations, there are 94%
of wrong type information, 5% of oversized collections, 1% of exceeded value ranges,
and a few violated object properties. In other words, most state anomalies are violated
type assertions in invariants checking instance variables. There are two reasons for the
numerous unexpected types in AweSOM. First, Smalltalk is dynamically typed. There
are no explicit type checks that prevent the use of wrong typed objects. Such failure
causes are able to survive several method calls before an observable failure occurs. Second,
AweSOM creates a lot of objects with a long lifetime that are required for building the
complex virtual machine. If a defect causes a wrong typed object, it is often propagated
across the entire building process. Since the object value is not accessed frequently, it
does not trigger an observable failure. However, every time a specific building method
is executed, it violates the corresponding invariant. On the one hand, this failure cause
propagation and the many violated contracts emphasize large parts of infection chains.
On the other hand, such type violations are often not expressive enough to completely
understand the problem. But there are also other kinds of violations such as size, range,
and object property. Even though these violations are not so numerous as types; they
are more concrete and appear close by defects or observable failures. For these reasons,
they help especially in understanding how the failure comes to be. In summary, it can be
stated that the many type violations in invariants are adequate to follow infection chains
backwards and the more specific value range violations are well-suited to explain failure
causes.

Figure 7.6 shows the distribution and position of state anomalies of all 763 infection
chains. Independent of the infection chain length, each percentage in the figure represents
the relative position of a contract violation regarding its distance to the defect. For
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Figure 7.6.: Distribution and position of state anomalies in AweSOM’s infection chains.

example, “2%” relates to anomalies that we found close to root causes in the last 2% of
all method calls in their corresponding infection chains.

In total, we identify 129,500 contract violations that are evenly distributed over all
infection chains. Each percentage of the relative infection chain in Figure 7.6 represents
on average 17.5 method calls with 1,295 violations. This basically means that within
763 failing test cases we have 1.7 violations per 17.5 method calls. In other words, each
10th method call includes a revealed state anomaly and so emphasizes the infection chain.
Thus, with the help of our state navigation developers can disregard 90% of method calls
and follow the evenly highlighted infection chain backwards.

Our dynamic contracts recognize fewer violations nearby defects and failures. If a failure
occurs, the program execution stops and there is no possibility to check for violated
contracts anymore. Regarding defects, they are usually inconspicuous and hard to detect
with our contracts. Only 8% of all infection chains have corresponding state anomalies
directly at the defective method call. Although such anomalies are valuable, they are
rare and their identification as root causes is not trivial because developers need to
comprehend the relationships between all anomalies. For that reason, we argue that
developers need to check entire infection chains to completely comprehend failure causes
and their effects. In combination with our other test-driven fault navigation technique
developers can browse complete execution histories and understand both failing program
behavior and reasons for root causes.

Although we consider only 50 failures of one specific project preventing a general conclusion,
we argue that our state navigation supports localization of failure causes because it evenly
emphasizes state anomalies along infection chains and so allows developers to uniquely
follow the flow of corrupted objects.
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Seaside iCal- 4Confer- Awe- Com- zEmu
endar ences SOM piler

Creation of tree map (s) 23.56 1.17 1.79 1.03 1.13 1.31
Exec. time all tests (s) 6.20 1.05 198.57 5.06 0.91 6.26

∆ Fault localization (s) 5.46 1.33 8.64 9.00 1.85 7.78
Refined fault localization (s) 2.38 2.51 16.70 3.73 0.90 9.89

Table 7.5.: Average performance characteristics of PathMap in seconds.

7.5. Efficiency Study: Performance of the Path Tools Framework

We evaluate the performance overhead of our Path Tools framework by measuring the
computation costs for collecting and presenting the required information for our test-
driven fault navigation. From six typical and diverse Smalltalk projects (see Section 7.1),
we analyze the average performance characteristics for our developer ranking metric and
our three incremental dynamic analysis techniques. As a result, we keep response times
and memory consumption low so that we are able to create an experience of immediacy
when debugging with our tools.

We performed all experiments on a MacBook with a 2.4GHz Intel Core 2 Duo and 8GB
RAM running Mac OS X 10.6.8, using Squeak version 4.2 on a 4.2.1b1 virtual machine.

7.5.1. Structure: Refined Coverage Analysis with PathMap

We measure the run-time overhead for the structure navigation with our PathMap and
its refined coverage analysis by analyzing all tests of our six studied projects. We do
not insert failures because the analysis overhead is independent of their occurrence.
PathMap executes the entire test suite with and without fault localization. We refine fault
localization at statements only at non-trivial methods including a McCabe complexity [147]
greater than one. So, we exclude simple methods with sequential behavior where all
statements have the same suspiciousness score. The average results for the performance
of PathMap are described in Table 7.5.

The first row presents the one-time cost (in seconds) of analyzing the source code of
the software system and creating the tree map view. Although this time is just about
1 second for mid-sized projects, in the case of large projects such as Seaside it can take a
significant amount of time (23 seconds). However, this creation is done only once, when
the PathMap tool opens. We already know that our current implementation tends to be
slow because it creates for each source code entity a separate user interface morph object.
In the near future, we will improve this performance by drawing the tree map within a
single object.
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Seaside iCal- 4Confer- Awe- Com- zEmu
endar ences SOM piler

Computation Cost (s) 11.19 5.00 7.92 3.44 4.49 3.76

Table 7.6.: Worst case computation cost for our developer ranking metric in seconds.

The second row shows the pure run-time for executing all tests. While five projects run
their test suites in less than ten seconds, the 4Conferences project requires more than
three minutes due to several slow running acceptance tests. These tests check complete
user workflows including multiple interactions with the Web application with the help of
the Selenium test framework7 .

The third row presents the overhead resulting from spectrum-based fault localization.
PathMap’s fault localization slows down execution by a factor of 1.9 for Seaside to 2.9 for
AweSOM. In the case of 4Conferences, long waiting times for responding to interactions
of acceptance tests explain the minimal slow down factor of 1.04. In all other cases, the
variation originates from additional instrumentation and visualization costs. Nevertheless,
this overhead is low enough for applying spectrum-based fault localization frequently.

Finally, the fourth row reveals the time for refining fault localization at statements. The
time mostly depends on the number of covering tests per method and their corresponding
run-time. In most cases, developers receive refined results for complex methods in
less than three seconds (without 4Conferences’s long running acceptance tests the 80th
percentile is below 2.6 seconds). We argue this time is still acceptable compared to a
complete statement coverage analysis that possesses a slow down factor of about 100 in
Squeak/Smalltalk [103].

7.5.2. Team: Developer Ranking from Source Code Repositories

To measure the computation cost of our developer ranking metric, we assume the worst
case by declaring each method as anomalous and computing the most active developer.
We expect that each method of a project has a suspiciousness and confidence value of
one. Thus, our metric has to gather all method commits in order to determine expert
knowledge. To compute an average run-time, we repeat the ranking ten times for each
project. Table 7.6 presents the worst case computation cost for our developer ranking
metric.

For computing our metric, we require between 3.5 seconds for AweSOM as the smallest
and about 11.2 seconds for Seaside as the largest system. The computation cost strongly
depends on the number of analyzed methods. For each method, our metric requests
Smalltalk’s version control system in order to obtain all changes and to compute the most

7http://www.seleniumhq.org/
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Seaside iCal- 4Confer- Awe- Com- zEmu
endar ences SOM piler

Calls/Tests 327 434 2,326 6,664 4,502 1,178
Exec. time per test (ms) 0.76 3.34 1910.82 17.33 7.69 15.12

∆ Shallow (ms) 336.17 258.16 281.02 235.79 247.23 172.28
Shallow memory (kbyte) 93 102 558 1,464 991 259

∆ Refinement (ms) 16.92 2.67 19.65 5.93 2.15 1.81

Table 7.7.: Average performance characteristics in milliseconds and kilobytes for
PathFinder, our lightweight back-in-time debugger based on step-wise run-time analysis.

active author. In particular, accessing method changes slows down the execution as it
includes excessive I/O handling. Considering our worst case scenario that each method
is an anomaly, the mentioned computation cost reflects the maximum per project. In a
realistic setting, anomalies cover only a subset of all methods and so we argue that the
computation cost is still acceptable. For example, in our Seaside typing error example we
return the result of 54 anomalous methods in about 3 seconds.

7.5.3. Behavior: Step-wise Run-time Analysis with PathFinder

We measure the run-time characteristics of our lightweight back-in-time debugger by
running each test of a project with PathFinder and analyzing the overhead produced
by our step-wise run-time analysis. For each single test, we record the total time and
memory needed for collecting the required data and rendering test behavior. While our
shallow analysis determines the entire method call tree, our refinement analysis creates a
deep copy of the returned object of a random call node. Table 7.7 describes the average
performance characteristics of PathFinder.

The first row lists the average number of method calls per test for application code
that is instrumented for shallow analysis. This value relates the following performance
measurements with the size of call trees. In our larger step-wise run-time analysis
evaluation, we show and discuss that the time and memory overhead grows linearly with
respect to the number of methods that are invoked by a test [168].

The second row lists the average and pure run-time per test case. As 4Conferences’
acceptance tests still include high run-time cost, immediate feedback from Path Tools is
hindered. Apart from that, in all other projects executing a single test case requires less
than 18 milliseconds on average.

The third and fourth row demonstrate the overhead associated with building the lightweight
method call tree. On average, the run-time overhead is between 170 and 340 milliseconds
meaning that the shallow analysis is quite fast. The 99th percentile for this value is below
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750 milliseconds. In the case of Seaside, which has the lowest number of called methods
but the highest performance decrease, we discover that the one-time instrumentation of
all 5,500 methods is rather expensive and requires around 250 milliseconds alone. The
collected data during shallow analysis required less than 320 kilobytes on average and is
directly related to the size of call trees.

The last row deals with the refinement analysis that allows developers to reload state
information on demand. In doing so, the required analysis overhead only depends on the
effort for creating a deep copy. Thus, our refinement analysis also imposes minimal cost
because the 95th percentile is below 25 milliseconds for all test cases.

Our empirical results illustrate the feasibility of our interactive approach: The imposed
overhead for dynamic analysis is distributed across multiple test runs and allows for
short response times. For all projects, the time it takes to collect data for generating a
call tree is below 400 milliseconds and for a refinement step below 140 milliseconds on
average (this includes the time it takes to run the test). While our evaluation focusses
on measuring the time required for our incremental dynamic analysis, we also conduct
independent experiments to consider the response time of PathFinder’s graphical user
interface. The time required for rendering call trees averaged around 200 milliseconds
for the AweSOM project, which involves the highest number of calls per test. We argue
that this supports our claim of achieving immediacy characteristics by providing a fast
visualization of run-time information. Schneiderman [190] argues that two seconds is the
upper limit for responding to a user request. PathFinder and our step-wise run-time
analysis support these fast response times when debugging back in time because run-time
data can be provided in considerably less than two seconds in the majority of cases [168].

7.5.4. State: Inductive Analysis with Harvesters

We evaluate the efficiency of our inductive analysis and state navigation by measuring
the performance of all six projects during harvesting and verifying contracts. We start
with quantifying the required time for harvesting type and value range properties. Then,
we look at the creation time of contracts. Finally, we consider the execution overhead
for checking assertions while running test suites with activated contracts. Table 7.8
summarizes these performance characteristics.

The first row presents the pure execution time of complete test suites again. This allows
for a better comparison of the following measurements.

The second and third row show the overhead associated with harvesting. Both harvesters
have different execution overheads per project, which range from 5 seconds up to 90
minutes. This is largely because harvesting strongly depends on the existing object
space. In particular, nested objects and large collections require a vast amount of time
for analyzing their properties. For example, in collections each single element has to
be explored for finally generalizing children’s data. While iCalendar has mostly shallow
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Seaside iCal- 4Confer- Awe- Com- zEmu
endar ences SOM piler

Exec. time all tests (s) 6.2 1.1 198.6 5.1 0.9 6.3
∆ Type harvester (s) 494.1 4.8 199.4 4,668.9 359.1 33.3

∆ Value range harvester (s) 39.6 82.9 252.1 844.4 44.0 112.7
Contract creation (s) 43.5 9.9 11.6 13.2 15.3 15.9

∆ Contract validation (s) 66.8 17.7 28.6 83.4 33.2 41.2

Table 7.8.: Average computation costs in seconds for our inductive analysis, contract
creation, and contract validation.

objects without deep structures, AweSOM has many dictionaries that comprise numerous
parameters of the SOM source code and the virtual machine. To solve this problem,
we provide optional run-time optimizations in return for less precise information. For
example, we are able to limit the inductive analysis to selected elements of collections.
With the assumption that collections include only one object type, this loss of precision
is acceptable at least for our type harvester. In the case of AweSOM’s types, we can
decrease the required harvesting time from 4,668 seconds down to 98.9 seconds.

The fourth row deals with the one-time cost for creating source code contracts from
already harvested information. This time ranges from 10 to 45 seconds per project and
mostly relates to the number of methods that have to be recompiled with assertions.

The last row considers the overhead for checking numerous assertions while running all
tests with activated contracts. On average, derived assertions slow down the execution
by a factor of 15. However, there are also a maximum factor of 37.9 for Compiler and a
minimum factor of 1.1 for 4Conferences. In the first case, the Compiler project includes
both a large number of assertions and method calls. In the latter case, 4Conferences
owns several acceptance tests with several waiting times that restrict the influence of
assertions.

Due to the partial slowness of our state navigation, we provide several optimizations
for speedup harvesting and reducing cost of checking contracts. We allow developers to
select the levels of detail to improve harvesting. They are able to decide about object
properties such as specific types and value ranges, analyzed code elements, and the
precision of generalized results. With the help of these options, developers can customize
our harvesters according to their needs. Nevertheless, we consider the investigation of
quicker implementations an important area of future work. For example, it is not necessary
to always run a full test suite to obtain changed run-time information. Integrating our
inductive analysis with continuous selective testing tools [186, 196], which execute tests
only if they cover source code changes, is a worthwhile direction. Regarding the execution
cost for checking assertions, we suggest to apply our state navigation only for a single test
case and not entire test suites. This would slow down the shallow analysis of our step-wise
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run-time analysis by a factor of 15. For that reason, we split the state navigation into
an additional test run that checks contracts in background. Thus, developers can still
immediately inspect run-time behavior of a failing test case and as soon as we finish the
validation of contracts we highlight the failure’s infection chain.

7.6. Threats to Validity

Our evaluation setting has several characteristics that might limit validity.

In general, the Smalltalk context of our evaluation might impede validity by limited
scalability and general applicability. However, the Seaside Web framework is a real-world
system and it exhibits source code characteristics comparable to particular complex Java
systems such as JHotDraw [168]. Even if the remaining projects are only mid-sized
systems, they illustrate the applicability of our Path Tools once unit tests are available.
While these insights do not guarantee scalability to arbitrary languages and systems, they
provide a worthwhile direction for future studies assessing general applicability.

We rely on tests to obey certain rules of good style; they should be reproducible and
deterministic. Tests that do not follow these guidelines might hamper our conclusions.
The tests that we used in our evaluation were all acceptable in this respect.

Our user study only considers one particular project, its six failures, and undergraduate
students. We consider the iCalendar project as a real-world application because it is
mature and an important part of several other systems. The six failures are realistic
and related to similar known defects that we have found in other projects. We treat our
students as professional developers because of their longstanding programming experience.
Although we require a larger study for a general conclusion, our user study already reveals
the benefits of our approach and its tool suite.

The chronological order of debugging the first three failures with standard tools could
positively influence participants’ program comprehension. There is a chance to localize
the remaining three failures with our Path Tools more simply. To reduce this factor, we
have a preparation phase of two hours to become acquainted with iCalendar. During this
time, developers read not only source code but also applied PathFinder to understand
behavioral examples of test cases [168]. Furthermore, we make sure that all defects and
their infection chains are unique. They are located in completely different system parts
and their failure-reproducing test cases do not overlap each other.

Regarding our effectiveness study, we limit the evaluation of our developer ranking metric
and the emphasis of infection chains to mutated defects only. We have not yet checked the
effectiveness in a realistic setting due to difficulties in finding suitable Smalltalk projects.
Many projects suffer from an unbalanced distribution of method authors, missing tests
that reproduce failures, or failure reports that are not related to source code changes and
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vice versa. For these reasons, we plan a more controlled experiment with the 4Conference
system as part of our next software engineering course. If students find a failure, our
student assistants, which are former developers of 4Conferences, are supposed to write a
reproducing test so that we can verify our metrics. Even though we evaluate our heuristics
only with quite a number of synthetic failures, we argue that their results are already
satisfactory with respect to recommended developers and highlighted infection chains.

Our failure inducing mutations cannot cover all kinds of defects. As we base our mutation
engine on previous work [46, 127], our studies still involve a large number of possible
defect types. These synthetic defects are realistic problems such as conditional faults,
wrong computations, or missing side effects. Due to the high number of considered defects
in our studies, we can ensure a broad distribution of most different failure types all over
mutated applications.

The recall and precision metrics of the correctness of harvesting results could easily be
manipulated to reach 100%. For example, in type harvesting all code elements could be
assigned the type Object in order to reach a complete recall and precision. However, such
“optimizations” would result in acceptable matches for almost all generic elements. Our
set S5 includes only 6% of all matches meaning that it does not influence the metrics
negatively. For the sake of completeness, we would like to point out that Object was
harvested as least specific type in only 2.3% of all cases. Upon closer observation, these
cases are unproblematic, for example, when elements in collections may have arbitrary
types.

Regarding the quality of violated contracts in the emphasis of infection chains, we expect
no false positive state anomalies. We consider each anomaly as valid with respect to
the root cause because of our experimental setup. Each failing test case previously
contributed as passing test case to harvested object properties. Without a mutated defect
and activated dynamic contracts, all test cases pass and no state anomaly occurs. Thus,
each contract violation in consequence of a mutation is caused by this defect.

Finally, in our efficiency studies we disable garbage collection during measurement to be
able to gather memory consumption data, and to elide performance influences of garbage
collector runs. In a realistic setting with enabled garbage collection, minimal slowdowns
would be possible.

7.7. Summary

We evaluated test-driven fault navigation with respect to its practicality for debugging,
the effectiveness of our automatic test-driven heuristics, and the efficiency of our Path
Tools framework. First, we conducted a user study to evaluate our entire approach with
respect to the reduction of debugging cost. As a result, we found out that developers
who applied our Path Tools required less time and effort for debugging in the majority of
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cases. Second, we analyzed the accuracy of the developer ranking metric for our team
navigation by assessing recommended contact persons for numerous failures. With a
probability of 60%, we suggested the expert developer within the first three ranks and
with a probability of 80% in the first five ranks. Third, we considered the correctness of
harvested state anomalies with the comparison between test-based and real-used objects.
Apart from the fact that derived object properties matched real used objects with a recall
and precision score of almost 95%, our state navigation especially utilized this information
to evenly emphasize corrupted state along infection chains. Finally, we measured the
performance characteristics of our Path Tools framework. The implementation of our
test-driven fault navigation and incremental dynamic analysis came with a low overhead
factor that enabled an immediate experience when debugging with our tools.
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Related Work

In this chapter, we present testing and debugging approaches that are related to our
test-driven fault navigation. In testing (Section 8.1), we consider new perspectives,
namely tests as examples and their hidden knowledge. In debugging (Section 8.2), we
discuss methods to localize failure causes in general and for each fault navigation step in
particular. In addition to these topics, we further present specific software visualizations
supporting debugging activities (Section 8.3) and related techniques for our incremental
dynamic analysis (Section 8.4).

8.1. Testing

In general, software testing is the process of executing a program with the intent of
finding failures [155]. Testing evaluates the reliability of an implementation and reveals
discrepancies in expected program behavior. With the help of this valuable feedback,
developers are able to identify and correct code-specific problems early on. Nowadays,
testing is an integral part of most development projects and it is strongly recommended
to deliver high quality software [3]1. In agile methodologies, testing is a cornerstone
for successful software development [28]. It allows developers to react on the steady
changes in requirements and technologies by offering a safety net that catches unavoidable
mistakes during development. For example, test-driven development [27] encourages
writing of unit tests before programming and so ensures a high quality of both tests and
code.

Unit testing [98] provides the foundation for our test-driven fault navigation and is one of
the most common testing technologies. After writing a failing test case that reproduces
the observable failure [219], we compare all the other unit tests with it, reveal anomalies,
and follow its infection chain backwards. For that, our approach ideally requires a large
number of unit tests that cover most parts of the system. In recent years, the quality
and quantity of unit test suites has been investigated by a number of studies. In 2005,
several well-tested Smalltalk projects focussed their unit tests on executing just a single
method [83]. These tests check API calls and limit their scope to one specific method
under test. However, the style of unit tests varies depending on the corresponding

1This reference by the “Federal Association for Information Technology, Telecommunications and New
Media (Bitkom)” describes guidelines for the industrial software development in Germany.
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developers because of missing guidelines. In 2007, unit testing was already widespread
but its development lacked effectivity because of still used ad-hoc methods [32]. In
2009, a systematic survey and classification of unit testing techniques further confirmed
its importance and also reported development improvements [208]. Finally in 2012, a
qualitative study investigated testing in plug-in based architectures and concluded that
little testing takes place beyond the unit level [89]. All these studies confirm that unit
testing is a well-known and common technique. For that reason, we argue that many
software projects comprise large unit test bases and so fulfill the requirement of our
approach.

In the following sections, we present related work with respect to our test-driven fault
navigation that leverages test cases as entry points into reproducible behavioral examples
and valuable source of hidden knowledge.

8.1.1. Tests as Examples

As we consider test cases as small examples into behavior, we are different from the
typical testing perspectives that are mostly interested in revealing failures. Apart from
our perspective on test cases, there are also similar point of views by other approaches.

Example-centric programming [66] proposes to understand source code and its abstract
concepts by thinking of concrete examples. It introduces a first prototype for the Eclipse
development environment called example-enlightened editor. When needed, developers
can benefit from this editor by seeing examples directly at the corresponding source code.
The approach concludes with the suggestion of unit tests as source of examples but it
does not further investigate this idea.

The metaphor of examples guides a thesis that deals with unit testing for assuring
quality and documentation of methods [82]. The approach suggests making the implicit
dependencies of unit tests more explicit and so to integrate them into the development
environment. It provides the Eg meta-model in order to sort, classify, and decompose
unit tests meaningfully. With the help of this meta-model, the EgBrowser [84] offers an
interactive editor for developing and composing higher-level tests from examples produced
by other tests. In doing so, the tool maintains the explicit links between tests and units
under test and so allows developers to reuse these links for debugging, documentation,
and coverage analysis. Such explicit links can also help to improve testing frameworks
such as JUnit. The JExample [131] extension allows developers to declare dependencies
between test methods in order to optimize the organization of running tests. For example,
as the framework knows the dependencies between tests it can prevent the execution of
unnecessary failing test cases.

Another approach recommends to embed examples as part of a new software activity [25].
Although it proposes a collection of techniques for writing examples, the reuse of unit
tests is not part of them. One example of such a technique with unit tests could be a
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tool that automatically derives test cases from read-eval-print loops [158]. In functional
programming, developers typically implement functions with such loops and so they can
be seen as ideal examples for documenting library interfaces. Unfortunately, this approach
is not easily applicable to imperative programming languages.

A preliminary study analyzes the benefits and drawbacks of unit tests as examples for
program comprehension [202]. On the one hand, unit tests including bad smells such as
checking multiple concerns are hard to understand [203]. On the other hand, unit tests
with a focus on a single method may help developers in comprehending abstract source
code.

Compared to our test-driven fault navigation and in particular our early debugging into
examples technique [197], we consider test cases completely as behavioral examples. They
offer reproducible entry points, their coverage links tested methods, and their re-execution
allows developers to immediately access concrete run-time information. In particular, our
PathBrowser connects this exemplary knowledge to source code and assists developers in
program comprehension.

8.1.2. Applications of Hidden Test Knowledge

Test cases also yield a valuable source of hidden knowledge for multiple software mainte-
nance activities. Apart from our test-driven fault navigation that applies this finding for
debugging, there are other approaches that further improve software quality, documenta-
tion, and program comprehension.

The measurement of test coverage is an indicator for software quality [110]. The more
source code entities such as methods, branches, and statements are executed by test cases,
the higher is the test quality that ensures the realization of requirements and confidence
in source code. As this metric can automatically be computed, there exists at least one
test case coverage tool for almost each programming language [213]. They mostly differ in
granularity, performance, and unique features such as test selection, automatic test case
generation, and customization of test reports. Furthermore, the visualization of collected
test coverage assists developers in perceiving important relations between tested software
components. For example, Hapao [13] presents test coverage in the form of polymetric
views [132]. It visualizes shapes of methods and classes, combines them with additional
metrics, and indicates where more testing is required. Also, our test quality feedback is a
helpful visualization that extends PathMap to improve effectivity and efficiency of unit
testing [165].

Test cases also keep the system documentation up to date. For example, agile processes
consider tests as living documentation that describes small usage examples of interfaces,
libraries, and frameworks [204]. As long as they do not fail, they offer a valuable source
of information about the inner workings of a system. Their analysis can also help
to create additional documentation. For example, they automatically reveal observer
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abstractions [212] and generate sequence diagrams [52]. Regarding program comprehension
and documentation, test cases can also be used for establishing traceability links between
arbitrary software artifacts and source code entities [206]. The recovered traceability
supports several software development activities such as impact analysis, test case selection,
and software understanding. One approach to establish traceability links is to connect test
cases with specific concerns and to follow their execution paths [111]. For example, we
apply this method in a previous approach to recover source code entities that implement
a specific use-case concern [105]. With the help of annotated acceptance tests, we follow
which objects participate in the execution of use-cases.

The broadest approach that recognizes test cases as more than just error finders is
Bellcore’s χSuds [6]. By combining control graphs, traces, and slices, five tools mine system
tests to aid in understanding, debugging, and testing programs. χVue locates features
and their interactions. χProf identifies performance bottlenecks. χAtac determines how
code can be tested better. χSlice pinpoints errors by comparing multiple slices being
selected by programmers. χRegress chooses proper test cases for regression testing.

8.2. Debugging

As software includes failures, developers have at all times experienced lengthy and
laborious correction tasks [140]. In the majority of all software failures, the human error,
the increasing complexity of software [97], and the lack of debugging knowledge [138] are
largely responsible. Studies confirm these observations by investigating characteristics of
software failures, their reasons, and solutions. In open source projects, bug databases
report that above all semantic defects are common and difficult to correct [136]. That is
because of their application-specific nature, which requires a thorough understanding of
the program. However, the less knowledge developers have, the higher the probability
of introducing difficult defects. This conclusion is also reported in other studies that
consider the rate of defects in internal APIs [162] and the number of post-release failures
due to incorrect fixes [215]. From a more fine-granular view, a human study investigates
the kinds of defects that are hard to locate [79]. As a result, developers meet problems
especially with missing statements and complex data structures including large cognitive
demands. Another major reason for challenging failures is the delocalization of required
information in source code [65]. Developers have to understand infection chains in little-
known system parts because failure causes are distributed throughout the entire program.
Furthermore, object-oriented programming concepts such as late binding make the tracing
of causes and effects even worse.

For all these reasons, general debugging methodologies should assist developers in the
comprehension of failure causes and their effects [65, 138, 140]. Debugging by thinking [150]
explores methods from the perspective of intellectual disciplines. It proposes to debug like
a detective, mathematician, or engineer in order to ask the right questions for proper failure
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cause hypotheses. Independent from tool support, each intellectual perspective describes
a systematic procedure to follow infection chains backwards. The developer’s guide to
debugging [90] shares experience reports for the most frequent real-world problems. In the
case of similar failures, the proposed best practices give advice to solve difficult problems.
The traffic principle [219] summarizes the state of the art in debugging. Starting with
tracking the problem up to correcting the defect, it provides a systematic procedure from
the first failure report to localization of the root cause to its fix in source code.

In the following, we discuss more specific debugging techniques that are related to our
test-driven fault navigation and its individual steps.

8.2.1. Scientific Debugging

Our test-driven fault navigation is based on the concept of the scientific method, which
originates from the natural sciences [211]. In general, this method allows scientists to
develop and examine a theory that explains and predicts observations. In debugging,
the scientific method allows developers to find a diagnosis for an observable failure [219]:
developers observe a failure and create a hypothesis; they make predictions and test their
hypothesis; they refine or reject the hypothesis and repeat these steps until a diagnosis is
found. The most challenging part of this method is to create, evaluate, and refine proper
hypotheses. For that reason, there are several debugging tools that partially support the
scientific method in a variety of ways. They can be classified into deduction, observation,
induction, and experimentation techniques [218]. Deduction analyzes source code from a
static point of view, observation considers one concrete execution path, induction derives
generalized information from concrete values, and experimentation finds failure causes in
a controlled manner. Even our test-driven fault navigation conforms to this classification:
experimentation with the scientific method; induction with anomalies; and observation
with back-in-time debugging.

Different from a manual debugging session with the scientific method, algorithmic de-
bugging is a semi-automatic approach [193] that interactively guides developers along
infection chains. It systematically creates hypotheses asking developers about possible
infections. Depending on their answers, it refines hypotheses and isolates failure causes
step by step. There are implementations for the logic programming languages Prolog [193]
and the imperative language Pascal that realize the concept with the aid of program slic-
ing [78]. Furthermore, declarative debugging [157] generalizes algorithmic debugging for
diagnosing failures in arbitrary programming languages. However, the general approach
does not scale with the increasing complexity of current programs [219]. Developers have
to answer either too many or too generic questions.
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8.2.2. Spectrum-based Fault Localization

As our structure navigation adapts spectrum-based fault localization, we first consider
related approaches. After that, we look at current improvements and empirical studies
that verify and optimize the effectivity of revealed anomalies. Finally, we present fault
localization techniques that not only consider coverage but also state spectra.

Spectrum-based fault localization is an active field of research where passing and failing
program runs are compared with each other to isolate suspicious program entities. To
support the identification of anomalies and finally failure causes, program spectra sum-
marize the required run-time data such as executed program statements [101]. With
the help of this information, several tools restrict the search space for localizing failure
causes. χSlice [9] subtracts execution slices of passed test cases from an execution slice
of one failing test case. The difference of all slices, also called dice, may contain the
root cause. Tarantula [122] analyzes covered statements with respect to all passed and
failed test case executions and visualizes the overlapping behavior according to their
results. At the system overview level, each statement is represented as a line of pixels
and colored with a suspiciousness score that refers to the probability of containing the
defect. Later on, Gammatella [160] presents a more scalable and generalized visualization
for monitoring deployed software systems. In form of a tree map, the tool consolidates
all system classes and how they continuously interact with each other. It does not
deal with test cases but rather with the exceptional behavior of running systems. The
Whither tool [180] collects spectra of several program executions that are then classified
by users as either correct or not. According to the nearest neighbor distance criterion,
it determines the most similar correct and faulty runs, and creates a list of suspicious
differences. AskIgor [49, 217] also identifies state differences of passed and failed test runs
and automatically isolates a subset of program states that lead to the failure. To follow
the infection chain back to the failure-inducing defect, it combines delta debugging [220]
with cause transitions. While the first isolates relevant states by systematically altering
execution and comparing differences of passing and failing runs, the latter focuses on
when and where causes originate. A first empirical study [121] comparing these different
spectrum-based approaches concludes that the Tarantula technique is more efficient than
the other ones.

Several other approaches have improved the concept of spectrum-based fault localization.
Lightweight defect localization [55] looks at method call sequences per object/class instead
of single statements. Failure-inducing chops [95] first minimize failure-inducing input
with delta debugging and then intersect the corresponding forward dynamic slice with the
backward dynamic slice of the erroneous output. Debugging in Parallel [120] clusters failing
test behavior targeting the same fault and allows for debugging these specialized test suites
simultaneously by multiple developers. The time-spectrum-based fault localization [214]
searches for exceptional run-time deviations regarding the behavioral model of passed test
cases. Zoltar [113] introduces a low-cost Bayesian metric to localize multiple faults and
fault screeners that early interrupt program execution with violated invariants. The Apollo
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tool [16] automatically generates test cases for Web applications and combines different
Tarantula algorithms to identify execution and HTML failures very successful. Finally,
Falcon [163] localizes faults among threads by monitoring memory-access sequences,
detecting data-access patterns, and reporting their relation to passing and failing program
runs.

There are also a few empirical studies verifying and optimizing the effectivity of spectrum-
based fault localization. The first experiment [216] investigates the influence of test
suites, their compositions, and possible reductions. It concludes that efficiency strongly
depends on how to reduce and choose test suites. Another study [117] with a similar
focus on test case prioritization concludes that random ordering of test cases can also
be efficient in localizing faults with less effort. The next experiment [189] shows that
different kinds of faults require different types of coverage. It presents a new combination
of statement, branch, and data dependency coverage that leverages the unique properties
of each coverage type. A more comprehensive study [2] about the impact of metrics on the
diagnostic accuracy states that similarity metrics are largely independent of test design
and that the Ochiai coefficient consistently outperforms all other approaches. Moreover,
they show that the near-optimal accuracy, being at filtering 80% of system parts, can be
obtained with a few instead of all test cases.

Apart from coverage spectra for revealing anomalies, there are other approaches that
further analyze parts of program states. Statistical Debugging [137], also known as
scalable statistical or cooperative bug isolation, analyzes automatically created bug
reports from deployed software in order to isolate root causes. The corresponding Holmes
tool realizes this approach and provides an iterative bug-directed profiling that pinpoints
the likely failure cause over multiple executions by instrumenting only statistically relevant
suspicious program entities in the field. It monitors successful and failed runs via predicate
profiles which represent specific program properties such as exceptional behavior, unused
return values, and scalar pairs. With the limitations to just a few program points
and properties, this approach ensures affordability in an industrial setting. Later on,
the Holmes tool also collects path profiles to find execution paths that correlate with
failures [47]. Further improvements to statistical debugging include: the categorization of
relevant predicates without any prior knowledge of program semantics [143]; the automatic
mapping of predicates to faulty control flow paths [118]; the combination of several
statistical techniques to estimate causes and effects [18]; and the adaption of monitoring
depending on control-dependence graphs [17] Based on the idea of predicates, another
approach [222] identifies anomalies by altering predicates and so possibly correcting the
control flow. In this case, the algorithm detects a critical predicate with a high probability
of a failure cause. Analogously, value replacement [114] automatically alters entire states
used at statements of a failing run in such a way that incorrect output becomes correct.
Located statements are either failure causes or close by.

All presented approaches produce anomalies in the form of ranked source code entities
that are likely to include failure causes. However, as defects are rarely localized without
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doubt, developers have to determine the remaining results by hand. We argue that
our presented test-driven fault navigation deals with this issue. It combines multiple
perspectives with the help of already gathered suspiciousness information and supports
developers in further approximating the root cause. Principally, our approach adapts
the Tarantula technique at the method-level with the Ochiai similarity coefficient and so
ensures satisfying results within short response times. Our PathMap is directly integrated
into the unit test framework, provides a lightweight coverage analysis, visualizes the
suspiciousness data in form of a scalable tree map, and recommends suitable developers
as contact persons. Our PathFinder classifies run-time behavior by reusing the already
collected information and, if desired, refines fault localization at statements. Thus, we
combine spectrum-based fault localization data in different perspectives and so give advice
to developers on how to follow infection chains back to their root causes.

8.2.3. Determining Developer Expertise

Our team navigation with its developer ranking metric is mostly related to approaches
that automatically determine expert knowledge for development activities. In particular,
we discuss the identification of experts for specific source code artifacts and the assignment
of bug reports to developers.

The expertise recommender [148] proposes a general architecture allowing the administra-
tion of user profiles for arbitrary collaborative development activities. As an example,
they instantiate their framework for the implementation activity of a real-world software
company. In doing so, they figure out the fundamental “Line 10 rule”2 that recommends
expertise by considering the change history of source code. Developers who last modi-
fied a specific source code artifact have the most up to date knowledge. The expertise
browser [154] automatically quantifies people with desired knowledge about source code
by analyzing still more information from change management systems and the program’s
history. Developers collect experience atoms for specific system parts where they have
recently fixed a problem or enhanced a feature. From these expertise profiles, other stake-
holders identify individuals with a broad expertise in specific system parts. Ownership
maps [86] present a compact overview for all files and their evolution with respect to cor-
responding expert knowledge. With the help of CVS logs, it analyzes the commit history,
identifies the file ownership, and visualizes the results. Among others, these maps help to
answer overall questions such as which author developed which part of the system at what
time. XFinder [123] is an Eclipse extension that recommends a ranked list of developers
to assist with changing a given file. A developer-code map created from version control
information presents commit contributions, recent activities, and the number of active
workdays per developer and file. On the supposition that people who have substantially
contributed in the past are likely the best for future changes, the tool identifies experts
for specific projects, packages, and files. The accuracy of the first three recommended

2The name corresponds to the position of author credentials in change log messages.
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developers is between 43% and 82%. The emergent expertise locator [152] approximates,
depending on currently opened files and their histories, a ranked list of suitable team
members. All of these approaches rely on the assumption that programmer’s activity
indicates some knowledge of code. An empirical study [76] about the “Line 10 rule”
investigates the frequency and recency of source code interactions. As a result, it confirms
the rule and presents additional factors that also indicate expertise knowledge such as
authorship or performed tasks. With these findings, subsequent approaches enhance the
results of pure history information with usage expertise [191], which also considers the
application of API methods, and source code familiarity [77], which additionally analyzes
developers’ interaction with code.

There are also specific bug triage techniques that focus on the analysis of bug and source
code repositories to automatically assign bug reports to the most qualified developers. A
first bug triage approach [54] categorizes the textual descriptions of already solved reports
and assigns developers to similar bugs. With a supervised Bayesian machine learning
algorithm, this method correctly predicts 30% of all developer-to-bug report mappings.
An improved semi-automated machine learning approach [10, 11] works on open bug
repositories and learns from a large number of already resolved reports the relationship
between developers and bugs. It classifies new incoming reports with the help of text
categorization and recommends a few developers that have worked on similar problems
before. The evaluation reports a high precision between 57% and 64% for two out of
three large open source projects. Develect [146] applies a similar approach, but it matches
the lexical similarities between the vocabulary of bug reports and the diffs of developers’
source code contributions. Its evaluation achieves 33.6% precision for the most qualified
developer and 71.0% recall that the perfect match is within the top ten. As an alternative
to comparing and classifying bug reports, the developer selection approach [41] studies
the assignment of change requests in open source projects and finds out that source
code repositories also provide valuable information for assigning change requests. With
information retrieval techniques, the proposed method identifies a set of best candidates
that have resolved similar change request in source code. An extension to XFinder [124]
builds on the same idea; it identifies bug-related source code and then recommends proper
expertise for changing these entities. A study [12] with project experts confirms that
both source code and bug repository approaches are good at finding suitable developers.

As bug reports are still reassigned to better suited developers [94], novel approaches enlarge
the analysis scope. Bug tossing graphs [115] improve other bug triage methods by revealing
the relationship between reassignments, developers, and bug reports. Their results present
a reduction in reassignments by up to 72% and an improvement in accuracy of 76%
for the first five recommendations. Another framework for automated bug triage [26]
further suggests to consider not only the bug history and software repositories but also the
developer’s expertise, workload, and personal preferences. Finally, WhoseFault [192] is
similar to our developer ranking metric because it also considers anomalies in source code.
Starting with spectrum-based fault localization to find suspicious source code entities, it
mines history information for expertise and creates a weighted mapping between locations
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and developers. With a probability of 81%, it produces the suitable developer in the
first three recommendations. As WhoseFault and our approach have been developed
independently and in parallel, there are also two major differences. First, we combine
suspiciousness and confidence values with a harmonic mean and apply the more efficient
Ochiai formula instead of Tarantula. Second, we focus on fast response times and so limit
our analysis to methods instead of each single statement.

In contrast to our developer ranking metric and WhoseFault, previous approaches are
generally applicable but their recommendation accuracy for a specific failure is limited.
Other approaches consider either the entire system so that the search space is too large
or they require similar failure reports which excludes new kinds of failures. Our metric
restricts the search space to anomalies only. As anomalies are likely to include failure
causes, we are able to provide more accurate developer rankings. In 80% of all cases, the
suitable expert is within the first five recommended developers. Although we require at
least one failing test case, we think that often its implementation can be derived from
bug reports without knowing failure causes.

8.2.4. Observation of Program Behavior

Due to the fact that our PathFinder is a back-in-time debugger, we start its related
work with omniscient debuggers. Then we present simulated back-in-time debuggers that
reverse execution or re-execute programs to access past events. Finally, we conclude with
a broader overview of interesting debugging tools.

To follow infection chains from observable failures back to their root causes, omniscient
debuggers record all executed events and present the collected data post-mortem. So,
they allow developers to navigate an entire program history and answer questions about
the cause of a particular state. The omniscient debugger (ODB) [135] records every
event, object, and state change until execution is interrupted. However, the required
dynamic analysis is quite time- and memory-consuming. The performance slows down
up to 300 times and the memory consumes up to 100 MB per second. Unstuck [108]
is the first back-in-time debugger for Smalltalk. As the tool stores execution traces in
memory like ODB, it suffers from similar performance problems and relatively small
traces. WhyLine [128] allows developers to ask a set of “why did” and “why didn’t”
questions about the entire execution history. Combining static and dynamic slicing, call
trees, and several other algorithms, the approach can answer, for example, why a line of
code has not been reached. Traceglasses [188] records compact execution events of Java
applications. By querying and transforming these events, developers have a comfortable
navigation through large execution trees. JHyde [104] is a hybrid debugger for Java
that integrates declarative with back-in-time debugging. With the help of generated
hypotheses, developers can explicitly follow the infection chain backwards. Moreover,
there are already straightforward back-in-time debuggers in commercial development
environments such as Microsoft’s IntelliTrace for Visual Studio 2010.
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However, all of these omniscient debuggers do not scale well with long execution traces
including intensive data. For that reason, other approaches aim to circumvent these issues
by focusing on performance improvements in return for a more complicated setup. The
trace-oriented debugger (TOD) [175] combines an efficient instrumentation mechanism
and a specialized distributed database for capturing exhaustive traces. This approach
requires considerable infrastructure and set-up costs, and moreover imposes a high
run-time overhead and resource requirements. Later, a novel indexing and querying
technique [174] ensures scalability to arbitrarily large execution traces and offers an
interactive debugging experience that outperforms existing back-in-time debuggers. Object
flow analysis [141, 142] in conjunction with object aliases also allows for a practical back-
in-time debugger. The approach leverages the virtual machine and its garbage collector
to remove no longer reachable objects and to discard corresponding events. Tracing is
fast and memory consumption is low but it requires an adapted virtual machine and
discarding events limit the approach because failure causes might be included in objects
that are no longer in use. The Compass debugger [74] builds on top of the object flow
analysis and presents an innovative user interface for back-in-time debuggers. Besides
standard method call trees, this debugger allows developers to follow corrupted objects
in order to find failure-inducing methods.

Instead of recording all events until the program stops, simulated back-in-time debuggers
rely on reversing program execution. ZStep95 [139] for the functional programming
language Lisp allows developers to step a program in both forward and backward direction.
In doing so, a call graph is visualized in real-time so that changes are directly visible.
There are also reverse debuggers for stack-based imperative programming languages such
as Java and C. In Java [50] new operational semantics that define reversed byte code
instructions and side-effect logs which can be restored later on allow developers to execute
programs backwards. In C [129] a virtual machine simulates the program execution in
both directions and records run-time data depending on developers’ needs. Although
all approaches are able to go back in time, they are limited to step by step debugging.
Developers cannot directly follow cause-effect chains because the entire execution history
is missing.

Another kind of simulated back-in-time debugging is to periodically record complete
program checkpoints and to re-execute them later on. During this partial re-execution,
the program can be analyzed and stopped when required. With the break at an earlier
point in time, developers have the impression to debug backwards. Igor [71] delegates
the process of checkpointing to the operating system that then incrementally stores
memory snapshots. With this expensive method, it allows reverse execution, selective
searching of past data, and the substitution of program entities. Spyder [7] combines
dynamic slicing and backtracking to identify causes and effects between statements and
state. While automated dynamic slicing determines affected statements [8], backtracking
restores program states from re-executed checkpoints at previously defined breakpoints. A
more lightweight replay debugger for Standard ML [200] creates checkpoints as first-class
continuations. This allows a flexible mechanism to replace execution and to provide reverse
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execution for the user and the interpreter. Bidirectional debugging [37] provides not only
forward and backward commands by checkpointing, but also I/O-logging that ensures a
deterministic re-execution. Previous approaches could not guarantee the same execution
path which sometimes leads to wrong results. In general, so called record and replay
techniques such as DejaVu [48] prevent this problem by first recording non-deterministic
program points and later replaying their results. Jockey [187] is a user-space library that
combines record and replay with checkpoints. It rewrites all non-deterministic system
calls and CPU instructions and takes periodic snapshots to enable time traveling in
distributed Linux programs. Backstep [43] inserts an undo command into the debugging
process of the Java Eclipse development environment. Each time a method is entered, a
checkpoint is created that allows for restarting the method from its invocation. However,
all checkpoint approaches have scalability issues because they strongly depend on the
size and frequency of their checkpoints.

Apart from back-in-time debuggers, there are other debugging tools that support the
search for failure causes. Coca [61] is a debugger for C that automatically adds breakpoints
at control flow and data events. The analysis is done on the fly and the program stops as
soon as a specified event occurs. Query-based debugging [133] allows an efficient search for
relationships in large object spaces after a program stops. In a more dynamic version [134],
similar queries continuously check objects while running and instantly stop if a violation is
found. Later on, snapshot query-based debugging [173] further optimizes performance and
proposes a more specialized query language. Pervasive debuggers [107] allow developers
to inspect concurrent and distributed applications. In a virtualized environment, such
debuggers have full control over each component and their interactions. At each point in
time, they can stop them in a consistent state independent of network latency, different
programming languages, and multiple hosts. Object-centric debugging [181] proposes
to primarily consider objects and their interactions instead of stack-based run-time
environments. The approach sees objects as the key abstraction and presents a new
debugger that answers more object-related questions. The visual symbolic debugger [96]
shows all possible execution paths without running the program. The applied symbolic
execution helps developers to understand behavior in small parts of the code. Moreover,
there are visualization concepts that directly support debugging. The data display
debugger [221] shows data structures as graphs that can be refined step by step. The
debugging canvas [57] offers a two-dimensional pan-and-zoom surface for arranging code
bubbles [39] that represent call paths, variable values, and source code snippets. So,
developers see everything regarding the current debugging task at a glance.

Compared to the presented debugging tools, our PathFinder is a lightweight and specialized
back-in-time debugger for localizing failure causes in unit tests. Our approach quickly
provides established dynamic views due to our concept of step-wise run-time analysis. We
do not record each event beforehand; rather developers specify interest in particular parts
which are then refined on demand in additional test case re-executions. This ensures fast
response times and low memory consumption because we only record requested data.
As test cases are reproducible by definition, we do not need additional checkpoints or
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record and replay techniques. During debugging, our PathFinder includes the important
characteristic of immediacy, which most of the related debuggers are missing [201].
Furthermore, our behavior navigation and its classified traces allow developers to select
erroneous behavior directly. Without this concept, developers require more internal
knowledge to isolate the infection chain and to decide which path to follow. Regarding
the other presented debugging approaches, we think that they are valuable concepts for
future work. For example, a query language for searching in object spaces could further
help to explore execution histories.

8.2.5. Isolation of Corrupted State

Our state navigation combines design by contract with automatically derived invariants in
order to isolate corrupted state and highlight infection chains. Apart from these related
topics, we further discuss alternative approaches for harvesting type invariants.

The roots of design by contract can be traced back to the work of Floyd [75]. In addition
to the original design by contract implementation in Eiffel [151], we can find numerous
extensions in other programming languages such as C++ [92], Java [130], Python [170],
and Smalltalk [42]. While all of them support the classic design by contract that checks
pre- and post-conditions of methods and program invariants, only a few completely
support recursive assertion checks and the old statement which allows access to preceding
method states. Furthermore, they differ in their implementation strategies (annotations,
inheritance, or aspect-oriented programming [126]), granularity level (methods, classes,
and components), and contract scopes (grouping and run-time activation) [106].

An alternative to manually specifying contracts is to automatically derive invariants from
correct program behavior. Daikon [70, 68] comprises a set of dynamic techniques for
inferring generalized program state from execution traces. It observes occurring objects
and summarizes their specific properties into invariants such as non-zero properties and
containment relationships. With such an inductive analysis, the approach reveals the
implicit run-time information necessary for creating contracts. These invariants detect
not only corrupted state, but also help in generating test cases and repairing inconsistent
data structures. However, the first version suffers from a scalability issue which creates
too many results, misses important invariants, and requires too much time. Later, an
extension to Daikon [69] solves this problem by optimizing polymorphism and filtering
unchanged values. Carrot [176] experiments with a subset of Daikon’s invariants and
tries to localize failure causes. However, the experimental results are unsatisfactory.
Diduce [100] extends Daikon’s approach and derives invariants on the fly. During program
execution, it monitors its run-time and gradually relaxes invariants of observed objects.
After a while, developers receive bug reports only for corner cases, which then identify
failure causes quickly and automatically. Screeners [1] further optimize the run-time
overhead and decrease it to only 14%. ClearView [164] also learns and monitors invariants
on the fly but it also applies this knowledge to automatically patch upcoming failures.
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As soon as a violation occurs, it generates candidates to hold the invariant and continues
the application with changed state or control flow. Finally, a comparative study [172] of
programmer-written and automatically inferred contracts concludes that a combination
of both methods is most promising. While manual contracts have a high quality but
fewer results, Daikon’s contracts have many results but less quality.

Existing approaches for discovering invariants ignore type information because they are
implemented in statically typed programming languages. Our type harvester is mostly
related to approaches that allow for obtaining type information in dynamically typed
languages. Consequently, there are two main categories to consider: type inference and
run-time type collection. Type inference for dynamically typed programming languages
has been researched early on [198]. More recent approaches [4, 5, 38, 81, 171, 195] mostly
focus on obtaining type information for interfaces, members and local variables. As
they only rely on static analysis, the precision and recall scores are often low. Run-time
type collection is scarcely used in a way that allows programmers to exploit its results.
Type feedback [109] is a virtual machine technique that drives just-in-time compiler
optimization decisions based on dynamically collected type information. This information
is confined to the virtual machine. Profile-guided typing [80] augments type inference for
the Ruby programming language. This approach requires the code under observation to
be instrumented—unlike type harvesting, which leaves code untouched. The development
environment extension Hermion [183] for Squeak and its successor Senseo [184] for Eclipse
are designed to provide developers with additional run-time information during static
source code navigation. Both extensions, among other things, improve IDE usability by
exploiting dynamic type information, effectively resolving navigation issues related to
late-binding. For example, Hermion restricts sender and implementor lists in Smalltalk to
relevant run-time types only. To that end, it permanently collects method signatures and
receiver types during normal program use. Conversely, type harvesting can be executed
on demand with test suites and harvested information is more extensive.

Our state navigation combines design by contract with the dynamic discovery of invariants
and reveals infection chains by mapping corrupted state onto execution traces. Our
contract system in Smalltalk is similar to our previous PyDCL implementation for
Python [106]. It supports the classic design by contract including recursive assertions and
the old statement. Furthermore, it implements contract grouping and activation at run-
time. These contracts are then automatically generated with invariants by our inductive
analysis. We harvest run-time data from the hidden test knowledge analogous to Daikon
with the difference that developers can adapt the analysis to their needs. They decide
about object properties (types, value ranges), scope (program entities), and accuracy
(performance optimizations). Independent of their decision, they can incrementally refine
and update the derived invariants in additional test runs. Finally, we map violated
contracts on execution histories of failing tests in order to highlight infection chains. Thus,
these state anomalies further support developers in understanding and localizing failure
causes.
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8.3. Software Visualization for Debugging

In general, software visualization summarizes and represents information about software
systems in order to enhance the comprehension of programs. This definition also includes
debugging activities because developers obtain a clearer understanding of the problem [19].
However, as software visualization includes a broad range of techniques [59], we limit our
discussion to closely related approaches. We briefly consider tree maps for representing
the static structure of a system and the visualization of execution traces as a technique
for illustrating program behavior.

PathMap represents the results of our structure navigation in form of a tree map [119].
This visualization summarizes arbitrary hierarchical structures by recursively subdividing
a given area into smaller rectangles. Since then, several other approaches have improved
the standard layout algorithm: they prevent long rectangles that are difficult to see [194],
cascade rectangles to obtain a depth effect [145], or highlight objects that are also neighbors
in the hierarchical structure [24, 207]. Apart from tree maps, there are also alternative
approaches for compact layouts of hierarchical data structures [21, 132] Nevertheless, we
chose a tree map layout because of its level of awareness, low space requirement, and
straightforward implementation. We base our tree map on the standard layout and limit
the hierarchy depth to four, make large rectangles zoomable on demand, and draw classes
with a thicker border to emphasize their included methods.

There are plenty approaches to software visualization that present behavior using exe-
cution traces [53, 99]. One of the first [116] presents several prototypes ranging from
a global overview of large traces to lowest system level events. Subsequent approaches
primarily focus on presenting large amounts of trace data. The execution pattern view [56]
automatically classifies repetitive behavior into high order execution patterns. The Vizz-
Analyzer [144] combines static and dynamic analysis to generate static call graphs with
run-time information. High-level polymetric views [62] are a lightweight approach for
visualizing condensed dynamic data with measurements that focus on the understanding
of certain aspects such as objects lifetime or the communication architecture. The call
graph analyzer [35, 36] visualizes execution traces in a 2.5D environment and extends this
information by a number of other analysis approaches. Also, reverse engineered sequence
diagrams are very common but with the fact that they do not scale [30]. To solve this
issue, circular bundle views [51] present a scalable visualization inside a circle. Although
all approaches are useful in their specific scenario, no approach can be generalized for
various tasks in program comprehension and debugging [161]. Most such visualizations
are rarely used during software development [183]. One reason might be the missing
integration into development environments or the neglected aspect of low setup and
performance cost that our Path Tools addresses [44].

131



Related Work

8.4. Dynamic Analysis for Recording Execution Traces

Dynamic analysis considers the behavior and properties of a running program [20]. This
information is fundamental for several debugging activities because it provides developers
insights into corrupted program behavior. The most common dynamic analysis techniques
collect run-time information by instrumenting source code with additional log code,
extending the virtual machine, or running the system under control of a debugger [99].
Each technique has its own assets and drawbacks. However, all of them slow down
the program execution significantly, produce a large amount of fine-granular trace data,
and are difficult to handle because of missing transparency for developers. For that
reason, several approaches suggest optimizations with respect to the decrease of run-time
overhead and the compression of collected data. Efficient path profiling [22] proposes a
fast algorithm to select profile information and compress its trace data. It determines the
number of executed acyclic paths in a method and subsumes common basic block and
edge profilings. Encoded program executions [179] select subsets of traced information and
then compact it by inferring and encoding its structure. Dynamic instrumentation [153]
inserts and removes log code on the fly and so keeps performance overhead low.

Programming languages supporting meta-programming features allow further dynamic
analysis approaches with a high degree of flexibility. Behavioral reflection [58] offers
a behavioral middle layer that abstracts from the actual implementation details and
provides a standard API for all tools to use. This layer considers the run-time system
as a collection of reified first-class entities on a meta-level. Meta objects implement a
transparent tracing mechanism that captures and stores run-time behavior. This concept
allows for specifying the kind and amount of dynamic information precisely and it provides
a unified access to run-time information [183]. However, since behavioral reflection is
implemented by an extensive use of meta programming, the performance issue is still open.
The Spy framework [31] inserts dedicated code before or after method executions via
method wrappers [40]. It is flexible enough to easily build several tools for profiling, test
coverage, and type inference. To extend programming languages without access to the
meta-level, developers can rely on aspect-oriented programming [126] or emulation engines.
Aspects separate the tracing mechanism from the source code and allow developers to
select an adequate level of detail [91]. The performance of this approach scales very well
since the extended source code can be optimized by the run-time environment. Instead
of executing machine code directly, Nirvana emulates it and send callbacks to its iDNA
tracing engine [34]. This approach has only a low run-time overhead and further allows
the compression and selection of trace data in an external dynamic analysis tool.

Compared to our incremental dynamic analysis and the corresponding Path dynamic
analysis framework, we rely on method wrappers and the meta-programming features
of our host language Smalltalk. We have a flexible technique like the Spy framework
that allows developers to choose from and implement new dynamic analysis approaches.
However, our incremental and interactive properties ensure a low performance overhead
for single runs and recorded traces include only data being relevant for developers.
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8.5. Summary

We presented related work to our test-driven fault navigation, incremental dynamic analy-
sis, and Path Tools framework. Starting with testing in general, we discussed approaches
in particular that consider tests as examples and analyze their hidden knowledge. After
that, we introduced the corresponding research areas for our debugging approach and
each of its navigation steps. Scientific debugging establishes a relation to our debugging
process. Spectrum-based fault localization lays the foundation for our structure navi-
gation. Approaches which determine developer expertise relate to our team navigation
and its developer ranking metric. The observation of program behavior is important to
our behavior navigation and its back-in-time debugging. The detection of invariants to
identify corrupted state is similar to our state navigation. Furthermore, we looked at
visualized execution traces and dynamic analysis techniques that are not directly related
to debugging concepts.
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9
Conclusion

In this chapter, we summarize our work and present interesting directions for future
work. First, we sum up our contributions and how these answer our research question
(Section 9.1). Second, we conclude this thesis by presenting three additional projects
that already extend our Path Tools framework in order to support debugging even better
(Section 9.2).

9.1. Summary

In this dissertation, we deal with the problem of debugging reproducible failures. During
debugging, developers try to understand what causes observable failures by following
infection chains back to their root causes. In doing so, they primarily have to rely on their
intuition because contemporary debugging methods and tools are limited with respect
to investigating such infection chains. This often leads to disorganized trial and error
approaches which make debugging a hard and time-consuming activity. For these reasons,
experienced developers mostly rely on the scientific method and its hypothesis-testing to
systematically narrow down root causes. Despite this method debugging is still a tedious
task. Developers require much knowledge about the program to create and evaluate
proper hypotheses and, moreover, contemporary debugging tools provide no or only
partial support for this systematic hypothesis-testing. With respect to these debugging
problems, we summarize our research question as follows: “How can we efficiently support
developers in creating, evaluating, and refining failure cause hypotheses so that we reduce
time and effort required for debugging?”

Methodic contribution

Our test-driven fault navigation is a debugging guide that integrates anomaly
detection into a breadth-first search for systematically creating, evaluating,
and refining failure cause hypotheses.

We offer four specific navigation techniques that systematically lead developers to failure
causes based on new perspectives of test cases and the scientific method. We consider
test cases not only as a way to verify if a failure occurs or not but also as reproducible
entry points and a valuable source of hidden knowledge. While the first perspective offers
deterministic and exemplary behavioral paths through the system, the latter reveals
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Figure 9.1.: The final comparison between our test-driven fault navigation and other
contemporary debugging approaches reveals that our approach comprehensively supports
the scientific method.

anomalies by comparing passing and failing test cases. Our test-driven fault navigation
utilizes these two test case perspectives to follow complete infection chains backwards
and to integrate anomalies for guidance through the large amount of run-time data. We
propose four specific navigation techniques that together realize the scientific method in
form of a breadth-first search. Structure navigation localizes suspicious system parts and
restricts the initial search space with the help of spectrum-based anomalies. Developers
obtain several starting points that are likely to include failure causes. Team navigation
recommends experienced developers for helping with failure causes. We limit the search
to suspicious system parts and so propose suitable experts even if root causes are still
unknown. Behavior navigation allows developers to follow the infection chain of failing
test cases back in time. With the help of anomalies, we further classify the entire execution
history and so navigate developers through the large amount of run-time data. State
navigation automatically uncovers parts of the infection chain by comparing used objects
of passing and failing test cases. We harvest common object properties, create dynamic
contracts, and reveal anomalies that support developers in understanding corrupted state.
All techniques together form a coherent guide that integrates anomalies to systematically
navigate developers from the occurrence of failures back to their root causes.

With respect to the scientific method, Figure 9.1 compares our approach with the state
of the art in debugging methods. Since we combine the advantages of several techniques
such as spectrum-based fault localization [122], omniscient debugging [135], and likely
invariants [70], we are able to provide a comprehensive method for the systematic testing
of hypotheses. We support the creation and refinement of hypotheses with our structure
navigation that reveals anomalies and so restricts the search space for possible failure
causes. As the prediction requires thorough comprehension about suspicious program
entities, our team navigation automatically recommends suitable developers that are likely
able to explain the expected behavior. To experiment with entire infection chains, our
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behavior navigation allows developers to access classified execution histories with all their
object states. We contribute to the observation and conclusion with our behavior and
state navigation which automatically reveal anomalies in infection chains and so highlight
possible failure causes. The diagnosis is only partially supported because our approach
still requires manual decisions about real failure causes. In summary, our test-driven fault
navigation supports an entire breadth-first search for debugging reproducible failures by
systematically leading developers along failure causes on infection chains.

Technical contribution

Our incremental dynamic analysis ensures the efficiency of test-driven fault
navigation by interactively splitting expensive analyses over multiple test
runs and so creating an experience of immediacy when debugging with our
approach.

We collect the required run-time data for debugging with our approach on demand. Based
on the idea of test cases as reproducible entry points into behavior, we distribute the
dynamic analysis across multiple test runs depending on developers’ needs. Starting with
an initial overview of run-time data, developers interactively refine their understanding
step by step. Each refinement step only collects the requested information during
additional test runs. This approach reduces the effort for providing an initial overview
and optional refinements impose just a minimum of additional cost. So, we can ensure
fast response times when debugging with our approach as run-time data is only collected
when needed.

For our four test-driven fault navigation techniques, we propose three specific incremental
dynamic analysis techniques. Refined coverage analysis provides fast access to method
coverage and on-demand refinements at statement level. Our structure and team navi-
gation require this run-time data for computing spectrum-based anomalies at different
levels of detail. Step-wise run-time analysis collects the execution history of a specific test
case for our behavior navigation. It begins with a shallow analysis of the call tree and
allows developers to refine specific details later on. Inductive analysis harvests common
object properties such as run-time types and value ranges of passing test cases. In doing
so, developers choose the level of detail and kind of information to be collected for the
dynamic contracts of our state navigation. With our three incremental dynamic analysis
techniques, we ensure immediate access to run-time data and so encourage the frequent
use of our test-driven fault navigation approach and its corresponding debugging tools.

Implementation contribution

Our Path Tools framework implements test-driven fault navigation based
on our incremental dynamic analysis for the Squeak development environ-
ment. With the help of this implementation, we have successfully applied our
approach to several Smalltalk projects.
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We implement both test-driven fault navigation and incremental dynamic analysis in our
Path Tools framework for the Squeak/Smalltalk development environment. It consists of
three tools and one analysis framework that together realize all four navigation techniques,
provide fast access to run-time data, and reveal the hidden test knowledge. PathMap is
an extended test runner for our structure, team, and state navigation. With the help of
our refined coverage analysis, it collects spectrum-based anomalies and presents them
in a compact system overview. In addition to this, PathMap recommends experienced
developers and harvests common object properties from passing test cases. PathFinder
is a lightweight back-in-time debugger for our behavior and state navigation. It builds
on top of our step-wise run-time analysis in order to allow developers interactive and
immediate access to the execution history of a specific test case. PathBrowser extends
Smalltalk’s standard source code editor to benefit from the hidden test knowledge; it
shows the test coverage results of our structure navigation and represents the dynamic
contracts of our state navigation. All tools are based on our flexible analysis framework
that offers several hooks for implementing our incremental dynamic analysis. With the
help of our Path Tools framework, developers can localize suspicious system parts, learn
about other developers for help, and debug emphasized infection chains back to their
failure-inducing origins.

The evaluation demonstrates that our test-driven fault navigation is practical for bringing
developers closer and faster to defects. We have successfully applied our approach and
the corresponding Path Tools framework to several Smalltalk projects and can conclude
that developers require less time and effort for debugging. In particular, our structure
navigation limits the initial search space to a large extent; our team navigation possesses
a high accuracy in recommending qualified developers; the emphasized infection chains
of our behavior navigation assist developers in following failure causes easily; our state
navigation evenly highlightes corrupted state along infection chains. While debugging
with our Path Tools, our incremental dynamic analysis ensures short response times
and fast access to the necessary run-time data. All in all, we conclude with regard to
our research question—our test-driven fault navigation efficiently supports developers in
creating, evaluating, and refining failure cause hypotheses and reduces debugging cost
with respect to time and effort.

9.2. Outlook

In addition to our presented test-driven fault navigation for debugging reproducible
failures, we provide three directions for future work. First, we will improve our approach
for debugging non-deterministic failures in network environments and multi-threaded
applications. Second, we will extend our step-wise run-time analysis with a rich query
language that allows developers to answer “why does questions” about corrupted state.
Third, we will support the correction of defects by highlighting anomalies in novel and
compact source code views. With the help of several student projects, we have already
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Figure 9.2.: Replay-driven fault navigation extends our approach for debugging dis-
tributed failures.

implemented our ideas in prototypes that we describe in the following:

Replay-driven Fault Navigation widens our approach for debugging non-deterministic
failures in networks and multi-threaded applications [72, 73]. As non-deterministic
failures are not reliably reproducible, they are hard to debug because developers cannot
systematically test their hypotheses and follow failure causes back to defects. For example,
in distributed Web applications with their custom and timing-dependent communication
interfaces, non-deterministic failures occur frequently and present developers with a
challenge [15, 156]. To localize failure causes in distributed Web applications, we propose
a lightweight record and refine extension to our approach. It allows developers to reproduce
non-deterministic failures, reveal anomalies in their communication, and refine run-time
behavior in specific service implementations1.

To debug non-deterministic failures, our approach consists of three steps. In the initial
record phase, we log communication of non-deterministic failing test cases and divide
their schedules into failing and successful runs. After that, we analyze the differences
between schedules to detect anomalies that are likely to cause the non-deterministic failure.
Finally, we constrain the system to a failing schedule by modifying it with a traffic shaper.
This tool removes timing-dependent communication as a source of non-determinism and
always replays the same failing pattern. If the constrained system reproduces the failure,
we are able to apply our step-wise run-time analysis and access more refined run-time

1Even if this work only deals with network communication, we argue that our approach can easily be
adapted to debug multi-threaded applications. Services as well as processes are independent program
entities that communicate with each other either distributed or on the same machine.
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Figure 9.3.: PathFinder-Y is an extension for our lightweight back-in-time debugger that
allows developers to query the execution trace and ask why-questions about failure causes.

data. In doing so, we replay the recorded, now reproducible failing test case to collect
events between services and execution histories of specific service implementations on
demand.

Figure 9.2 shows our PathFinder extension to support back-in-time debugging of non-
deterministic communications. In the upper part, we render the input and output events
between services and highlight anomalies in their communication schedules. In the
lower part, developers can refine specific messages and see what happens inside the
implementation that processes this request. PathFinder presents the corresponding call
tree and allows developers to refine run-time data with our incremental dynamic analysis.

PathFinder-Y extends our lightweight back-in-time debugger with a query engine that
allows developers to ask “why”-questions about failure causes. Our query language
simplifies the tracking of corrupted state by answering Why does an object have a specific
value? We guide developers to the corresponding method in the execution that generates
this specific value. With the help of so called object traces, developers can comfortably
follow infected objects back to their root causes.

The query language is similar to the Whyline approach [128] that allows developers
to answer all kinds of why-questions. Although this approach supports developers in
localizing failure causes, the required performance overhead for a full dynamic analysis
limits its practicality. To solve this drawback, we combine why-questions with our
incremental dynamic analysis approach. We extend the specific step-wise run-time analysis
with object traces and implement a lightweight whyline debugger called PathFinder-Y.
Our extension collects all object IDs in the entire execution history and links them to
their corresponding call nodes. So, we know what method calls influence which objects.
This analysis must be done only for the first query and is much faster than creating
deep copies of all objects. If developers are interested in the origin of a specific state,
we collect the corresponding object with our refinement analysis, remember its ID, and
generate related why-questions. While developers choose a specific question, we already
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Figure 9.4.: PathView is a model-based source code editor that extracts views from
infection chains to assist developers in correcting defects.

refine all objects with the same ID in our call tree so that we are able to create an object
trace along the execution history. In doing so, we have recorded enough information
to answer the specific question by comparing state changes of the original object with
all other traced objects. If a state change answers the question, we guide developers to
the related method in the execution. Due to the fact that we do not need to collect all
objects beforehand but rather access the required run-time information incrementally, we
are able to answer why-questions in a short amount of time.

Figure 9.3 illustrates our prototype and the generated questions. For example, there is a
why-question about the rectangle scope of the frame object and the y-coordinate of its
origin point. The answer to this question leads to the executed method that initializes
or changes this value to 52. In this first prototype, we rely on the comparison of object
strings before and after a method execution. Therefore, our approach works for all classes
that implement Smalltalk’s printString method. Among others, this includes all primitive
types such as booleans, numbers, and collections.

PathView supports developers in fixing root causes by extracting related program entities
from infection chains and highlighting relationships between anomalies. Based on the
execution history of a failing test case, we automatically generate a UML-like view of
all involved classes, methods, and their relationships. In addition to this, we highlight
spectrum-based and state anomalies to assist developers in understanding corresponding
methods and source code. PathView complements our Path Tools framework as it provides
a mid-level abstraction for suspicious program entities between the entire system overview
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of PathMap and the detailed source code within PathBrowser. Thus, developers are able
to see at a glance how suspicious methods are related to each other, the system structure,
and the defect. We argue that such views help developers not only to correct defects but
also to prevent the introduction of new and similar failures.

The UML-like representation of our PathView editor includes a single-source and round-
trip engineering approach. We only consider two primary artifacts as the foundation
for all models. First, source code is the executable specification of our program and the
abstract description of the system’s structure. With the help of static analysis, we can
derive classes, methods, and their relationships. Second, test cases reveal behavioral
examples and yield a hidden source of information. While failing test case examples
serve as input for generating failure-related views, the hidden test knowledge provides
associations with harvested type information. All further information for a model-based
visualization can be derived from these artifacts. To complete the round-trip, developers
can interactively change and extend the visualization. If they change something in the
model, they automatically change the source code. For example, the replacement of an
inheritance relationship immediately leads to a new super class of the changed class in
source code. Also changes in source code instantly update related views. There are only
a few conflicts that cannot be solved automatically. We mark these problems so that
developers directly see which information is outdated. In addition to these features, we
also offer storing and merging of views in source code management systems. With this
approach, we blur the boundaries between separate models and the source code base.
Thus, we bring together the benefits of models with their overview and source code as
executable specifications without the drawback of outdated artifacts due to necessary
synchronization issues.

Figure 9.4 presents PathView for our Seaside typing error. Test cases on the left and
response classes on the right represent their relationships and suspicious methods. Each
class only shows methods that have been called during the failing test case execution.
All other methods are hidden because they are irrelevant for fixing the defect and would
unnecessarily clutter the visualization. We mark anomalies with small boxes before the
method name and open the most suspicious methods with their corresponding source
code. These source code entities possess a high probability to have a close relation to
failure causes and the defect.
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Closing Remarks

In this thesis, we presented test-driven fault navigation as a debugging guide that integrates
anomaly detection into a breadth-first search for systematically creating, evaluating, and
refining failure cause hypotheses. Based on the scientific method, we combine spectrum-
based fault localization, developer recommendation, back-in-time debugging, and likely
invariants to further support developers in following infection chains back to their root
causes.

However, almost all novel approaches have a few shortcomings that prevent them from
replacing outdated but still prevalent debugging tools. We argue that our test-driven
fault navigation solves some of these open issues and so represents a step towards the
applicability of debugging research in practice.

September 25, 2013
Michael Perscheid
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