
Test-driven Fault Navigation
for Debugging Reproducible Failures

Dissertation
zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften
(Dr.-Ing.)

in der Wissenschaftsdisziplin „praktische Informatik“

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

von
Michael Perscheid, M.Sc.

Potsdam, den 25. September 2013

Betreuer: Prof. Dr. Robert Hirschfeld
Fachgebiet Software-Architekturen
Hasso-Plattner-Institut für Softwaresystemtechnik
Universität Potsdam

Gutachter: Prof. Dr. Stephan Diehl Prof. Dr. Oscar Nierstrasz
Lehrstuhl für Softwaretechnik Software Composition Group
FB IV Informatik Institut für Informatik
Universität Trier Universität Bern



This work is licensed under a Creative Commons License: 
Attribution - Noncommercial - Share Alike 3.0 Germany 
To view a copy of this license visit 
http://creativecommons.org/licenses/by-nc-sa/3.0/de/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Published online at the 
Institutional Repository of the University of Potsdam: 
URL http://opus.kobv.de/ubp/volltexte/2013/6815/ 
URN urn:nbn:de:kobv:517-opus-68155 
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68155 



“Debugging is the dirty little secret of computer science.”

— Henry Lieberman.

The Debugging Scandal and What to Do About It. 1997.

i



 



Abstract

The correction of software failures tends to be very cost-intensive because their debugging
is an often time-consuming development activity. During this activity, developers largely
attempt to understand what causes failures: Starting with a test case that reproduces
the observable failure they have to follow failure causes on the infection chain back to the
root cause (defect). This idealized procedure requires deep knowledge of the system and
its behavior because failures and defects can be far apart from each other. Unfortunately,
common debugging tools are inadequate for systematically investigating such infection
chains in detail. Thus, developers have to rely primarily on their intuition and the
localization of failure causes is not time-efficient. To prevent debugging by disorganized
trial and error, experienced developers apply the scientific method and its systematic
hypothesis-testing. However, even when using the scientific method, the search for failure
causes can still be a laborious task. First, lacking expertise about the system makes
it hard to understand incorrect behavior and to create reasonable hypotheses. Second,
contemporary debugging approaches provide no or only partial support for the scientific
method.

In this dissertation, we present test-driven fault navigation as a debugging guide for
localizing reproducible failures with the scientific method. Based on the analysis of
passing and failing test cases, we reveal anomalies and integrate them into a breadth-first
search that leads developers to defects. This systematic search consists of four specific
navigation techniques that together support the creation, evaluation, and refinement of
failure cause hypotheses for the scientific method. First, structure navigation localizes
suspicious system parts and restricts the initial search space. Second, team navigation
recommends experienced developers for helping with failures. Third, behavior navigation
allows developers to follow emphasized infection chains back to root causes. Fourth,
state navigation identifies corrupted state and reveals parts of the infection chain auto-
matically. We implement test-driven fault navigation in our Path Tools framework for
the Squeak/Smalltalk development environment and limit its computation cost with the
help of our incremental dynamic analysis. This lightweight dynamic analysis ensures
an immediate debugging experience with our tools by splitting the run-time overhead
over multiple test runs depending on developers’ needs. Hence, our test-driven fault
navigation in combination with our incremental dynamic analysis answers important
questions in a short time: where to start debugging, who understands failure causes best,
what happened before failures, and which state properties are infected.

iii



 









Finding Causes of Reproducible Failures

Figure 2.2.: Developers have to follow the infection chain (grey border) from the observ-
able failure (method 11, bottom right corner) back to the defect (method 4, center left).

Although “debugging” includes the term “bug”, we prevent this word because of its
ambiguity. It is imprecise and can mean incorrect program code, state, or results.
For that reason, we apply the following adapted definitions of failure, infection, and
defect2 [219]:

Failure

“A failure is an externally observable incorrect program result.”

Infection

“An infection is an incorrect program state or misleading behavior.”

Defect

“A defect is an incorrect program code and corresponds to the root cause.”

2There are similar wordings from other research communities. For example, faults correspond to defects
and errors indicate infections.

18



Challenges of Testing and Debugging

All three terms together create the so-called infection chain. After a developer has created
a defect in source code, the incorrect code is executed and causes an infection that is
capable of being propagated until an observable failure is thrown. To understand how
the failure comes to be, developers have to systematically follow this infection chain
backwards [219]. Beginning with the failure-reproducing behavior, in the form of at least
one failing test case, developers trace the observable failure via its infection chain back to
the responsible defect. The small example in Figure 2.2 illustrates the infection chain
with the observable failure (method 11, bottom right corner) and the defect (method 4,
center left). Each row shows all eleven methods and highlights the specific method that is
executed at this point in time. The grey area highlights the infection chain. Localization
of the initial failure cause requires developers to decide what the corrupted state or
behavior is at each executed method so that they are able to follow the infection chain
backwards. These decisions are necessary to understand failure causes completely and to
identify the root cause finally.

2.2.3. Correcting the Root Cause

The second part of debugging is to correct the root cause in such a way that the original
or similar failures do not reappear. Although we do not focus on this topic, we argue that
it is important to comprehend the entire infection chain in order to solve the problem
completely [219]. For that purpose, developers isolate the infection chain and understand
what causes the failure. With the help of the scientific method, they work on a diagnosis of
the defect that explains previous and predicts further observations. In doing so, developers
have to ensure that they find the root cause and not only an earlier failure cause on
the infection chain. Otherwise, developers tend to correct rather symptoms instead of
defects [219]. Thus, they can introduce new failures or the same failure occurs again
under slightly different circumstances. For example, developers may solve our Seaside
typing error either in the generic response class which could negatively influence also
streamed responses, or they correctly fix the root cause in the write header method of
buffered responses. After all, they can fix the defect, prove that the failure has gone, and
make the failure-reproducing test case passed.

2.3. Challenges of Testing and Debugging

To prevent a guessing game during debugging, developers apply the scientific method to
narrow down defects systematically [219]. Often debugging includes much guesswork—
novice developers in particular follow more their unskillful intuition than a systematic
procedure. They simply start with a depth-first search and try to debug the program
here and there. This often leads to wrong decisions that require additional time and make
fault localization a laborious and error-prone task. For that reason, experts systematically
follow the failure back to its root cause with the help of the scientific method in the form

19



Finding Causes of Reproducible Failures

Test runner Expert Back-in-time Automatic
and debugger Anomalies knowledge debugger debugging

Hypothesis - + o - +
Prediction - o o o +

Experiment o - - + -
Observation o - - + -

Diagnosis o o o - o
Section 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5

Table 2.1.: Comparison of contemporary debugging approaches for applying the scientific
method (+ good / o partial / - bad support).

of a breadth-first search [209]. Starting with an initial hypothesis, they make predictions
concerning the problem and experiment with the system to observe discrepancies in
their assumptions. Based on this information, they refine or reject their hypotheses
until a diagnosis is found. It has been shown that this systematic hypothesis-testing is
more promising and requires less time in debugging than disorganized trial and error
approaches [150, 219].

However, even though the scientific method is known as a valuable procedure for localizing
failure causes, contemporary debugging approaches provide no or only partial support
for it. Table 2.1 summarizes our assessment for the state of the art in debugging and its
assistance during hypothesis-testing. No approach completely covers all aspects of the
scientific method. Often it focuses only on one specific aspect such as creating hypotheses
or experimentation. The following subsections explain each approach and its issues in
general. A comprehensive discussion of related work can be found in Chapter 8.

2.3.1. Test Runner and Debugger: How to Apply the Scientific Method?

In general, debugging of test cases with standard tools faces several challenges with
respect to localizing failure causes and defects. Nowadays, almost all development
environments include test runners and symbolic debuggers as their debugging tools of
choice. Unfortunately, these tools are not only around 50 years old [138] but they are
also not well-suited for the systematic following of infection chains backwards to their
root causes.

Test runners only execute test cases and verify if failures occur or not. There is no
additional information such as differences between failing and passing tests. Hence,
developers cannot restrict the search space to suspicious program entities that could
help in creating initial hypotheses and making predictions. Furthermore, they can only
experiment with test runners to a limited extent. For example, developers are not able to
observe which parts of the program are being executed. This task typically requires other

20




