
Deducing Classes

Integrating the Domain Models of Object-Oriented Applications

Patrick Rein

Hasso Plattner Institute, University of Potsdam, Germany

patrick.rein@hpi.uni-potsdam.de

Abstract

The interoperability of applications depends on a successful

mapping between their domain models. Nowadays, common

file formats serve as a mediator between the different do-

main models but cause friction losses during the conversion

of data. These loses could be mitigated whenever the models

are already working on the same concepts but are only using

different representations for them. We propose the concept

of deducing classes which interpret existing object structures

and detect instances of themselves in this existing data. Fur-

ther, we introduce a planning algorithm which combines de-

ducing classes to allow unanticipated interactions between

applications. We discuss some of the implications of this ap-

proach and illustrate upcoming research challenges.

Categories and Subject Descriptors D.2.3 [Coding Tools

and Techniques]: Object-oriented programming

Keywords object domain models, integration, abstractions

1. Introduction

When creating an application using object-oriented pro-

gramming, developers define types of objects and their in-

teractions which represent relevant concepts of the applica-

tion domain. Thus, developers create an executable domain

model [3]. When developing new applications, developers

often start their domain model from scratch to fit it closely

to their use case. Thereby, developers define new terms and

object representations for domain concepts. For example,

an address book application might define a class for contact

details. This way of postulating an individual world model

works well for developing single applications. If however,

the application needs to integrate with other applications

through sharing data, then this isolated definition of objects

becomes an issue. One application might represent a concept

very differently to the way another application represents it.

As a consequence, if one application wants to enable another

application to use its data, the objects have to be converted

to fit the world model of the other application. As developers

can not anticipate all the other world models, they convert

the data to a common denominator often determined by com-

mon file formats such as the vcard format for contact detail

information. Similarly, the receiving application requires a

mapping from the common world model to its model.

These conversions introduce several issues. First of all,

the conversion to a common world model can cause a loss

in information such as relations which can not be expressed

or the identity of single objects. Second, if an application

does not support an import or export function for a format

required by another application, users are stuck within the

application and can not work with the data in other applica-

tions. For example, the address book application might ex-

port its data as a set of vcard files in one folder and a digital

newsletter service might expect a comma-separated file in-

cluding a name and an email address column. Finally, these

issues hinder end-users to get the most out of their applica-

tions as they can not use them with all of their data even if

it was possible on a semantic level. These “friction losses”

due to the conversion are unnecessary, as the domain models

of the two applications already describe concepts which are

semantically at least similar, if not equal.

To improve the integration and interoperability of appli-

cations, we propose a different perspective on creating ab-

stractions in object-oriented applications. Instead of creating

abstractions by using new terms which define their own rep-

resentations through objects, we propose deducing classes

which instead interpret existing object structures and detect

instances of that class. By automatically combining these ab-

stractions the system might be able to mitigate unanticipated

mismatches. Through this, we hope to be able to interchange

semantically equivalent information almost seamlessly be-

tween applications regardless of their representation.

2. Integration through Deducing Classes

We propose the concept of deducing classes which are de-

fined through a query and a set of derived methods. The

query selects single or multiple objects which are then cap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SPLASH Companion’16, October 30 – November 4, 2016, Amsterdam,
Netherlands
ACM. 978-1-4503-4437-1/16/10...$15.00
http://dx.doi.org/10.1145/2984043.2998547

67

lists

email

name

N
e
w
s
le
tt
e
r

S
e
r
v
ic
e

name

email

lists
A

Social Network

lastName

firstName

name

origin

N
email

name
X

Address Book

email

lastName

firstName
Y

Social Network

Figure 1. The deducing classes (N, A) bridge between the

interface required by the newsletter service and the interface

provided by the objects from different applications (X,Y).

tured in a new object. This new object has a set of derived

methods which are defined in terms of the objects matched

by the query. For example, the developers of the newsletter

service could define an AddressableEntity which has a

simple query which requires two fields storing a name and

an email address (denoted A in Figure 1). In the context of

the newsletter service it might provide a derived method to

list all newsletters this address is registered to. This class

would now match any contact objects from the address book

application and at the same time would directly provide the

methods which are useful in the context of the newsletter

application. Using solely this approach would not solve the

integration issue, as mappings would only be described in

terms of one other kind of representation of the same in-

formation. If the contact information from a social network

represents the “name” in two fields then the object can again

not be used (see Y in Figure 1). Thus, we propose a mecha-

nism based on planning algorithms which combines several

of these deducing classes to find a way to make the objects

compatible with the required interface [6]. This requires ad-

ditional mappings to be available (e.g. mapping N in Figure

1). These mappings might be provided by developers in a

way similar to the way plugins are provided today. More in-

teresting, however, is that end-users might be able to provide

these mappings. An assistant tool could ask how they would

create the name of the social network contact information on

the basis of the fields of the object being accessed.

We have implemented a first prototype based on graph

matching and common classes within a Smalltalk execution

environment. Thereby, we can experiment with design de-

cisions without worrying about binary conversions between

environments. At this stage developers can create a deduced

class by sub-classing the DeducedObject class and speci-

fying a graph query whose variables form the instance vari-

ables of the class. The class also includes method definitions

based on these instance variables. The classes can be instan-

tiated by asking for instances of the class in a given set of ob-

jects. These instances allow read-only access to the data of

the original objects. Further, the execution environment was

extended to use the deduced classes for mitigating message

dispatch errors. Whenever an object does not understand a

message, the system tries to combine the deduced classes in

the system to create the required interface.

3. Discussion

Our work approaches issues which are also known from on-

tological merging in the field of data integration: explication

mismatch (different object structures for the same concept)

and terminological mismatch (different identifiers for the

same concept) [2, 8]. Similar to the normalization assump-

tion in data integration approaches, we currently assume

that data is completely represented through object structures.

This might be mitigated by future work on queries which do

match more than graph structures (e.g. incorporating regu-

lar expressions). The explication mismatch is solved through

the general approach of querying existing data, transforming

it, and presenting it as new data, similar to the mechanism

of database views [5]. However, the additional component

of automatic combinations of several deductions makes the

system more flexible with regard to its inputs. At the same

time it introduces ambiguity which might lead to unintended

behavior. To mitigate this, a mechanism would be required

which allows developers to trade-off correctness and flexi-

bility for specific sections of their code. With regard to the

dynamic resolution of mismatches our work is related to the

call-by-meaning work [7] which solves the mismatches by

using constraints on the functions instead of names. Our

approach still suffers from the issue of ambiguous identi-

fiers. For example, “name” is a homonym for many different

pieces of information. This could be resolved by extending

our approach with the idea of using URIs as identifiers in

code [1]. In general, as others have argued before, the def-

inition of abstractions in terms of existing objects might be

close to the way humans generally create abstractions [4].

References

[1] J. M. Alcaraz Calero, J. B. Bernabé, J. M. Marin Perez, D. S.

Ruı́z, F. J. Garcia Clemente, G. M. Pérez, et al. Towards an

Architecture to bind the Java and OWL languages. JRPIT, 44

(1):17, 2012.

[2] J. Euzenat, P. Shvaiko, et al. Ontology Matching, volume 2.

Springer, 2007.

[3] E. Evans. Domain-Driven Design: Tackling Complexity in the

Heart of Software. Addison-Wesley Professional, 2004.

[4] T. Felgentreff, J. Lincke, R. Hirschfeld, and L. Thamsen.

Lively Groups: Shared Behavior in a World of Objects With-

out Classes or Prototypes. In Proceedings of the FPW 2015,

pages 15–22, October 2015.

[5] R. Ramakrishnan and J. Gehrke. Database Management Sys-

tems. McGraw-Hill, 2000.

[6] S. Russell and P. Norvig. Artifical Intelligence: A Modern

Approach. Pearson Education, Inc., 2003.

[7] H. Samimi, C. Deaton, Y. Ohshima, A. Warth, and T. D. Mill-

stein. Call by Meaning. In Proceedings of Onward! 2014, pages

11–28, October 2014.

[8] P. R. Visser, D. M. Jones, T. J. Bench-Capon, and M. J. Shave.

Assessing Heterogeneity by Classifying Ontology Mismatches.

In Proceedings of the FOIS, volume 98, 1998.

68

