
A Soup of Objects
Convenience Interfaces for Accessing Domain Objects in a Global Object Graph

Patrick Rein
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
patrick.rein@hpi.uni-potsdam.de

ABSTRACT
Conventional desktop systems, such as Microsoft Windows or Ma-
cOS, are structured around applications. From a technical perspec-
tive the domain objects, such as emails or tasks, are contained
within these applications. This separation of object graphs restricts
interactions and integrations between applications to cases for
which the original developers added support. Through the Home
system we want to explore an alternative architecture for desktop
systems supporting such ad-hoc integrations. This architecture is
based on a single shared runtime object graph spanning all applica-
tions. We evolved and evaluated our architecture and the described
mechanisms by using the resulting environment for over 13 months
for everyday productivity tasks.

CCS CONCEPTS
• Software and its engineering→ Software architectures; Soft-
ware system structures; • General and reference → Empirical
studies;

KEYWORDS
personal information management systems, domain objects, ex-
ploratory programming environments, Squeak/Smalltalk

ACM Reference Format:
Patrick Rein. 2018. A Soup of Objects: Convenience Interfaces for Ac-
cessing Domain Objects in a Global Object Graph. In Proceedings of 2nd
International Conference on the Art, Science, and Engineering of Program-
ming (<Programming’18> Companion). ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3191697.3213799

1 INTRODUCTION
Conventional desktop systems, such as Microsoft Windows or Ma-
cOS, are structured around applications [4, 8]. Each application is
concerned with the organization and processing of certain objects
of a domain. For example, an email application allows users to read,
sort, and write emails and a teaching management application al-
lows users to manage students and courses. While this architecture
enables the independent development and execution of applications,
it also prevents task-specific integration of applications.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
<Programming’18> Companion, April 9–12, 2018, Nice, France
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5513-1/18/04. . . $15.00
https://doi.org/10.1145/3191697.3213799

Figure 1: An illustration of the separation of object graphs
in conventional desktop systems. The two applications have
completely separated object graphs.

From a technical perspective the domain objects are contained
within the application (see Figure 1). During run-time these objects
of the domain are represented as runtime domain objects. These are
stored in the application-specific run-time object graph which is
separated by process boundaries from the object graphs of other ap-
plications. Further, when the application is not running, the domain
objects are stored in an application-specific file system location
which is also separated from the locations of other applications.

This separation of object graphs restricts interactions and in-
tegrations between applications to cases for which the original
developers added support. However, most interactions between
applications are activity-specific and depend on the particular ap-
plications used [7, 11]. For example, a lecturer communicating with
students might want to reference email objects and course objects
in To-do items. Also, from the To-do list application, it should be
possible to open a To-do item referencing these objects and jump
into the email or teaching application. This is currently only possi-
ble if both applications allow access to the domain objects and the
To-do application explicitly makes use of this access.

Through the Home system we want to explore an alternative
architecture for desktop systems supporting such ad-hoc integra-
tions. This architecture is based on a single shared runtime object
graph spanning all applications as is provided by Smalltalk-like
systems or Lisp Machines (see Figure 2) [2, 5, 12]. Thereby, every
application can access the objects of other applications and operate
on them through calling methods.

The Home system is an extension of the existing Squeak/S-
malltalk environment [6], which is a good starting ground as it
already provides a persistent global runtime object graph. However,

236

https://doi.org/10.1145/3191697.3213799
https://doi.org/10.1145/3191697.3213799


<Programming’18> Companion, April 9–12, 2018, Nice, France Patrick Rein

Figure 2: An illustration of the object graph in theHome sys-
tem. The object graph of both applications is connected and
the application boundaries are less distinct. Nevertheless, ac-
cess to domain objects such as the document one on the right
might be difficult without detailed knowledge about the im-
plementation of the second application. The soup provides
global access to all such domain objects.

in a Smalltalk image there is no distinction between domain objects
and transient technical objects. Consequently, access to the domain
objects of another application can be complicated (see Figure 2).
Thus, as a first step besides new tools, we extended the environment
with mechanisms for easier access to domain objects, mechanisms
for extending domain objects with application-specific data, and a
convenience interfaces to access potentially absent instance vari-
ables. We evolved and evaluated our architecture and the described
mechanisms by using the resulting environment for over 13 months
for everyday productivity tasks.

2 MECHANISMS OF THE HOME SYSTEM
To allow easy access to domain objects, users of the system can im-
plement their domain object class as a subclass of PersistentObject.
This class automatically takes care of making these objects globally
accessible through a special collection called soup (see Figure 2).
The soup is a global set containing all domain objects in the system.
In this architecture, applications get their data mostly from query-
ing the soup. The following example shows a query for getting the
list of open To-dos:
soup s e l e c t : [ : o b j e c t | o b j e c t isToDo

and : [ o b j e c t ? # isDone = f a l s e ]
and : [ ( o b j e c t

answer : # s chedu l edFo r
or : Date tomorrow )

<= Date today ] ]
Further, applications might want to store additional information

on existing domain objects, so we added object-specific instance
variables. In the example, the scheduledFor and isDone fields are
not defined in the ToDo class but are added to instances. As these
fields could be absent, code has to be more defensive in access-
ing fields. Thus, we added a convenience interface consisting of

Figure 3: A screenshot of the current state of the Home sys-
tem as it is being used by the author.

methods returning the value or an appropriate value represent-
ing absence (for example the answer:or: method in the example
above).

3 EVALUATION
We evaluate whether such an open architecture can lead to a tighter
integration by using the system for everyday tasks during the past
13 months [1]. So far, the author spends over 50% of his time at the
computer within the environment and common productivity tasks
(task, email, document management) happen almost exclusively
in the environment (for an impression see Figure 3). We collect
data by recording the time spent in the environment as well as a
semi-structured diary to record interesting incidents [9]. Through
this exploratory study we discover interesting synergies and future
requirements. A recent insight is that the soup, even combined with
a hierarchical ordering system for objects, leads to an impression
of loosing track of data.

4 RELATEDWORK
Operating and desktop systems build upon one global storagemodel
can provide similar capabilities to users, for example Unix through
the philosophy of "everything is a file" or Lisp Machines [2, 10].
Further, scripting languages on operating system level (for exam-
ple AppleScript or Visual Basic Script [3, 13]) can enable ad-hoc
integration to some extent. However, they restrict access to the
interface provided by the original application developers.

REFERENCES
[1] Philip Agre. 1997. Towards a Critical Technical Practice: Lessons Learned in

Trying to Reform AI. Social Science, Technical Systems and Cooperative Work:
Beyond the Great Divide. Erlbaum (1997).

[2] Hank Bromley. 1986. LISP Lore: A Guide to Programming the LISP Machine.
(1986).

[3] William R. Cook. 2007. AppleScript. In Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages (HOPL III). ACM, New York,
NY, USA, 1–1–1–21. https://doi.org/10.1145/1238844.1238845

[4] Donald Gentner and Jakob Nielsen. 1996. The Anti-Mac Interface. Commun.
ACM 39, 8 (1996), (70 to: 82). https://doi.org/10.1145/232014.232032

[5] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley Longman Publishing Co., Inc., Boston, USA.

237

https://doi.org/10.1145/1238844.1238845
https://doi.org/10.1145/232014.232032


A Soup of Objects <Programming’18> Companion, April 9–12, 2018, Nice, France

[6] Daniel Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997.
Back to the Future: The Story of Squeak, a Practical Smalltalk Written in Itself.
In Smalltalk and Exploratory Programming, Vol. 32. ACM, (318 to: 326). https:
//doi.org/10.1145/263698.263754

[7] Nicolas Mundbrod, Jens Kolb, and Manfred Reichert. 2012. Towards a Sys-
tem Support of Collaborative Knowledge Work. In Proceedings of the Business
Process Management Workshops (BPM) 2012. 31–42. https://doi.org/10.1007/
978-3-642-36285-9_5

[8] Pamela Ravasio, Sissel Guttormsen Schär, and Helmut Krueger. 2004. In Pursuit of
Desktop Evolution: User Problems and Practices with Modern Desktop Systems.
ACM Trans. Comput.-Hum. Interact. 11, 2 (June 2004), 156–180. https://doi.org/
10.1145/1005361.1005363

[9] Colin Robson. 2002. Real World Research. Blackwell Publishing.

[10] Richard Stallman, Daniel Weinreb, and Moon David. 1984. Lisp machine man-
ual. Massachusetts Institute of Technology. https://books.google.de/books?id=
CX4ZAQAAIAAJ

[11] Witold Staniszkis. 2015. Empowering the Knowledge Worker: End-User Software
Engineering in Knowledge Management. In Proceedings of the Conference on
Enterprise Information Systems (ICEIS) 2015. Springer, 3–19.

[12] David Ungar and Randall Smith. 2007. Self. In Proceedings of the Conference on
History of Programming Languages (HOPL) 2007 (HOPL III). ACM, New York, NY,
USA, 1 to: 9. https://doi.org/10.1145/1238844.1238853

[13] John Walkenbach. 2010. Excel 2010 power programming with VBA. Vol. 6. John
Wiley & Sons.

238

https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/263698.263754
https://doi.org/10.1007/978-3-642-36285-9_5
https://doi.org/10.1007/978-3-642-36285-9_5
https://doi.org/10.1145/1005361.1005363
https://doi.org/10.1145/1005361.1005363
https://books.google.de/books?id=CX4ZAQAAIAAJ
https://books.google.de/books?id=CX4ZAQAAIAAJ
https://doi.org/10.1145/1238844.1238853

	Abstract
	1 Introduction
	2 Mechanisms of the Home System
	3 Evaluation
	4 Related Work
	References

