
Delegation-based Semantics for
Modularizing Crosscutting Concerns

Hans Schippers ∗ Dirk Janssens
Formal Techniques in Software Engineering

University of Antwerp, Belgium

Michael Haupt Robert Hirschfeld
Software Architecture Group

Hasso-Plattner-Institut
University of Potsdam, Germany

Abstract
We describe semantic mappings of four high-level program-
ming languages to our delegation-based machine model for
aspect-oriented programming. One of the languages is a
class-based object-oriented one. The other three represent
extensions thereof that support various approaches to mod-
ularizing crosscutting concerns. We explain informally that
an operational semantics expressed in terms of the model’s
concepts preserves the behavior of a program written in one
of the high-level languages. We hence argue our model to
be semantically sound in that sense, as well as sufficiently
expressive in order to correctly support features such as
class-based object-oriented programming, the open-classes
and pointcut-and-advice flavors of aspect-oriented program-
ming, and dynamic layers. For the latter, being a core feature
of context-oriented programming, we also provide a formal
semantics.

Categories and Subject Descriptors F.3.2 [Logics and
Meanings of Programs]:
Semantics of Programming Languages—Operational Se-
mantics

General Terms Theory, Languages

Keywords Semantic Mappings, Aspect-oriented Seman-
tics, Context-oriented Programming, Modularization

1. Introduction
In previous work [12], we have introduced a machine model
for aspect-oriented programming (AOP), which is centered

∗ Ph.D. fellowship of the Research Foundation - Flanders (FWO)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
Copyright c© 2008 ACM 978-1-60558-215-3/08/10. . . $5.00

on delegation and relies on the notion of join points as loci of
late binding, upon whose occurrence dispatch operations de-
termine the functionality to execute. The model was shown
to elegantly support a wide range of core mechanisms and
features of both the object- and aspect-oriented program-
ming paradigms, such as classes, inheritance, open classes
[17] in the form of dynamic introductions and pointcut-and-
advice based AOP [15]. However, the model’s ability to
serve as the basis for complete aspect-oriented programming
language implementations was not shown.

This paper demonstrates how the operational semantics
of j, ij, aj [21] and cj, four high-level programming lan-
guages, can be mapped onto the operational semantics of our
machine model, as well as provides an informal argument
suggesting their behavior is preserved in the process. Hence,
whereas our previous work started from the model itself to
demonstrate its capabilities, the model now serves as a target
platform for several existing languages and the modulariza-
tion techniques they support. In other words, the model is
shown to be sufficiently expressive to meet the requirements
of j, ij, aj and cj, which support different approaches to mod-
ularization.

j is, essentially, a Java subset and hence supports basic
object-oriented principles. The other languages are exten-
sions, adding different modularity mechanisms for the im-
plementation of crosscutting concerns. More specifically, ij
adds inter-type declarations, while aj adds aspects, point-
cuts and advice. Thus, ij represents an implementation of the
open classes flavor of AOP, and aj, one of the pointcuts-and-
advice flavor [15]. The languages are formally described by
means of an operational semantics for each of them [21]. Al-
though ij’s semantics is described as a transformation into an
equivalent j program, we will show our model to be capable
of directly supporting ij’s features.

cj is our own contribution to the j language family. It
does not include the features of ij and aj, but instead adopts
context-oriented programming (COP) [5, 13], a layer-based
approach to the modularization of crosscutting concerns.
Layers allow context-specific behavioral variations to be

525

composed based on the execution context. cj can be consid-
ered a subset of ContextJ [6].

The contributions of this paper are as follows:

• we show how the semantics of the j, ij, and aj languages
[21] can be directly expressed in terms of our model’s
semantics [12],

• we explain informally that these semantics are equivalent
with their original counterparts,

• we provide, for the first time, a formal semantics for cj,
and hence, for one flavor of context-oriented program-
ming, and map it to our model’s semantics like for the
other three languages.

All of the aforementioned languages have been implemented
on top of a prototype implementation of the delegation-based
model, and said implementations adhere to the semantics we
present. A description of the implementations is out of the
scope of this paper.

This paper is organized as follows. The next section
briefly reviews our machine model along with its formal
semantics. Sec. 3 describes the semantics mappings for all
four languages, and additionally introduces a formal seman-
tics for cj. Sec. 4 attends to related work. The paper is sum-
marized and future work is discussed in Sec. 5.

2. A Machine Model for Aspect-Oriented
Programming

We restrict the presentation of the machine model we use
in this work [12] to a brief summary of the model and its
semantics to facilitate an easier understanding of the seman-
tic mappings described in Sec. 3. The following sections 2.1
and 2.2 recapitulate, in condensed form, material that has
been published in [12], while Sec. 2.3 describes some mod-
ifications to the original semantics that are required in the
scope of this work.

2.1 The Model
Core features of the model pertain to the representation of
application entities and that of join points. The latter are
consistently regarded as loci of late binding, and hence of
virtual functionality dispatch, where dispatch is organized
along multiple dimensions. Each dimension is one possible
way to choose a particular binding of a piece of functionality
to a join point, e. g., the current object, the target of a method
call, the invoked method, the current thread, etc.

Objects are, using a prototype-based object-oriented en-
vironment, consistently represented as "seas of fragments"
[18]: each object is visible to others only in the form of a
proxy. Messages sent to an object are received by its proxy
and delegated to the actual object, as displayed in Fig. 1.
Classes are represented likewise: each class is a pair of a
proxy and an object representing the actual class. Each ob-
ject references its class by delegating to the class’ proxy.

obj
foo = (...)

bar = (..., self foo, ...)
baz = (...)

... actual_obj
foo = (...)

bar = (..., self foo, ...)
baz = (...)

...

obj

(a) (b)

Figure 1. An object is represented as a combination of a
proxy and the actual object.

The granularity of the supported join point model is that
of message receptions. It is important to note that this gran-
ularity exists only at the level of the execution model, where
member field access is also mapped to messages. Language
implementations on top of the model will map their own join
point model to the one defined by the machine model.

A join point’s nature as a locus of late binding is realized
by means of inserting additional proxy objects in between
the proxy and the actual object, or in between the class
object’s proxy and the actual class-representing object. That
way, a message passed on along the delegation chain can
be interpreted differently by various proxies understanding
it, establishing late binding of said message to functionality.
Weaving—both static and dynamic—is realized by allowing
for the insertion and removal of proxy objects into and from
delegation chains.

2.2 Model Semantics
The formal, operational semantics of the machine model,
provided in [12], is based on the δ calculus [2]. More specif-
ically, reduction rules are used in order to define an opera-
tional semantics function which rewrites a combination of
an expression and a store into an object address, represent-
ing the result value, and a potentially modified store:

!δ : Exp×Store→ Address×Store

At the heart of the semantics are the Clone (1) and Select (2)
operations [12], which respectively handle object creation
and message sending:

a,σ !δ ι ,σ ′

ι ′ /∈ dom(σ ′)
σ ′′ = σ ′[ι ′ &→ σ ′(ι); Delι ′ &→ Delι]

ι ′′ /∈ dom(σ ′′)
σ ′′′ = σ ′′[ι ′′ &→ !"][Delι ′′ &→ ι ′]

clone(a),σ !δ ι ′′,σ ′′′

(1)

a,σ !δ ι ,σ ′

Look(σ ′, ι ,m) = (b, ιd)
σ ′′ = σ ′[this &→ ι][msg &→ m][cur &→ ιd]

b,σ ′′ !δ ι ′,σ ′′′

σ ′′′′ = σ ′′′[this &→ σ(this)]
[msg &→ σ(msg)][cur &→ σ(cur)]
a.m,σ !δ ι ′,σ ′′′′

(2)

where σ denotes the store, which essentially maps addresses
to objects.

526

An object is represented as a list !m1 : e1, . . . ,mn : en" of
messages it understands, along with their implementations.
The store additionally contains, for each address ι , the Delι
function, which determines the address of the delegate of the
object at ι . The delegate is the object to which messages are
delegated if they are not understood. In general, an object’s
delegate may depend, for example, upon the currently ac-
tive thread. However, in the context of this paper, Delι will
always be a constant function.

Updates to the store are expressed in square brackets,
where the &→ symbol is used to either assign a new object to
an address, or change the value of a particular Delι function.

For example, the store σ ′[ι ′ &→ σ(ι)][Delι ′ &→ Delι] is
identical to σ ′, except that address ι ′ now holds the same
value as the one at address ι (meaning a copy of the object
at ι has been stored at ι ′), and the constant function Delι ′ is
now equal to the constant function Delι (meaning the object
at ι ′ now has the same delegate as the object at ι).

Basically, Clone (1) creates objects as a pair of objects:
an empty proxy and the actual object, with the proxy sim-
ply delegating all messages to the actual object. Select (2),
on the other hand, looks up an implementation b of a mes-
sage m, sent to an object (expression) a, by means of the
Look function, which recursively traverses a’s delegate ob-
jects until it encounters an implementation of m, and thus
encapsulates the delegation mechanism inherent to the sys-
tem. Its definition is shown in Fig. 2.

Next, b is evaluated while the store is extended to map
a number of symbols, representing special variables, to an
appropriate value: this holds the address of the message re-
ceiver object, msg holds the message name, and cur con-
tains the address of the specific delegate object where the
message implementation was eventually found. This infor-
mation is necessary in order to support resending messages
further along the delegation chain:

Look(σ ,Delσ(cur),σ(msg)) = (b, ιd)
σ ′ = σ [cur &→ ιd]

b,σ ′ !δ ι ,σ ′′

σ ′′′ = σ ′′[cur &→ σ(cur)]
resend,σ !δ ι ,σ ′′′

(4)

Note that this is not updated, and hence remains bound
to the original receiver. This matches the common seman-
tics of delegation-based object-oriented programming and is
crucial for the proper functioning of the model [12].

2.3 Minor Modifications
In order to facilitate the description of the semantic map-
pings in Sec. 3, we apply a few superficial modifications,
which do not, however, change the actual semantics.

Store vs. Stack/Heap
The store variable σ actually models the combination of a
heap and a stack: Apart from storing all objects, it addition-
ally takes care of stack variables such as this. However, this

is a non-fundamental design choice [21, p. 66], and heap and
stack may just as well be modeled separately by means of
two variables h and s. Both approaches are equivalent, pro-
vided that, in case of a single store, care is taken to rebind
stack variables to their previous value after a method call, as
opposed to passing a newly constructed stack frame along
with each method call. For example, the Select rule might
just as well be modeled as follows:

a,h,s !δ ι ,h′
Look(h′, ι ,m) = (b, ιd)

b,h′,{this &→ ι ,msg &→ m,cur &→ ιd} !δ ι ′,h′′
a.m,h,s !δ ι ′,h′′

(5)

In the following, this style will be adopted for all rules.

Message Parameters
The delegation-based machine model does not model a pa-
rameter passing mechanism. However, a strategy supporting
exactly one formal parameter which is always called x, sim-
ilar to the one used in the original definitions of the j lan-
guage family [21], can be straightforwardly implemented.
It comes down to simply passing one more variable on the
stack (or store). Hence, where convenient, alternative defini-
tions of the Select and Resend rules, as shown in Fig. 3, will
be used.

Note that, for reasons of simplicity, we assume a message
to be uniquely identified by its name. Parameter overload-
ing is disregarded. Multiple parameters can be simulated by
regarding the formal parameter x as a container object en-
closing the actual parameters.

3. Semantic Mappings
This section will introduce the j, ij, aj [21] and cj languages,
along with their operational semantics. For each of these lan-
guages, we will express these semantics alternatively using
the model semantics from Sec. 2. We will then explain infor-
mally that these semantics result in the same behavior, i. e.,
evaluating a certain expression results in the same value and
the same side-effects on the heap. A formal proof for this
claim is considered future work.

The original operational semantics of the languages is
expressed by means of a rewriting function defined through a
number of reduction rules [21]. This strategy is very similar
to the one followed in Sec. 2, hence the use of the same
symbol !, albeit without the δ subscript as it is not based
on the δ calculus:

P ' exp,h,s ! ι ,h′

Note that, compared to the rewrite function in Sec. 2, an
extra parameter P is added. It represents the source code of
the current program, and is used in some reduction rules in
order to extract relevant information such as method decla-
rations or inheritance hierarchies.

527

Look(σ , ι ,m) =
{

(b, ι) i f σ(ι) = !. . .m : b . . ."
Look(σ ,Delι ,m) otherwise (3)

Figure 2. Look function.

a1,h,s !δ ι ,h′
a2,h′,s !δ ι ′,h′′

Look(h′′, ι ,m) = (b, ιd)
b,h′′,{this &→ ι ,x &→ ι ′,msg &→ m,cur &→ ιd} !δ ι ′′,h′′′

a1.m(a2),h,s !δ ι ′′,h′′′

(6)

a,h,s !δ ι ,h′
Look(h′,Dels(cur),s(msg)) = (b, ιd)

b,h′,{this &→ s(this),msg &→ s(msg),cur &→ ιδ ,x &→ ι} !δ ι ′,h′′
resend(a),h,s !δ ι ′,h′′

(7)

Figure 3. Alternative definitions of Select and Resend, supporting a formal parameter x.

3.1 Class-Based Object-Oriented Programming in j
This section handles j, which is a subset of Java and supports
basic object-oriented principles such as object instantiation,
inheritance and method invocation.

Syntax
An EBNF-style definition of the syntax of j [21] is given
in Lst. 1. It is rather minimal, with a consisting
of a number of elements, which in turn encapsulate

and constructs. Method bodies are expres-
sions, where expressions may be recursively concatenated.
Methods always accept exactly one parameter x, which can
be referred to in a method body, along with the this variable.
Finally, three special values true, f alse and null are avail-
able, which we will assume to be predefined objects. Hence,
the value of an expression will always be an object.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Listing 1. j syntax.

Objects, Classes and Inheritance
In j, classes are static descriptions of the structure of their
instances. Instances are created by analyzing that description
to find out which fields memory should be allocated for. On
the heap, an object is represented as a combination of a map

of the names of these fields to their values, and the name
of the class it belongs to. This is expressed by the new!

operation [21], which essentially boils down to:

new!(P,C) = ! f1 : null . . . fn : null"C

where
AllFields(P,C) = f1 . . . fn

(8)

The AllFields function recursively finds all fields of a class
C, defined in a program P, as well as its super classes.
The reference to an object’s class (in superscript in that
object’s representation) is needed to provide an entry point
for method lookup. The reduction rule for class instantiation
is as follows:

ι /∈ dom(h)
new!(P,C) (= Unde f ined

P ' new C,h,s ! ι ,h[ι &→ new!(P,C)]
(9)

In an object-based setting, the concept of a class does not
exist, as the only entities available are objects. As the Clone
operation (cf. Sec. 2, definition (1)) basically copies an ex-
isting object, it seems natural to provide a so-called proto-
type object for each class on the heap, which encapsulates
messages corresponding to the fields of that class and all of
its super classes. This prototype can then be cloned in order
to create instances. The implementations of said messages
will hold the field values. Additionally, the class prototype
should have a delegate with all method implementations of
that class, which in turn should have a delegate with all im-
plementations of that class’ super class, and so on. This way,
instances will understand the corresponding messages via
delegation. Finally, in order to be able to support class-wide
manipulations of the delegation chain, a proxy object should
be inserted for each class, as outlined in [12]. An example of
such a configuration is displayed in Fig. 4.

528

h j
P = {C1 &→ ιproxy,1, . . . ,Cn &→ ιproxy,n,ClPt(C1) &→ ι1, . . .ClPt(Cn) &→ ιn,

ι1 &→ ! f1,1 : null . . . f1,k1 : null", . . . , ιn &→ ! fn,1 : null . . . fn,kn : null",
ιproxy,1 &→ !", . . . , ιproxy,n &→ !",
ιmeth,1 &→ !m1,1 : b1,1, . . . ,m1,p1 : b1,p1", . . . , ιmeth,n &→ !mn,1 : bn,1, . . . ,mn,pn : bn,pn",
Delι1 = ιproxy,1, . . . ,Delιn = ιproxy,n,
Delιproxy,1 = ιmeth,1, . . . ,Delιproxy,n = ιmeth,n,

Delιmeth,1 = h j
P(super!(P,C1)), . . . ,Delιmeth,n = h j

P(super!(P,Cn))}

where
∀i : Ci ∈Classes(P),AllFields(P,Ci) = fi,1 . . . fi,ki ,∀ j : T mi, j(T ′ x){bi, j} ∈ getMethods(Ci)
ClPt : CLSNAME → Address
ι1 . . . ιn, ιproxy,1 . . . ιproxy,n, ιmeth,1 . . . ιmeth,n are unique

(10)

Figure 5. Prepared heap for j programs.

Figure 4. Example of a prepared heap

In order to model this semantically, we assume that, in
an object-based setting, a j program always executes in the
context of a prepared heap, rather than an empty one, in a
similar fashion as is done for aspects in the aj language [21,
p. 120]. The heap is assumed to store, beside objects and the
Del function, mappings of class names to addresses, in order
to ensure that classes can be looked up by name, as well as
the ClPt function, which associates each class with its class
prototype. The definition of the prepared heap is displayed
in Fig. 5.

Recall that the Delι function determines the delegate of
the object at address ι , while AllFields returns the fields
of a class and all its super classes, and getMethods [21]
results in a collection of the methods defined by one specific
class. Finally, the super function [21] determines the name
of a class’ super class. If care is taken to always install a
class’ super class on the heap prior to the class itself, the
super class’ proxy can be looked up by means of this name,
which is then installed as the delegate of the class’ method
object. For completeness, a predefined Ob ject class could be

c

C
foo = (...)

bar = (..., self foo, ...)
baz = (...)

actual_c
x = ...
y = ...

proxy_C
...

Figure 6. Result of class instantiation with delegation-
based semantics.

installed on the heap, serving as the super class of the first
user-defined class.

With this prepared heap in place at the start of program
execution, instance creation in the machine model works as
follows:

P ' clone(ClPt(C)),h,s !δ ι ,h′
P ' new C,h,s !δ ι ,h′ (11)

The new operation will thus result in a proxy (created by
clone), delegating all messages to a copy of C’s class pro-
totype, the latter being available on the heap at ClPt(C). As
the DelClPt(C) function is also stored on the heap, and hence
copied as well, the copy ends up delegating to C’s proxy, and
hence eventually to the object holding C’s methods. This is
displayed in Fig. 6.

Method Lookup
Although it is now established how classes and objects are
dealt with in an object-based setting, it should still be ver-
ified that such strategy indeed results in the same program
behavior. More specifically, a method call (or message send)
should, both in original j semantics as well as in delegation-
based semantics, result in the same method (or message) im-
plementation being found and executed.

The two relevant reduction rules are the Select rule (cf.
Sec. 2, definition (6)) on the one hand, and the j rule for
method calls on the other [21]:

P ' e0,h,s ! ι ,h′
P ' e1,h′,s ! ι ′,h′′

M!(P, type(h′′, ι),m) = T m(T ′ x){e}
P ' e,h′′,{this &→ ι ,x &→ ι ′} ! ι ′′,h′′′

P ' e0.m(e1),h,s ! ι ′′,h′′′

529

M! : PROGRAM×CLSNAME× Identi f ier → METHOD

M!(P,C,m) =

Unde f ined i f C = Object
M i f getMethods(C)/{m} = M

M!(P,super(P,C),m) i f getMethods(C)/{m} = ε
Unde f ined otherwise

(12)

Figure 7. M! function.

where the type function [21] determines the dynamic type of
an object. The msg and cur variables in definition (6) can be
ignored since they are only ever used while resending mes-
sages, which never occurs here. Apart from that, the only
difference between both rules is in the M! and Look (cf.
Sec. 2, definition (3)) functions, which capture the respec-
tive lookup algorithms. Hence, the crucial question is now
whether they traverse the space of method implementations
in the same way. The M! function is defined as in Fig. 7 [21].

The getMethods helper function [21] in the definition re-
sults in a collection of the methods defined by one specific
class and the super function [21] determines the name of a
class’ super class, while X/{q} [21, p. 50] is the domain re-
striction function, which basically restricts a set of syntactic
constructs X to the ones containing an identifier q. Note that
words in smallcaps, such as METHOD, represent their corre-
sponding syntactic constructs as defined in Lst. 1.

M! first checks whether a method named m is defined by
the class passed as a parameter, which is the class to which
the target object of the method call belongs. If not found
there, the chain of super classes will be traversed recursively
until m is encountered. Note that the checks are performed
based on the program text.

The Look function, on the other hand, actually starts its
search in the target object (rather, on its proxy), and recur-
sively traverses that object’s delegation chain until an object
is encountered which has an implementation for m. Consid-
ering a proxy by definition does not respond to any mes-
sages, and considering the setup of the prepared heap (10),
the first candidate object is the actual object, i. e., the copy of
the class prototype which was created during instantiation.
This corresponds to actual_c in Fig. 6. However, as this ob-
ject, by definition, contains only fields, the search continues,
passing the class proxy and ending up in the object holding
the method implementations of the target object’s class. If a
suitable method implementation is found here, it is returned;
if not, the search continues, passing the class proxy of the
super class, and ending up in the object holding the method
implementations of the super class, and so on.

In conclusion, the lookup algorithm does indeed en-
counter all candidate method implementations in the same
order, and hence yields the same result. It is important to
realize that the heart of the semantic mapping is in fact in
prepared heap construction. It is the specific configuration

of this heap which causes j method calling and message
sending to deliver the same results.

Field Access
Although it has now been argued that method calls will re-
sult in the same behavior in both versions of operational se-
mantics, we still need to show that heap access semantics
are preserved. While object creation, which has been cov-
ered above, is obviously part of that, there is no assurance so
far that field access works correctly. The j reduction rule for
getting a field value is as follows:

P ' e,h,s ! ι ,h′
h′(ι)(f) = ι ′

P ' e. f ,h,s ! ι ′,h′
(13)

This means that heap content is simply checked at the
target object’s address, which, considering the definition of
new! above (8), indeed contains values for all its fields.

In the object-based machine model, fields, just like meth-
ods, are mapped to messages, where the message implemen-
tations are simply the field values. Hence, the Select rule
(cf. Sec. 2 (5)) should be applied. By construction of the pre-
pared heap (10), we know that the receiver of the message is
a proxy, hence the message implementation will be found in
the actual object. By the definition of Look (cf. Sec. 2 (3)),
this is indeed at h′(ι)(f). As we know the implementation
to already be an address, the last line of Select, evaluating
the implementation, can be ignored. Hence, the remainder is
equivalent to (13).

Field updates, which j handles in a straightforward way
by modifying the appropriate location on the heap, should
obviously be handled by replacing the corresponding mes-
sage implementation.

Other j Operations
j supports other operations besides method calls and field
access, such as testing for equality and an if-then-else con-
struct. However, as the machine model only supports objects
and messages, all these should be implemented as message
sends, in the spirit of purely object-oriented languages such
as Smalltalk. In such a scenario, their semantics are covered
by the previous discussion on method calls.

530

c1
C

foo = (...)
bar = (..., self foo, ...)

baz = (...)

actual_c1
x = ...
y = ...

proxy_C
...

(a) nothing introduced yet

c2 actual_c2
x = ...
y = ...

c1 C
foo = (...)

bar = (..., self foo, ...)
baz = (...)

actual_c1
x = ...
y = ...

proxy_C

...

(b) an aspect with introductions is deployed

c2 actual_c2
x = ...
y = ...

asp_int_proxy
f = (...)

msg = (...)

c1 C
foo = (...)

bar = (..., self foo, ...)
baz = (...)

actual_c1
x = ...
y = ...

proxy_C

...

(c) the field f has been introduced to c2

c2 actual_c2
x = ...
y = ...

asp_int_proxy
f = (...)

msg = (...)asp_int_c2
f = ...

Figure 8. Dynamic introduction of a field and a message
.

3.2 Inter-Type Declarations in ij
ij [21] is an extension of j which adds inter-type declarations.
More specifically, it allows classes to declare fields and
methods which actually belong to another class. To this end,
it provides a simple extension to the j syntax, as listed in
Lst. 2.

1

2

Listing 2. ij syntax.

Semantics for this construct are defined in [21] in terms
of a rather straightforward weaving approach: Initially, a
syntax transformation is applied, turning each into a

in the proper class. This results in a valid j program,
the semantics of which are known.

In our machine model, however, inter-type declarations
are supported directly, and in fact implemented as dynamic
introductions [12]. Each inter-type method declaration re-
sults in a new proxy object being created and inserted in the
delegation chain of the target class. For field introductions, a
class-wide method is added as well, execution of which re-
sults in another proxy, this time instance-local, to be dynam-
ically inserted in the delegation chain of the instance object
which received the message. All this is displayed in Fig. 8,
where in (b) actually just one class-wide proxy is inserted
for two introductions. While this is indeed a possible opti-
mization, we will assume here, for the sake of simplicity,
that each inter-type declaration results in a new proxy.

Method Introductions
We now need to verify that, given an inter-type declara-
tion , inserting a proxy with an
implementation for m results in the same behavior as if m

would have been declared in C’s class definition. Formally,
given a prepared heap hP such as (10) in Sec. 3.1, the effects
of this inter-type declaration are the following:

h′P = hP[ιip &→ !m : b"][Delιip &→ DelhP(C)][DelhP(C) &→ ιip]

where ιip is an unused address in hP. In other words, C’s
class proxy now delegates to the new proxy holding an
implementation for m, which in turn delegates to C’s original
method object.

Recalling the Look function (cf. Sec. 2 (3)), which is at
the heart of method call semantics in the delegation-based
model, it now becomes clear that this semantics is indeed
satisfactory: As Look recursively traverses the delegation
chain through the Del function, it will eventually encounter
m’s implementation when m is called on an instance of C.
Moreover, as the new proxy delegates to C’s original method
object, implementations of other methods defined by C will
still be found as well.

Note that these heap modifications do not take place at
runtime. Rather, they cause the prepared heap to have a
slightly different configuration at program start, mimicking
the static character of inter-type declarations in ij. However,
our machine model allows for similar delegation chain mod-
ifications during program execution as well, which occurs
for example in the context of field introductions.

Field Introductions
As hinted above, field introductions require an additional
step compared to method introductions. Consider an inter-
type field declaration . Its effects on a prepared
heap are similar at the first glance:

h′P = hP[ιip &→ ! f : bip"][Delιip &→ DelhP(C)][DelhP(C) &→ ιip]

Note, however, that bip, the implementation of the mes-
sage f , is this time not provided as part of the syntactic
program. Instead, it has specific semantics, resulting in the
installation of another proxy in the delegation chain of the
target object, which is available on the stack through this.
Formally, the semantics of its execution is as follows:

ιip′ /∈ dom(h)
h′ = h[ιip′ &→ ! f : null"]

ι = s(this)
h′′ = h′[Delιip′ &→ Delι][Delι &→ ιip′]

ι . f ,h′′,s !δ ι ′,h′′′
bι p,h,s !δ ι ′,h′′′

where we actually know that ι ′ = null and h′′′ = h′′, because
f being sent again will now encounter an implementation
at ιip′ , which is null, and hence trivially evaluates to itself
without modifying the heap.

The important observation, however, is that the method
implementation which is installed at ιip is only executed

531

at first field access, and eventually results in null being
returned, exactly as if the field had been declared as part of
C’s class definition, which would have resulted in it being
part of the prepared heap (cf. Sec. 3.1 (10)) and initialized
to null there. Semantics of new (cf. Sec. 3.1 (11)) would
then have copied it during cloning to become part of the
instance, where it would have been available immediately
at first access.

For all subsequent accesses, a similar argument as the one
for method introductions applies.

3.3 Before and After Advice in aj
aj [21] is an extension of j which adds support for before
and after advice at call, get and set join points. Since in
aj a call join point always coincides with an execution join
point, call actually represents both. Syntactically, aj adds the

, and constructs compared to j, as
displayed in Lst. 3.

1

2

3

4

5

6

7

Listing 3. aj syntax.

Additionally, it introduces the stack variables s for the caller
object, r for the target object and v for the new value of a
field update. These variables must only occur in an advice
body. Note that the original aj supports a limited form of
wildcards in pointcut specifications, but that feature is left
out for simplicity reasons.

Semantics are expressed in terms of a number of syntax
analyzing helper functions, which determine whether some
advice is applicable at field get, set or method call, and
execute it accordingly.

Our machine model, however, supports advice by insert-
ing a proxy in the delegation chain of the appropriate class,
as displayed in Fig. 9. Actually, this technique is sufficiently
powerful in order to support around advice with proceed as
well. Although this is not supported by aj, proceed is cov-
ered later on in Sec. 3.4 as part of cj, with essentially identi-
cal semantics as would be required here.

As the model currently does not keep track of type in-
formation for fields and methods, we will disregard the type
specifiers in a and hence assume that the method
or field name and its owning class uniquely determine a
method or field.

get Join Points
Semantics for getting a field’s value in aj are essentially
given by the reduction rule shown in Fig. 10 [21]. First, the
F!

t function is applied, which is similar to M! (cf. Sec. 3.1
(12)), except that it looks up a field’s declaration in a class
hierarchy, and returns the name of the class where it was

declared along with it, as shown in Fig. 11. Recall that the
type function [21] determines the dynamic type of an object.

Next, the advices! function computes a number of or-
dered sets of advice applicable at the join point in question.
The fact that there are multiple orderings to choose from is
due to there being no way to express dominance of one as-
pect over another. Hence the only requirement is that multi-
ple advice applying to the same join point and defined within
the same aspect should be executed in order of syntactical
appearance.

Each advice is uniquely identified by a symbol ai which
is used by the owningAspect function to determine which as-
pect that advice belongs to. This is important since the this
variable should, during advice execution, be bound to a sin-
gleton object which has memory for this aspect’s fields. This
implies a prepared heap, which is constructed as follows:

ha j
P = {C1 &→ ι1, . . . ,Cn &→ ιn,

ι1 &→ new!(P,C1), . . . , ιn &→ new!(P,Cn)}

where
∀i : Ci ∈ Aspects(P)
ι1 . . . ιn are unique

(15)

Note that this prepared heap is still part of the aj semantics
as defined in [21], and the fact that new! (cf. Sec. 3.1 (8)) can
be applied to an is due to the syntactical similarity
of and .

When the set of applicable advice has been determined,
all before advice is executed. During advice execution, be-
sides this, the s and r variables are made available on the
stack, and bound to the caller and target objects, respectively.

After all before advice has been executed, the actual field
value is fetched and finally all after advice is executed. Note
that it is the field value ι ′ which is indeed the result value of
the complete expression.

In our machine model, in order to obtain equivalent
semantics, a somewhat more extensive prepared heap is
needed, which starts out with a setup holding the contents of
(10) provided in Sec. 3.1 in order to support classes. In addi-
tion, it requires a singleton object for each aspect, but since
there is no reason for representing these as a combination of
a proxy and an actual object, aj semantics can be retained. If
we assume ι1 . . . ιn to be unused in the prepared heap of (10)
in Sec. 3.1, and aspects to have globally unique names, the
required prepared heap hP, so far, is intuitively the union of
(10) and (15).

However, this is not yet sufficient. In order to allow class-
wide advice for fields, we have to deal with the fact that field
messages are actually understood in instances, and hence
never reach proxies installed in the delegation chain of the
class. This problem can be solved by installing getter and
setter messages in the class’ method object, and ensuring
that field access is always performed via these accessor mes-
sages. Said messages can easily access the field value by

532

c

C
foo = (...)

bar = (..., self foo, ...)
baz = (...)

actual_c
x = ...
y = ...

proxy_C ...
asp_f_proxy

bar = (<advice>, resend)

Figure 9. Class-wide advice for bar applied.

P ' e,h,s ! ι ,h1
F!

t (P, type(h1, ι), f) = (T f ,C)
A1 . . .Ak ∈ advices!(P,be f ore,get(C. f))
Ak+1 . . .An ∈ advices!(P,a f ter,get(C. f))

∀i : Ai = ai : α get(C. f){ei}, owningAspect!(P,ai) = Oi
α ∈ {be f ore,a f ter}

P ' e1,h1,{s &→ s(this), r &→ ι , this &→ h1(O1)} ! ι1,h2
· · ·

P ' ek,hk,{s &→ s(this), r &→ ι , this &→ hk(Ok)} ! ιk,hk+1
hk+1(ι)(f) = ι ′

P ' ek+1,hk+1,{s &→ s(this), r &→ ι , this &→ hk+1(Ok+1)} ! ιk+1,hk+2
· · ·

P ' en,hn,{s &→ s(this), r &→ ι , this &→ hn(On)} ! ιn,hn+1
P ' e. f ,h,s ! ι ′,hn+1

(14)

Figure 10. Semantics for getting a field value in aj.

F!
t :: PROGRAM×CLSNAME× Identi f ier → FIELD×CLSNAME

F!
t (P,C, f) =

Unde f ined i f C = Object
(F,C) i f getFields(P,C)/{ f} = F

F!
t (P,super(P,C), f) i f getFields(P,C)/{ f} = ε

Unde f ined otherwise

Figure 11. F!
t function, looking up a field declaration in a class hierarchy, as well as the name of the class where the declaration

is found.

sending the actual field message to this. For example, the
getter method for a field f of a class C is now part of C’s
method object:

ιmeth &→ !m1 : b1, . . . ,mn : bn,getF : this. f , . . ."

Note that this does not require aj programs to provide
such accessor methods, but that the compiler should appro-
priately translate field access into the corresponding message
sends.

Finally, we can describe how advice applying to a join
point (where we disregard) affects the pre-
pared heap. This is shown in Fig. 12.

Basically, what happens is that each before advice is
translated to a proxy which understands the getter message
of the field in question. It provides an implementation which,
after execution of the actual advice body, resends the mes-
sage along the delegation chain until it reaches the original
getter implementation which returns the field value. Seman-
tics of resending a message are provided by the Resend re-

duction rule (cf. Sec. 2 (4)). after advice is treated identi-
cally, except for the fact that the resend now occurs prior to
execution of the advice body.

Furthermore, the heap also contains a function Asp,
which keeps track of the aspect each advice was defined
in. This is important in order to be able to properly bind this
during advice execution.

It should now be clear that, similarly to Sec. 3.2, the
existing semantics of the Select rule (cf. Sec. 2 (5)) and
the lookup algorithm incorporated in the Look function (cf.
Sec. 2 (3)) are essentially sufficient for properly executing
all before and after advice as well as the actual field access.
However, care should be taken to properly bind the stack
variables. Hence Select is slightly modified, as shown in
Fig. 13.

The Select rule is responsible for message sending in
general, and is oblivious as to whether it is executing advice
or a normal method. This is where the Asp function is useful,
as, in case of a method belonging to an advice proxy, it

533

h′P = hP[ιap,1 &→ !getF : e1;resend"][Delιap,1 &→ DelhP(C)][DelhP(C) &→ ιap,1]
· · ·
[ιap,k &→ !getF : ek;resend"][Delιap,k &→ DelhP(C)][DelhP(C) &→ ιap,k]
[ιap,k+1 &→ !getF : resend;ek+1"][Delιap,k+1 &→ DelhP(C)][DelhP(C) &→ ιap,k+1]
· · ·
[ιap,n &→ !getF : resend;en"][Delιap,n &→ DelhP(C)][DelhP(C) &→ ιap,n]
[Asp(ιap,1) &→ O1] . . . [Asp(ιap,n) &→ On]

where
ιap,1 . . . ιap,n are unique and ∀i : ιap,i /∈ dom(hP)
Ak . . .A1 ∈ advices!(P,be f ore,get(C. f))
Ak+1 . . .An ∈ advices!(P,a f ter,get(C. f))
∀i : Ai = ai : α get(C. f){ei}, Oi = owningAspect!(P,ai)
Asp : Address→ CLSNAME

α ∈ {be f ore,a f ter}

(16)

Figure 12. Updates to the prepared heap upon applying advice to a join point of the form

a,h,s !δ ι ,h′
Look(h′, ι ,m) = (b, ιd)

s′ =
{

{s &→ s(this), r &→ ι , this &→ h′(A),msg &→ m,cur &→ ιd} i f Asp(ιd) = A
{this &→ ι ,msg &→ m,cur &→ ιd} i f Asp(ιd) = Unde f ined

P ' b,h′,s′ !δ ι ′,h′′
P ' a.m,h,s !δ ι ′,h′′

Figure 13. Slight modification of Select, in order to correctly bind stack variables.

returns the name of the aspect to which that advice belongs,
and returns undefined otherwise. In case of advice, this, s
and r are bound to the owning aspect, sender and receiver
objects respectively, whereas in case of a normal method,
this is bound to the receiver while s and r are not available.

It is important to realize that the fundamentals of Select
remain untouched, as the only changes are related to a pa-
rameter to the recursive invocation of the rewrite function
!δ . Modification of the Look function, for example, would
imply that the delegation mechanism is inadequate, in which
case our model would be as well.

Resend semantics need to be adapted in a similar super-
ficial fashion as well, in order to correctly update this, and
to deal with the case where the next object in the delegation
chain which also understands the message is not an advice
proxy. Indeed, in that situation the special stack variables
lose their meaning, and moreover this should no longer be
bound to an aspect singleton, but to the original receiver,
which is stored in r. The modified Resend rule is shown in
Fig. 14.

The only requirement left to verify is advice ordering. As
explained before, it should be guaranteed that two advice
which are defined within the same aspect are executed in
their order of syntactical appearance.

For before advice, this means their corresponding proxies
should appear in the delegation chain in the same order.

For after advice, they should appear in reverse order, as the
proxy which resends first, will execute its advice last.

As deploy(proxy, target) inserts a proxy in the delegation
chain immediately after the target object, this implies the
proxy of the last before advice should be deployed first and
the proxy of the last after advice should be deployed last.
This is asserted in h′P (16) by first deploying before advice
proxies in reverse order (Ak . . .A1 are the before advice)
and then deploying after advice proxies in straight order
(Ak+1 . . .An are the after advice).

set Join Points
set join points are handled analogously to get join points,
except that setF should be used instead of getF , and hence
the Select variant with parameter support (cf. Sec. 2 (6)) is
relevant here.

call Join Points
In the high-level aj language, a call join point always corre-
sponds to an execution join point. For that reason, only call
is provided in the language. However, at the implementation
level, we have to decide whether to affect the caller object or
the receiver object. As our delegation-based machine model
supports execution join points in a natural way, the choice is
simple here. However, in case of languages which do have
a need to distinguish between call and execution join points

534

Look(h,Dels(cur),s(msg)) = (b, ιd)

s′ =
{

{this &→ s(r),msg &→ s(msg),cur &→ ιd} i f Asp(ιd) = Unde f ined
s[this &→ h(A)][cur &→ ιd] i f Asp(ιd) = A

P ' b,h,s′ !δ ι ,h′
P ' resend,h,s !δ ι ,h′

Figure 14. Modified Resend rule.

at the language level, support for call join points should be
available as well. This is considered future work.

Support for execution join points is analogous to get join
points, but slightly simpler. More specifically, the complica-
tion related to the extra getter methods is no longer required,
as methods are stored at class level anyway.

3.4 Context-Oriented Programming in cj
cj is our own contribution to the j language family. Unlike ij
and aj, cj implements the concepts of context-oriented pro-
gramming (COP) [5, 13], and is basically a subset of Con-
textJ [6]. Context-oriented programming helps developers
to modularize context-dependent behavior. Behavioral vari-
ations, or partial definitions of the underlying programming
system, are organized in layers where each layer aggregates
a context-dependent part of a system’s property or concern.
Layers can be activated and deactivated at runtime, based on
the system’s context of use. All context-dependent compo-
sitions are scoped such that only dedicated system parts are
affected, and only for a specific period of time, such as the
dynamic extent of a method execution.

cj is defined as an extension to j. The syntactic differences
are shown in Lst. 4.

1

2

3

4

5

6

7

8

9

10

Listing 4. cj syntax.

Layers can be partially defined at top level as well as class
level. A top level layer definition contains method definitions
that directly pertain to certain classes, hence the
rule is slightly modified to include the name of said class.
Class-level layers implicitly affect methods of the surround-
ing class, hence the class name in the rule is redun-
dant in this case. However, for simplicity and uniformity rea-
sons, it is more convenient to use one unique rule for method
definitions. The rule has been extended with withlayer
and withoutlayer expressions for activating and deactivating
a given layer, while proceed allows for proceeding execution
in the next layer or invoking the original method implemen-
tation. While s denotes the caller object just like in aj, an
additional thisLayer keyword is needed here. In code sur-

rounded by withlayer, it can be used to access layer fields,
while this is used to access fields belonging to the class the
code occurs in.

Note that, for the semantics, we can even go as far as to
assume a program contains only global layers. This is be-
cause a class layer, provided its methods are correctly quali-
fied with the name of the enclosing class, may be moved out
of the class while the program retains equivalent meaning.

Similarly, cj normally allows for layers to be composed of
different fragments. More precisely, it is syntactically pos-
sible to have several layer definitions with the same name
but containing different methods. Semantically, however,
that layer is equivalent to the union of all fragments, which
means the feature is just syntactic sugar for the case where
each layer is defined only once, as a whole. Therefore, this
facet can once more be ignored in semantics specification.

For illustration purposes, a cj code sample showing an
implementation of the well known observer pattern [9] is
listed in Lst. 5.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Listing 5. cj code sample of the observer pattern.

535

Its execution results in output of the number 25, but not
12. This is because the assignment of 12 happens outside
a withlayer block, and hence the method in the

layer is not executed. Upon assignment of 25,
however, the layer is active, hence the
method is eventually called, resulting in output.

We provide a formal semantics for cj as an extension of
the semantics of j [21].

Syntax Functions
For a layer L of the form L = layer C {D1 . . .Dn}, we define
its identifier as follows:

id : LAYER→ CLSNAME

id(L) = C

while its method definitions can be obtained through
getMethods [21], which works as well for a class
Z = class C ext C′ {D1 . . .Dn}:

getMethods : PROGRAM×CLSNAME → METHOD∗

getMethods(P,C) = D j1 . . .D jk

where
P/{C} = Ω{D1 . . .Dn}
Ω ∈ {layer C,class C ext C′}
1 ≤ j1 < jk ≤ n and ∀i : ji < ji+1
∀i : D ji ∈ METHOD

Recall that X/{q} is the domain restriction function [21, p.
50], which restricts a set of syntactic constructs X to the ones
containing an identifier q.

Layers is the set of names of all layers in a program:

Layers : PROGRAM → CLSNAME∗

Layers(ε) = φ
Layers(L :: P) = id(L) :: Layers(P)
Layers(Z :: P) = Layers(P)

where P ∈ PROGRAM, L ∈ LAYER and Z ∈ CLASS.

Dealing With Layers
When calling a method m on a certain object, lookup in-
volves more than just investigating the inheritance hierarchy
of that object’s dynamic type. Indeed, the method imple-
mentation found using the standard object-oriented lookup
strategy may be superseded by an identically named method
implementation in an active layer. Note that, for simplicity
reasons, we do not take the possibility of overloaded meth-
ods into account.

The layerMethod function, given a PROGRAM, a method
name, the name of its defining class and an ordered set of
(globally unique) names of active layers, looks for the first
applicable method implementation in one of these layers,

and returns it together with the name of the layer where it
was encountered, as shown in Fig. 15.

Operational Semantics
In the same style as j semantics, operational semantics for cj
are expressed by means of reduction rules, which manipulate
configurations consisting of a cj expression, a set of active
layers, a heap and a stack frame. More precisely, semantics
are defined by means of a function which calculates the value
of an expression in the context of a certain program and a set
of currently active layers. Additionally, the function returns
a potentially modified heap, which models side effects:

!: PROGRAM →
EXP×Heap×Stack×℘(CLSNAME)→

Address×Heap

The heap stores objects, which means it maps addresses
to an array of field values, while the stack holds values for
this, x, s and thisLayer.

Layer activation is done by means of the withlayer ex-
pression, for which the semantics are given below:

P ' e,h,s,{L1 . . .Ln,L} ! ι ,h′
P ' withlayer(L){e},h,s,{L1 . . .Ln} ! ι ,h′

It simply appends the specified layer name L to the ordered
set of currently active layers {L1 . . .Ln}, and evaluates the
body of the withlayer expression.

Analogously, the withoutlayer expression allows evalu-
ation of its body while temporarily deactivating a currently
active layer:

P ' e,h,s,L \{lyr ∈L |lyr = L} ! ι ,h′
P ' withoutlayer(L){e},h,s,L ! ι ,h′

Activating and/or deactivating multiple layers can be
achieved by nesting the appropriate expressions. Note that
withlayer semantics allows the same layer to be activated
multiple times, in which case withoutlayer semantics deac-
tivates them all.

thisLayer
During execution of a layer method, it is possible for that
method to access the singleton instance of its defining layer
by means of the thisLayer variable. It can be used to access
that layer’s fields. In order to model this semantically, we
assume a cj program always executes in the context of a pre-
pared heap. More specifically, as a layer closely resembles a
class syntactically, class instantiation semantics (cf. the new
expression in Sec. 3.1 (9)) can be applied to a layer in order
to obtain an object stored on the heap which maps the names
of the layer fields to values. Moreover, the definition of the
Heap function is slightly extended in order to allow these
singleton layer instances to be looked up by name:

Heap : (Address→ Ob ject)∪ (CLSNAME → Address)

536

layerMethod : PROGRAM× Identi f ier×CLSNAME×℘(CLSNAME)→ METHOD×CLSNAME

layerMethod(P,m,C,ε) = Unde f ined
layerMethod(P,m,C,{L1 . . .Lk}) =

(M,L1) i f L1 ∈ Layers(P) and ∃!i : getMethods(P,L1)/{m} =
M1 . . .Mi . . .Mn and Mi = T C.m(T ′ x){e}

layerMethod(P,m,C,{L2 . . .Lk}) otherwise

(17)

Figure 15. layerMethod function, which looks for a method matching a given method name in an active layer.

The prepared heap for a cj program is therefore defined as
follows:

hc j
P = {L1 &→ ι1, . . . ,Ln &→ ιn,

ι1 &→ new!(P,L1), . . . , ιn &→ new!(P,Ln)}

where
∀i : Li ∈ Layers(P)
ι1 . . . ιn are unique

(18)

Note that this requires layer names to be globally unique.

Method Call Semantics
Determining which layers are currently active, and in which
order their respective functionalities are to be applied, is ob-
viously a very important task during method lookup. This is
incorporated in the reduction rule shown in Fig. 16, express-
ing method call semantics.

As this rule is fundamental in order to understand cj
semantics, we will explain it in more detail. The first line
applies the semantics function recursively in order to obtain
the address of the target object for the call. Note that L is the
set of currently active layers, while e0 can be any valid ,
as far as its evaluation results in an address. In a similar way,
the second line calculates the value of the actual parameter
e1. Note that the calculations so far might have caused side
effects on the heap (e. g., if a subexpression of e0 or e1
involves field assignment), which is reflected by returning
differently named heap variables.

The third line performs traditional object-oriented lookup,
finding the method implementation to be executed in a con-
text where no layers are active. The M!

t function is a slight
variation of M! [21] which returns, apart from the relevant
method implementation, also the name of the class where it
was found. It is shown in Fig. 17.

The type and super functions are as in [21] and respec-
tively determine the name of the dynamic type of an object
and name of the super class of a class.

The fourth line of (19) uses the layerMethod function
from Sec. 3.4 in order to determine whether there is a method
implementation in a layer superseding the one found by M!

t .
If there is no such method, M2 will be undefined.

The next line invokes another auxiliary function called
actualMethod to select which method should ultimately be
executed. Basically, this is M2, unless that was undefined, in
which case M1 is selected:

actualMethod : METHOD×METHOD → METHOD

actualMethod(M1,M2) =
{

M1 i f M2 = Unde f ined
M2 otherwise

In case M1 is undefined as well, it is still selected, but execu-
tion will never happen since the result of actualMethod will
not have the required form T C.m(T ′ x){e}.

The last two lines, finally, are responsible for executing
the body of the selected method. First, the appropriate stack
variables are bound, including msg, which stores the current
message in order to deal with proceed semantics later on.
thisLayer and s, on the other hand, only have meaning in
layer methods.

Ultimately, execution takes place by recursively apply-
ing the semantics function, passing the newly created stack
frame. The result of this execution is returned as the result
value of the complete reduction rule.

Proceed Semantics
If method lookup results in selecting a layer method for
execution, the proceed expression may appear in its body,
which should result in executing the next applicable layer
method or (if there are none left) the method implementation
selected by standard object-oriented lookup (M1 in (19)). A
different argument may be passed along.

Its semantics are specified by the reduction rule in Fig. 18.
It looks very similar to the method call reduction rule, except
that the set of active layers is not considered in its entirety,
but merely those elements which appear after thisLayer,
which denotes the method currently being executed. Further-
more, note that this, s and msg remain unchanged, while x
and thisLayer are updated appropriately.

Mapping to the Machine Model
The main difference between j and cj lies in the latter’s sup-
port for layers, which can be dynamically activated and de-

537

P ' e0,h,s,L ! ι ,h′
P ' e1,h′,s,L ! ι ′,h′′

M!
t (P, type(h′′, ι),m) = (M1,C)

layerMethod(P,m,C,L) = (M2,L)
actualMethod(M1,M2) = T C.m(T ′ x){e}

s′ =
{

{this &→ ι ,msg &→ m,x &→ ι ′} i f M2 = Unde f ined
{s &→ s(this), thisLayer &→ h′′(L), this &→ ι ,msg &→ m,x &→ ι ′} otherwise

P ' e,h′′,s′,L ! ι ′′,h′′′
P ' e0.m(e1),h,s,L ! ι ′′,h′′′

(19)

Figure 16. Reduction rule expressing method call semantics.

M!
t : PROGRAM×CLSNAME× Identi f ier → METHOD×CLSNAME

M!
t (P,C,m) =

Unde f ined i f C = Object
(M,C) i f getMethods(P,C)/{m} = M

M!
t (P,super(P,C),m) i f getMethods(P,C)/{m} = ε

Unde f ined otherwise

Figure 17. M!
t function.

P ' e0,h,s,{L1 . . .Ln} ! ι ,h′
∃i : type(h′,s(thisLayer)) = Li

M!
t (P, type(h′,s(this)),s(msg)) = (M1,C)

layerMethod(P,s(msg),C,{Li+1 . . .Ln}) = (M2,L)
actualMethod(M1,M2) = T C.m(T ′ x){e}

s′ =
{

{this &→ s(this),msg &→ s(msg),x &→ ι} i f M2 = Unde f ined
s[thisLayer &→ h′(L)][x &→ ι] otherwise

P ' e,h′,s′,{L1 . . .Ln} ! ι ′,h′′
P ' proceed(e0),h,s,{L1 . . .Ln} ! ι ′,h′′

(20)

Figure 18. Reduction rule expressing proceed semantics.

activated. Actually, code outside a withlayer block is exe-
cuted strictly according to the j semantics. withlayer, how-
ever, activates a certain layer, causing the methods specified
in that layer to shadow the corresponding class methods. cj
semantics handle this by utilizing a number of helper func-
tions analyzing the syntax and determining the applicable
method, based on an ordered set of active layers.

Our machine model, on the other hand, once more takes
advantage of the built-in delegation principle in order to es-
tablish the desired behavior. This requires a correct arrange-
ment of delegation chains on the heap upon layer activation
and deactivation.

At program start, no layers are active yet, so the heap
should initially be prepared in the same way as (10) for j
in Sec. 3.1. However, similarly to aspects in Sec. 3.3, layers
support fields that may be accessed by layer methods. Hence,
a singleton object for each layer is stored on the prepared
heap as well, as shown in (18). In summary, the required
prepared heap is intuitively the union of (10) and (18). We

assume there to be no overlaps of their respective address
spaces.

Upon activation of a certain layer via withlayer, a layer
proxy is created for each layer method. The proxy contains
that method’s implementation, and is inserted in the delega-
tion chain of the targeted class. An example of the resulting
situation is displayed in Fig. 19. After executing the last in-
struction of the withlayer block, layer proxies are removed
again. Hence, the delegation-based semantics of withlayer
are as shown in Fig. 20, where Lyr : Address → CLSNAME is
a function which is stored on the heap, and keeps track of
which layer the proxies are associated with. This is neces-
sary in order to be able to deactivate a certain layer, which
should happen as a result of the withoutlayer expression,
which may appear in a withlayer block. Its semantics are

538

getMethods(P,L) = M1 . . .Mn
∀i : Mi = Ti Ci.mi(T ′

i x){ei}
∀k ∈ [1,n] : ιl p,k /∈ dom(h)

h′ = h[ιl p,1 &→ !m1 : e1"][Delιl p,1 &→ Delh(C1)][Delh(C1) &→ ιl p,1]
· · ·
[ιl p,n &→ !mn : en"][Delιl p,n &→ Delh(Cn)][Delh(Cn) &→ ιl p,n]
[Lyr(ιl p,1) &→ L] . . . [Lyr(ιl p,n) &→ L]

P ' e,h′,s !δ ι ,h′′
h′′′ = h′′[Delh(C1) &→ Delιl p,1] . . . [Delh(Cn) &→ Delιl p,n]

P ' withlayer(L){e},h,s !δ ι ,h′′′

Figure 20. Delegation-based semantics of withlayer.

Figure 19. A layer which shadows method m1 in Class1
and m5 in Class2 has been activated. Class3 is not affected.

expressed by the following reduction rule:

{ι1, . . . , ιn} = {ι ′ ∈ dom(h)|Lyr(ι ′) = L}
∀i : ∃!ιCi : DelιCi

= ιi

h′ = h[DelιC1
&→ Delι1] . . . [DelιCn

&→ Delιn]
P ' e,h′,s !δ ι ,h′′

h′′′ = h′′[DelιC1
&→ ι1] . . . [DelιCn

&→ ιn]
P ' withoutlayer(L){e},h,s !δ ι ,h′′′

Essentially, all proxies belonging to the specified layer
are temporarily removed from the delegation chain of the
class they apply to, and reinserted after execution of the
withoutlayer block is finished.

By construction, the existing Select semantics (cf. Sec. 2
(6)) once more suffice to select the correct method imple-
mentation: If a method is shadowed by an active layer, the
corresponding proxy will be in place, and it will intercept
the message before it reaches its target. Nevertheless, sim-
ilarly to Sec. 3.3, Select semantics do need a slight adapta-
tion in order to correctly bind the stack variables s, which
denotes the caller object, and thisLayer, which may be used
in a layer method to access layer fields. The modified Select
rule is shown in Fig. 21.

Note that, unlike before and after advice in Sec. 3.3,
messages are not resent by default. In concordance with
context-oriented programming principles, they completely
shadow the corresponding class method, unless the layer
method explicitly includes the proceed expression in its
body. cj semantics for proceed, as defined by (20), use the
thisLayer stack variable to determine which layer the current
layer method pertains to. Next, an attempt is made to find a
layer that also contains an applicable layer method, and that
was activated later than the current layer. If successful, said
method is executed. If not, the originally shadowed method
is executed.

In the delegation-based model, however, this is, by con-
struction, exactly the order in which the Resend rule (cf.
Sec. 2 (7)) executes methods. Hence, proceed simply maps
to resend:

P ' resend(e),h,s !δ ι ,h′
P ' proceed(e),h,s !δ ι ,h′

where the Resend rule has been slightly modified in order to
correctly update thisLayer, as shown in Fig. 22.

Note that, although the aj language does not support
around advice (cf. Sec. 3.3), it could be added straightfor-
wardly using a similar proceed instruction, with essentially
identical semantics.

4. Related Work
A substantial amount of other work deals with the formal-
ization of aspect-oriented programming. Aspectual CAML
[16] is an aspect-oriented extension to OCAML, with join
points for typical functional features such as curried func-
tion calls and variant construction, as well as support for
inter-type declarations. A compiler translates an Aspectual
CAML program into an OCAML one, where function bod-
ies are modified to call advice. This is similar to the original
ij semantics by Skipper [21], where an ij program is trans-
lated into a j program.

The Aspect Sand Box [15] is an experimental workbench
for different styles of aspect-oriented programming, cen-
tered on a small object-oriented base language, called BASE,

539

e0,h,s !δ ι ,h′
e1,h′,s !δ ι ′,h′′

Look(h′′, ι ,m) = (b, ιd)

s′ =
{

{s &→ s(this), thisLayer &→ h′′(L), this &→ ι ,msg &→ m,x &→ ι ′,cur &→ ιd} i f Lyr(ιd) = L
{this &→ ι ,msg &→ m,x &→ ι ′,cur &→ ιd} i f Lyr(ιd) = Unde f ined

P ' b,h′′,s′ !δ ι ′′,h′′′
P ' e0.m(e1),h,s !δ ι ′′,h′′′

Figure 21. Modified Select rule, ensuring correct binding of stack variables.

e,h,s !δ ι ,h′
Look(h′,Dels(cur),s(msg)) = (b, ιd)

s′ =
{

s[thisLayer &→ h′(L)][x &→ ι][cur &→ ιd] i f Lyr(ιd) = L
s[x &→ ι][cur &→ ιd] otherwise

P ' b,h′,s′ !δ ι ′,h′′
P ' resend(e),h,s !δ ι ′,h′′

Figure 22. Modified Resend rule.

which is extended with aspect-oriented features. Wand et al.
[24] consider a procedural subset of BASE in order to inves-
tigate the formal semantics of a number of aspect-oriented
features, including dynamic join points, pointcut designators
and before, after and around advice. A monadic semantics is
used, which explicitly models a weaving approach: At each
procedure call, the weaver is invoked, taking a list of ad-
vice and a join point. The weaver determines which advice
are applicable, and results in a new procedure, wrapping the
original procedure in all of the applicable advice.

The Common Aspect Semantics Base [8] takes a similar
approach, but applies a two-stage function at every join
point, first checking whether the current instruction should
be advised, and then verifying whether the present dynamic
state calls for advice application.

Clifton and Leavens [4] introduce MiniMAO0, a small
object-oriented language for which an operational seman-
tics is provided. The aspect-oriented MiniMAO1 extension
mimicks AspectJ’s semantics of around advice on call and
execution join points. Advice invocation occurs in several
steps, essentially modeling a weaver: join points are created
explicitly for each call, a list of applicable advice is searched
for and finally evaluated. Interestingly, the authors state that
they regard advice binding to be a primitive operation, simi-
lar to the object-oriented virtual dispatch mechanism. In our
delegation-based semantics, however, advice invocation ac-
tually becomes part of virtual dispatch, every message send
being a join point implicitly.

In [1], Aldrich introduces TinyAspect, a language with
pointcuts and around advice. In the formal semantics, func-
tion calls are replaced by calls to applicable advice, where
occurences of proceed are replaced by calls to the original
function.

These explicit weaving approaches, whether they stati-
cally generate an aspect-free program, or dynamically in-
voke advice lookup strategies, have the disadvantage that
aspect-oriented features are implemented as add-ons to a
base which cannot deal with them directly. In fact, a weav-
ing approach is encountered as well in the semantics of aj
as defined originally by Skipper [21], as can be derived
from Fig. 10 in Sec. 3.3, which also performs explicit ad-
vice lookup. Our work, however, shows that such helper con-
structs can be avoided by mapping mechanisms such as ad-
vice lookup onto a machine model, which solely relies on
delegation and message sending, and reuses the existing dis-
patch strategy. Call join points, however, are currently not
supported by our model.

Walker et al. [23] also use an intermediate model with
inherent support for aspects. More specifically, their aspect-
oriented core calculus is an extension of lambda calculus,
which adds labeled join points and advice at those join
points. Advice invocation is handled once more explicitly,
as a list of advice is checked at each named join point and
a composed function of all applicable advice is created and
called. A language MinAML, which distinguishes between
before, after and around advice, is then introduced, in or-
der to show that these features can be translated to the core
calculus. To this end, labeled join points are explicitly intro-
duced at function entry and exit, where before advice applies
to the former, and after advice to the latter. around advice is
handled by means of a goto mechanism which allows jump-
ing directly to a labeled join point. Ultimately, all this means
that the explicit advice invocation mechanism is still present
in the MinAML semantics. In [7], the AspectML language
is translated to the core calculus in a similar way. In contrast
to our work, the core calculus of Walker et al. does include

540

a type system, which is considered future work here. Ad-
ditionally, complex pointcut specifications, including cflow,
are supported, while we did not yet cover a language exhibit-
ing those features, although our machine model itself has the
ability to handle cflow [12].

Lämmel [14] observes that method call interception
(MCI), which can be regarded as a more explicit form of
delegation, is a powerful construct which can capture several
aspect-oriented features. However, he proposes to introduce
this as a language construct, at the same level as (virtual)
method invocation. This is different from our work, where
delegation is part of the machine model, but not necessarily
of high-level aspect-oriented languages which are translated
to it.

Composition filters [3] is another approach which ex-
ploits the language level, rather than the machine level. Here,
outgoing as well as incoming messages pass through a num-
ber of filters, which may for example reroute dispatch. Del-
egation is mentioned as a possible application.

In summary, our approach is unique in the sense that se-
mantics of aspect-oriented features are expressed in terms
of a machine model, which seamlessly incorporates aspect-
orientation as opposed to explicitly modeling advice invo-
cation. While this is clearly beneficial to understandability,
another advantage of our approach is in the implementation
of an aspect-oriented virtual machine, which may be sim-
plified as well as explicit helper mechanisms such as advice
lookup can be avoided.

Implementation-wise, a number of projects are concerned
with virtual machine support for aspect-orientation [19, 20,
11, 10, 22]. Among these, PROSE 2 [20] is the only one to
adopt, like our machine model, a view on the running appli-
cation that explicitly regards all points in the execution as
potential join points by default. This is realized by instru-
menting the implementation to call an AOP infrastructure
at each potential join point, and having the infrastructure
explicitly check for the applicability of advice. Our model,
conversely, is based on implicitly executing advice by means
of message interception and dynamically updating delega-
tion chains.

5. Summary and Future Work
We have presented semantic mappings from four high-level
programming languages, j, ij, aj and cj to our previously in-
troduced machine model. Additionally, we explained infor-
mally that our model correctly supports the various mecha-
nisms which are included in these languages in order to ad-
dress crosscutting concerns. Hence, the model is shown to
be sufficiently expressive to meet the requirements of differ-
ent languages with different approaches to modularization.
Moreover, as the semantics used in this paper are opera-
tional, the mappings suggest how an implementation of these
languages based on our model can be derived. A prototypi-
cal implementation of all four languages on top of an imple-

mentation of the model has indeed been realized as well. The
paper has introduced a formal semantics for cj, a language
supporting context-oriented programming, and essentially a
subset of ContextJ.

There are several areas of future work. The semantic map-
pings presented here need to be extended with features such
as parameter overloading and type soundness. To that end,
the formal semantics of our model needs to be extended with
type information. Additionally, a formal proof will be pro-
vided for the claim that the semantic mappings are behav-
ior preserving. A proof-of-concept implementation of our
model is already in place, and the languages for which se-
mantics have been presented above have been implemented
using this implementation. The focus in devising these lan-
guage implementations has been on faithfully adopting their
semantics instead of providing high performance. Whereas
this work shows that the language mappings can be done
correctly, we intend to demonstrate that this can be done in
an efficient manner as well. Dedicated caching mechanisms
to deal with message lookup, and garbage collection strate-
gies to deal with the large amount of small (proxy) objects,
are a worthwhile path to investigate. The model itself is be-
ing investigated further, especially regarding the support of
additional constructs such as call join points.

References
[1] Jonathan Aldrich. Open Modules: A Proposal for Modular

Reasoning in Aspect-oriented Programming. In Foundations
of Aspect Languages, 2004.

[2] Christopher Anderson and Sophia Drossopoulou. δ – An
Imperative Object-based Calculus with Delegation. In Proc.
USE’02, Malaga, 2002.

[3] Lodewijk Bergmans and Mehmet Aksit. Composing
Crosscutting Concerns Using Composition Filters. Commun.
ACM, 44(10):51–57, 2001.

[4] Curtis Clifton and Gary T. Leavens. MiniMAO1 – An
Imperative Core Language for Studying Aspect-oriented
Reasonings. Sci. Comput. Program., 63(3):321–374, 2006.

[5] Pascal Costanza and Robert Hirschfeld. Language Con-
structs for Context-oriented Programming: An Overview of
ContextL. In Dynamic Languages Symposium (DLS) ’05,
co-organised with OOPSLA’05. ACM Press, 2005.

[6] Pascal Costanza, Robert Hirschfeld, and Wolfgang De
Meuter. Efficient Layer Activation for Switching Context-
dependent Behavior. In JMLC, pages 84–103, 2006.

[7] Daniel S. Dantas, David Walker, Geoffrey Washburn, and
Stephanie Weirich. AspectML: A polymorphic aspect-
oriented functional programming language. ACM Trans.
Program. Lang. Syst., 30(3):1–60, 2008.

[8] Simplice Djoko Djoko, Remi Douence, Pascal Fradet, and
Didier Le Botlan. CASB: Common Aspect Semantics Base.
Technical Report AOSD-Europe Deliverable D41, AOSD-
Europe-INRIA-7, INRIA, France, 10 February 2006.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John

541

Vlissides. Design Patterns — Elements of Reusable Object-
oriented Software. Addison-Wesley, 1994.

[10] Michael Haupt. Virtual Machine Support for Aspect-oriented
Programming Languages. PhD thesis, Software Technology
Group, Darmstadt University of Technology, 2006.

[11] Michael Haupt, Mira Mezini, Christoph Bockisch, Tom
Dinkelaker, Michael Eichberg, and Michael Krebs. An Ex-
ecution Layer for Aspect-oriented Programming Languages.
In Proc. VEE 2005. ACM Press, June 2005.

[12] Michael Haupt and Hans Schippers. A Machine Model for
Aspect-oriented Programming. In ECOOP 2007 - Object-
oriented Programming, 21st European Conference, Berlin,
Germany, July 30 - August 3, 2007, Proceedings, volume
4609 of Lecture Notes in Computer Science, pages 501–524.
Springer, 2007.

[13] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz.
Context-oriented Programming. Journal of Object Technol-
ogy (JOT), 7(3):125–151, March-April 2008.

[14] Ralf Lämmel. A Semantical Approach to Method-call
Interception. In Proc. AOSD’02, pages 41–55. ACM Press,
2002.

[15] Hidehiko Masuhara and Gregor Kiczales. Modeling Cross-
cutting in Aspect-oriented Mechanisms. In Luca Cardelli,
editor, ECOOP, volume 2743 of Lecture Notes in Computer
Science, pages 2–28. Springer, 2003.

[16] Hidehiko Masuhara, Hideaki Tatsuzawa, and Akinori
Yonezawa. Aspectual Caml – An Aspect-oriented Func-
tional Language. In ICFP ’05: Proceedings of the tenth ACM
SIGPLAN international conference on Functional program-
ming, pages 320–330, New York, NY, USA, 2005. ACM.

[17] Todd D. Millstein and Craig Chambers. Modular Statically
Typed Multimethods. In ECOOP ’99: Proceedings of the
13th European Conference on Object-oriented Programming,
pages 279–303, London, UK, 1999. Springer-Verlag.

[18] Harold Ossher. A Direction for Research on Virtual Machine
Support for Concern Composition. In Proc. Workshop VMIL
’07. ACM Press, 2007.

[19] Andrei Popovici, Thomas Gross, and Gustavo Alonso.
Dynamic Weaving for Aspect-oriented Programming. In
Gregor Kiczales, editor, Proc. AOSD 2002. ACM Press,
2002.

[20] Andrei Popovici, Thomas Gross, and Gustavo Alonso. Just-
in-Time Aspects. In Proc. AOSD 2003. ACM Press, 2003.

[21] Mark C. Skipper. Formal Models for Aspect-oriented
Software Development. PhD thesis, Imperial College,
London, 2004.

[22] Eric Tanter and Jacques Noyé. A Versatile Kernel for Multi-
Language AOP. In Proc. GPCE’05. Springer, 2005.

[23] David Walker, Steve Zdancewic, and Jay Ligatti. A Theory
of Aspects. In ICFP ’03: Proceedings of the eighth
ACM SIGPLAN international conference on Functional
programming, pages 127–139, New York, NY, USA, 2003.
ACM.

[24] Mitchell Wand, Gregor Kiczales, and Christopher Dutchyn.
A Semantics for Advice and Dynamic Join Points in Aspect-
oriented Programming. ACM Trans. Program. Lang. Syst.,
26(5):890–910, 2004.

542

A. Errata
Sec. 2.2 (1): Syntax construct ’;’ was not introduced, should be substituted:

a,σ !δ ι ,σ ′

ι ′ /∈ dom(σ ′)
σ ′′ = σ ′[ι ′ #→ σ ′(ι)][Delι ′ #→ Delι]

ι ′′ /∈ dom(σ ′′)
σ ′′′ = σ ′′[ι ′′ #→ !"][Delι ′′ #→ ι ′]

clone(a),σ !δ ι ′′,σ ′′′

Fig. 5: ’#→’ is more appropriate than ’=’:

h j
P = {C1 #→ ιproxy,1, . . . ,Cn #→ ιproxy,n,ClPt(C1) #→ ι1, . . .ClPt(Cn) #→ ιn,

ι1 #→ ! f1,1 : null . . . f1,k1 : null", . . . , ιn #→ ! fn,1 : null . . . fn,kn : null",
ιproxy,1 #→ !", . . . , ιproxy,n #→ !",
ιmeth,1 #→ !m1,1 : b1,1, . . . ,m1,p1 : b1,p1", . . . , ιmeth,n #→ !mn,1 : bn,1, . . . ,mn,pn : bn,pn",
Delι1 #→ ιproxy,1, . . . ,Delιn #→ ιproxy,n,
Delιproxy,1 #→ ιmeth,1, . . . ,Delιproxy,n #→ ιmeth,n,

Delιmeth,1 #→ h j
P(super!(P,C1)), . . . ,Delιmeth,n #→ h j

P(super!(P,Cn))}

where
∀i : Ci ∈Classes(P),AllFields(P,Ci) = fi,1 . . . fi,ki ,∀ j : T mi, j(T ′ x){ bi, j} ∈ getMethods(Ci)
ClPt : CLSNAME→ Address
ι1 . . . ιn, ιproxy,1 . . . ιproxy,n, ιmeth,1 . . . ιmeth,n are unique

p. 10, col. 2, l. 3: As deploy(proxy, target) inserts a proxy in the delegation chain immediately after the target object
⇒ As proxies are inserted in the delegation chain immediately after the target object

p. 12, withlayer: In order to align with delegation-based semantics, prepend instead of append layers:
It simply appends ⇒ It simply prepends

P ' e,h,s, { L,L1 . . .Ln} ! ι ,h′
P ' withlayer(L){ e} ,h,s, { L1 . . .Ln} ! ι ,h′

Fig. 20: It is safer to rewire the Del function in reverse order at the end:

getMethods(P,L) = M1 . . .Mn
∀i : Mi = Ti Ci.mi(T ′

i x){ ei}
∀k ∈ [1,n] : ιl p,k /∈ dom(h)

h′ = h[ιl p,1 #→ !m1 : e1"][Delιl p,1 #→ Delh(C1)][Delh(C1) #→ ιl p,1]
ááá
[ιl p,n #→ !mn : en"][Delιl p,n #→ Delh(Cn)][Delh(Cn) #→ ιl p,n]
[Lyr(ιl p,1) #→ L] . . . [Lyr(ιl p,n) #→ L]

P ' e,h′,s !δ ι ,h′′
h′′′ = h′′[Delh(Cn) #→ Delιl p,n] . . . [Delh(C1) #→ Delιl p,1]

P ' withlayer(L){ e} ,h,s !δ ι ,h′′′

p. 15, withoutlayer: It is safer to rewire the Del function in reverse order at the end:

{ ι1, . . . , ιn} = { ι ′ ∈ dom(h)|Lyr(ι ′) = L}
∀i : ∃!ιCi : DelιCi

= ιi

h′ = h[DelιC1
#→ Delι1] . . . [DelιCn

#→ Delιn]
P ' e,h′,s !δ ι ,h′′

h′′′ = h′′[DelιCn
#→ ιn] . . . [DelιC1

#→ ι1]
P ' withoutlayer(L){ e} ,h,s !δ ι ,h′′′

p. 15, col. 2, l. 10: that was activated later than the current layer ⇒ that was activated prior to the current layer

