
10.2 summary 121

CoExist reduces the need to prevent recovery because it makes re-
covery fast and easy to accomplish problems. The presented tools
would have helped the student in the reported case example to with-
draw recent changes and start over from a previous development
state. Easy and fast recovery is made possible by continuously ver-
sioning the source code based on its structure. The automatically
recorded meta-information about each change helps users to rapidly
identify a previous versions of interest. With that, recovery becomes
inexpensive and programmers have reduced need to rely on best prac-
tices.

CoExist is implemented by versioning meta-objects. With that, it
provides full and immediate access to previous development states.
To reduce overhead, meta-objects are shared among versions. Shar-
ing classes and compiled methods is enabled by making classes late
bound, which required changes to the compiler and VM. A perfor-
mance evalution indicates that access to previous versions is suffi-
ciently fast for frequent use and that the required memory overhead
is acceptable.

Recovery support such as CoExist has considerable effects on cog-
nition during explorative programming tasks. The reduced need for
problem prevention decreases the mental workload and the need for
self-control. Low recovery costs further enable programmers to sep-
arate creative from analytical concerns. Even more, it encourages
programmers to make changes as a means to learn and reflect about
ideas.

In a controlled lab study, 22 participants improved the design of
two different applications. Using a repeated measurement setup, the
study examined the effect of CoExist as additional tool support on
programming performance. The results of analyzing 88 hours of pro-
gramming suggest that built-in recovery support such as provided
with CoExist increases programming performance in explorative pro-
gramming tasks.

CoExist fills a gap between conventional undo/redo of text editors
and VCS. Like undo/redo, no explicit control is required; it runs con-
tinuously in the background. Like VCS, the scope of the history is not
restricted to invididual files; CoExist versions the entire development
state, even independent of project boundaries. Furthermore, while
the developed concepts and tools are related to previous concepts
and tools, they are notably different in their support for recovery
needs.



122 conclusion

10.3 future work

CoExist is a first step in providing a rich set of tools supporting an
explore-first programming approach. The following paragraphs out-
line directions how the presented work can be advanced.

10.3.1 Continuous Versioning

In a “live system” such as a typical Smalltalk environment, appli-
cations keep running while their implementation is changed. The
Smalltalk environment makes this possible by automatically migrat-
ing the application state after structural changes to source code. A
possible improvement could involve snapshotting the state of the run-
ning application alongside its source code and meta-objects. With this
snapshotting in place, going to different version would immediately
bring back the application to the state it was when the version was
created.

10.3.2 Juxtaposing Versions

Juxtaposing multiple versions currently consists in getting a main
window presenting the current version and one sub-window for each
different version to juxtapose. This setup works fine when the pro-
grammer wants to browse the source code of multiple versions at
once. Nevertheless, this setup could be improved in cases where a
programmer wants to see the changes for a particular program el-
ement (such as a class or a method). For these cases, future work
could provide programming tools dedicated to presenting multiple
versions of one program element. For example, a code browser could
present synchronized views of the same element in different versions.

Beyond comparing static information, tools could provide compar-
isons of dynamic data such as object states and call trees. These data
could be gathered during program and unit-test execution and then
presented to the programmer [58]. These tools would help the pro-
grammer understand the impact of a set of changes on the execution.
In the spirit of what Bret Victor proposes with dynamic pictures [89],
this idea could be expanded with comparison of application output.
For example, in the context of a game, tools could show the differ-
ences between two versions of an animation.



10.3 future work 123

10.3.3 Fine-grained Back-in-Time Impact Analysis

Beyond unit test results, CoExist’s infrastructure for running compu-
tations for each version could be extended for use cases beyond unit
tests.

performance feedback . While run-time performance can be
important, programmers typically ignore performance during an ini-
tial implementation and consider performance only when it becomes
critical. Nevertheless, when the application is already optimized for
speed, programmers must pay attention that new changes do not de-
grade performance. As with bug squashing, automated continuous
performance analysis could help a programmer find the change that
slowed-down the application.

quality feedback . Quality-management platforms, such as
Sonar,1 help developers manage code quality by combining metrics
and visualizations. These platforms are automatically triggered upon
commits. Our approach could bring these platforms to a next level by
providing change-level instead of commit-level feedback. The metrics
and visualizations could then be integrated within the development
environment to provide on-demand feedback about the quality im-
provement (or decrease) of the not-yet-committed changes.

10.3.4 Re-assembling Changes into Incremental Improvements

CoExist enables programmers to select and re-apply individual
changes to any version. This feature allows for extracting incremental
improvements that are spread over a set of many changes. Neverthe-
less, CoExist does not detect dependencies between changes which
makes the feature less than ideal to use. For example, CoExist could
automatically apply the class-creation change when the programmer
wants to apply a method-creation change to a version that does not
contain the corresponding class. This kind of support can further
be improved by detecting behavioral dependencies. For example, a
method change often depends on other method changes to make the
application compile and behave properly. Besides static analysis, Co-
Exist could leverage the results of the continuously ran unit tests to
detect such dependencies.

1 http://www.sonarsource.org/

http://www.sonarsource.org/




B I B L I O G R A P H Y

[1] Adam L. Alter and Daniel M. Oppenheimer. Uniting the tribes
of fluency to form a metacognitive nation. Personality and Social
Psychology Review, 13(3):219–235, 2009.

[2] F Gregory Ashby, Alice M Isen, et al. A neuropsychological the-
ory of positive affect and its influence on cognition. Psychological
review, 106(3):529, 1999.

[3] Carliss Y. Baldwin and Kim B. Clark. Design rules: The power of
modularity, volume 1. The MIT Press, 2000.

[4] Roy F. Baumeister, Ellen Bratslavsky, Mark Muraven, and Di-
anne M. Tice. Ego depletion: Is the active self a limited resource?
Journal of personality and social psychology, 74(5):1252, 1998.

[5] Roy F. Baumeister, Kathleen D. Vohs, and Dianne M. Tice. The
strength model of self-control. Current directions in psychological
science, 16(6):351–355, 2007.

[6] Kent Beck. Smalltalk Best Practice Patterns. Volume 1: Coding. Pren-
tice Hall, Englewood Cliffs, NJ, 1997.

[7] Kent Beck. Test-driven development: by example. Addison-Wesley
Professional, 2003.

[8] Kent Beck and Cynthia Andres. Extreme Programming Explained:
Embrace Change. Addison-Wesley Longman, 2004. ISBN 978-
0321278654.

[9] Sian L. Beilock and Thomas H. Carr. When high-powered people
fail working memory and “choking under pressure” in math.
Psychological Science, 16(2):101–105, 2005.

[10] Lenoid Berov, Johannes Henning, Toni Mattis, Patrick Rein,
Robin Schreiberand Eric Seckler, Bastian Steinert, and Robert
Hirschfeld. Vereinfachung der entwicklung von geschäftsanwen-
dungen durch konsolidierung von programmierkonzepten und
-technologien. Technical report, Hasso-Plattner-Institute, 2013.

[11] Zafer Bilda and John S. Gero. The impact of working memory
limitations on the design process during conceptualization. De-
sign Studies, 28(4), 2007. doi: 10.1016/j.destud.2007.02.005.

125



126 bibliography

[12] Alan F. Blackwell. What is programming. In 14th workshop of the
Psychology of Programming Interest Group, pages 204–218. Citeseer,
2002.

[13] Annette Bolte, Thomas Goschke, and Julius Kuhl. Emotion and
intuition effects of positive and negative mood on implicit judg-
ments of semantic coherence. Psychological Science, 14(5):416–421,
2003.

[14] Scott Chacon. Pro git. Apress, 2009.

[15] Bo T. Christensen and Christian D. Schunn. The role and impact
of mental simulation in design. Applied cognitive psychology, 23

(3), 2009.

[16] Nigel Cross. Design cognition: Results from protocol and other
empirical studies of design activity. Design knowing and learning:
Cognition in design education, 2001.

[17] Peter DeGrace and Leslie Hulet Stahl. Wicked problems, righ-
teous solutions: a catalogue of modern software engineering paradigms.
Yourdon Press, 1990. ISBN 978-0135901267.

[18] Marcus Denker, Tudor Gîrba, Adrian Lienhard, Oscar Nierstrasz,
Lukas Renggli, and Pascal Zumkehr. Encapsulating and exploit-
ing change with Changeboxes. In ICDL’07: International Confer-
ence on Dynamic Languages, 2007. ISBN 978-1-60558-084-5. doi:
10.1145/1352678.1352681.

[19] Edsger W. Dijkstra. On the role of scientific thought. In Se-
lected Writings on Computing: A Personal Perspective, pages 60–66.
Springer, 1982.

[20] Kees Dorst and Nigel Cross. Creativity in the design process:
co-evolution of problem-solution. Design Studies, 22(5), 2001.

[21] S.P. Dow, A. Glassco, J. Kass, M. Schwarz, D.L. Schwartz, and
S.R. Klemmer. Parallel prototyping leads to better design results,
more divergence, and increased self-efficacy. ACM Transactions
on Computer-Human Interaction (TOCHI), 17(4):18, 2010.

[22] Steven P. Dow, Kate Heddleston, and Scott R. Klemmer. The
efficacy of prototyping under time constraints. In Conference on
Creativity and Cognition, 2009.

[23] Peter Ebraert, Jorge Vallejos, Pascal Costanza, Ellen Van Paess-
chen, and Theo D’Hondt. Change-oriented software engineer-
ing. In Proceedings of the 2007 International Conference on Dynamic
languages: In Conjunction with the 15th International Smalltalk Joint
Conference 2007, pages 3–24. ACM, 2007.



bibliography 127

[24] Jonathan St BT. Evans. Dual-processing accounts of reasoning,
judgment, and social cognition. Annu. Rev. Psychol., 59:255–278,
2008.

[25] Jeanne Farrington. Seven plus or minus two. Performance Im-
provement Quarterly, 23(4), 2011. doi: 10.1002/piq.20099.

[26] Baruch Fischhoff. Hindsight is not equal to foresight: The effect
of outcome knowledge on judgment under uncertainty. Journal
of Experimental Psychology: Human perception and performance, 1(3):
288, 1975.

[27] Joseph P Forgas and Rebekah East. On being happy and gullible:
Mood effects on skepticism and the detection of deception. Jour-
nal of Experimental Social Psychology, 44(5):1362–1367, 2008.

[28] Apache Software Foundation. Subversion best practices,
2009. URL http://svn.apache.org/repos/asf/subversion/

trunk/doc/user/svn-best-practices.html.

[29] Martin Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.

[30] Martin Fowler. Continuous integration, 2006. URL http://www.

martinfowler.com/articles/continuousIntegration.html.

[31] Adele Goldberg. SMALLTALK-80: the interactive programming en-
vironment. Addison-Wesley Longman Publishing Co., Inc., 1984.

[32] Adele Goldberg and David Robson. Smalltalk-80: the language
and its implementation. Addison-Wesley Longman Publishing Co.,
Inc., 1983.

[33] Gabriela Goldschmidt. The dialectics of sketching. Creativity
Research Journal, 4(2), 1991.

[34] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and
Scott R. Klemmer. Design as exploration: creating interface al-
ternatives through parallel authoring and runtime tuning. In
Symposium on User interface software and technology, 2008.

[35] Lile Hattori, Marco D’Ambros, Michele Lanza, and Mircea
Lungu. Software evolution comprehension: Replay to the res-
cue. In Program Comprehension (ICPC), 2011 IEEE 19th Interna-
tional Conference on, pages 161–170. IEEE Computer Society, 2011.

[36] Robert Hirschfeld, Bastian Steinert, and Jens Lincke. Agile
software development in virtual collaboration environments.
In Christoph Meinel, Larry Leifer, and Hasso Plattner, edi-
tors, Design Thinking, Understanding Innovation, pages 197–
218. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-13756-3.

http://svn.apache.org/repos/asf/subversion /trunk/doc/user/svn-best-practices.html
http://svn.apache.org/repos/asf/subversion /trunk/doc/user/svn-best-practices.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html


128 bibliography

doi: 10.1007/978-3-642-13757-0_12. URL http://dx.doi.org/

10.1007/978-3-642-13757-0_12.

[37] Stephanie Houde and Charles Hill. What do prototypes proto-
type? Handbook of Human-Computer Interaction, 2, 1997.

[38] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and
Alan Kay. Back to the future: The story of Squeak, a practical
Smalltalk written in itself. In OOPSLA’97: International conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, 1997. doi: 10.1145/263700.263754.

[39] Viewpoints Research Institute. STEPS toward expressive pro-
gramming systems, 2010 progress report submitted to the na-
tional science foundation. Technical report, Viewpoints Research
Institute, 2010.

[40] Michael Inzlicht and Brandon J Schmeichel. What is ego de-
pletion? toward a mechanistic revision of the resource model
of self-control. Perspectives on Psychological Science, 7(5):450–463,
2012.

[41] John Christopher Jones. Design methods. John Wiley & Sons, 2

edition, 1992. ISBN 978-0471284963.

[42] Natalia Juristo and Ana M. Moreno. Basics of software engineer-
ing experimentation. Springer Publishing Company, Incorporated,
2010.

[43] Marcel A. Just, Patricia A. Carpenter, and Akira Miyake. Neu-
roindices of cognitive workload: Neuroimaging, pupillometric
and event-related potential studies of brain work. Theoretical Is-
sues in Ergonomics Science, 4(1-2):56–88, 2003.

[44] Marcel Adam Just and Patricia A Carpenter. A capacity theory
of comprehension: Individual differences in working memory.
Psychological review, 99:122–149, 1992.

[45] Daniel Kahneman. Thinking, Fast and Slow. Penguin Books Lim-
ited, 2011. ISBN 9780141918921. URL http://books.google.de/

books?id=oV1tXT3HigoC.

[46] Daniel Kahneman, Jackson Beatty, and Irwin Pollack. Perceptual
deficit during a mental task. Science, 1967.

[47] Jannik Laval, Simon Denier, Stéphane Ducasse, and Jean-Remy
Falleri. Supporting simultaneous versions for software evolution
assessment. Science of Computer Programming, 2010.

[48] Bryan Lawson. How designers think: the design process demystified.
Architectural press, 2006. ISBN 978-0750660778.

http://dx.doi.org/10.1007/978-3-642-13757-0_12
http://dx.doi.org/10.1007/978-3-642-13757-0_12
http://books.google.de/books?id=oV1tXT3HigoC
http://books.google.de/books?id=oV1tXT3HigoC


bibliography 129

[49] Youn-Kyung Lim, Erik Stolterman, and Josh Tenenberg. The
anatomy of prototypes: Prototypes as filters, prototypes as man-
ifestations of design ideas. ACM Transactions on Computer-Human
Interaction (TOCHI), 15(2), 2008.

[50] Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert
Hirschfeld. An open implementation for context-oriented layer
composition in contextjs. Science of Computer Programming, 76

(12):1194–1209, 2011.

[51] Christine A. Lindberg. Oxford American Writer’s Thesaurus. Ox-
ford Univ., 2008. ISBN 9780195342840. URL http://books.

google.de/books?id=KakNMgAACAAJ.

[52] John H Maloney and Randall B Smith. Directness and liveness
in the morphic user interface construction environment. In Pro-
ceedings of the 8th annual ACM symposium on User interface and
software technology, pages 21–28. ACM, 1995.

[53] Eliot Miranda. The cog smalltalk virtual machine: writing a jit
in a high-level dynamic language. 2011. URL http://design.cs.

iastate.edu/vmil/2011/papers/p03-miranda.pdf.

[54] George V. Neville-Neil. Coder’s block. Communications of the
ACM, 54(4):34–35, April 2011. doi: 10.1145/1924421.1924434.

[55] Chris Okasaki. Purely functional data structures. Cambridge Uni-
versity Press, New York, NY, USA, 1998. ISBN 0-521-63124-6.

[56] David L. Parnas. On the criteria to be used in decomposing
systems into modules. Communications of the ACM, 15(12):1053–
1058, 1972.

[57] Joseph Pelrine, Alan Knight, and Adrian Cho. Mastering EN-
VY/Developer. Cambridge University Press, New York, NY, USA,
2001. ISBN 0-521-66650-3.

[58] Michael Perscheid, Batian Steinert, Robert Hirschfeld, Felix
Geller, and Michael Haupt. Immediacy through interactivity:
Online analysis of run-time behavior. In WCRE’10: Proceedings
of the 17th Working Conference on Reverse Engineering, volume 10,
pages 77–86, Beverly, MA, USA, 2010. IEEE Computer Society.
doi: 10.1109/WCRE.2010.17.

[59] Paul Ralph and Yair Wand. A proposal for a formal definition of
the design concept. Design Requirements Engineering: A Ten-Year
Perspective, pages 103–136, 2009.

[60] Romain Robbes and Michele Lanza. A change-based approach
to software evolution. Electronic Notes in Theoretical Computer Sci-
ence, 166:93–109, 2007.

http://books.google.de/books?id=KakNMgAACAAJ
http://books.google.de/books?id=KakNMgAACAAJ
http://design.cs.iastate.edu/vmil/2011/papers/p03-miranda.pdf
http://design.cs.iastate.edu/vmil/2011/papers/p03-miranda.pdf


130 bibliography

[61] Romain Robbes and Romain Lanza. Characterizing and under-
standing development sessions. In ICPC 2007: Proceedings of
the 15th IEEE International Conference on Program Comprehension,
pages 155–166. IEEE Computer Society, 2007.

[62] David Saff and Michael D. Ernst. Reducing wasted development
time via continuous testing. In ISSRE’03: International Symposium
on Software Reliability Engineering, 2003.

[63] Donald A. Schön. The reflective practitioner: How professionals think
in action. Basic Books (AZ), 1983.

[64] Donald A. Schön and Glenn Wiggins. Kinds of seeing and their
functions in designing. Design Studies, 13(2), 1992. ISSN 0142-
694X. doi: 10.1016/0142-694X(92)90268-F.

[65] Ken Schwaber. Agile project management with Scrum. O’Reilly
Media, Inc., 2004.

[66] William R. Shadish, Thomas D. Cook, and Donald T. Campbell.
Experimental and quasi-experimental designs for generalized causal
inference. Houghton Mifflin, 2002. ISBN 9780395615560. URL
http://books.google.de/books?id=o7jaAAAAMAAJ.

[67] Ben Shneiderman and Catherine Plaisant. Designing the user in-
terface: strategies for effective human-computer interaction. Pearson
Addison Wesley, 5 edition, 2009. ISBN 978-0321601483.

[68] Herbert A. Simon. The sciences of the artificial. The MIT Press,
1996.

[69] Diomidis Spinellis. Version control systems. Software, IEEE, 22

(5):108–109, 2005.

[70] Keith E. Stanovich and Richard F. West. Individual differences
in reasoning: Implications for the rationality debate?-open peer
commentary-understanding/acceptance and adaptation: Is the
non-normative thinking mode adaptive? Behavioral and Brain
Sciences, 23(5):645–665, 2000.

[71] Bastian Steinert and Robert Hirschfeld. Applying design knowl-
edge to programming. In Hasso Plattner, Christoph Meinel,
and Larry Leifer, editors, Design Thinking Research: Studying
Co-creation in Practice, Understanding Innovation, pages 259–
277. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-21642-8.
doi: 10.1007/978-3-642-21643-5_15. URL http://dx.doi.org/

10.1007/978-3-642-21643-5_15.

[72] Bastian Steinert and Robert Hirschfeld. How to compare per-
formance in program design activities: Towards an empirical
evaluation of coexist. In Larry Leifer, Hasso Plattner, and

http://books.google.de/books?id=o7jaAAAAMAAJ
http://dx.doi.org/10.1007/978-3-642-21643-5_15
http://dx.doi.org/10.1007/978-3-642-21643-5_15


bibliography 131

Christoph Meinel, editors, Design Thinking Research: Building In-
novation Eco-Systems, Understanding Innovation, pages 219–238.
Springer International Publishing, 2014. ISBN 978-3-319-01302-
2. doi: 10.1007/978-3-319-01303-9_14. URL http://dx.doi.org/

10.1007/978-3-319-01303-9_14.

[73] Bastian Steinert, Michael Grunewald, Stefan Richter, Jens Lincke,
and Robert Hirschfeld. Multi-user multi-account interaction in
groupware supporting single-display collaboration. In Collabora-
tive Computing: Networking, Applications and Worksharing, 2009.
CollaborateCom 2009. 5th International Conference on, pages 1–9.
IEEE, 2009.

[74] Bastian Steinert, Michael Perscheid, Martin Beck, Jens Lincke,
and Robert Hirschfeld. Debugging into examples: Leveraging
tests for program comprehension. In Testing of Software and Com-
munication Systems, pages 235–240. Springer, 2009.

[75] Bastian Steinert, Michael Haupt, Robert Krahn, and Robert
Hirschfeld. Continuous selective testing. In Agile Processes in
Software Engineering and Extreme Programming, pages 132–146.
Springer, 2010.

[76] Bastian Steinert, Marcel Taeumel, Jens Lincke, Tobias Pape, and
Robert Hirschfeld. Codetalk conversations about code. In Cre-
ating Connecting and Collaborating through Computing (C5), 2010
Eighth International Conference on, pages 11–18. IEEE, 2010.

[77] Bastian Steinert, Damien Cassou, and Robert Hirschfeld. Co-
exist: Overcoming aversion to change. In Proceedings of the
8th symposium on Dynamic languages, DLS ’12, pages 107–118,
New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1564-7. doi:
10.1145/2384577.2384591. URL http://doi.acm.org/10.1145/

2384577.2384591.

[78] Bastian Steinert, Marcel Taeumel, Damien Cassou, and Robert
Hirschfeld. Adopting design practices for programming. In
Hasso Plattner, Christoph Meinel, and Larry Leifer, editors, De-
sign Thinking Research: Measuring Performance in Context, Under-
standing Innovation, pages 247–262. Springer Berlin Heidelberg,
2012. ISBN 978-3-642-31990-7. doi: 10.1007/978-3-642-31991-4_
14. URL http://dx.doi.org/10.1007/978-3-642-31991-4_14.

[79] David L Strayer and William A Johnston. Driven to distraction:
Dual-task studies of simulated driving and conversing on a cel-
lular telephone. Psychological science, 12(6):462–466, 2001.

[80] Masaki Suwa and Barbara Tversky. External representations con-
tribute to the dynamic construction of ideas. In Diagrammatic

http://dx.doi.org/10.1007/978-3-319-01303-9_14
http://dx.doi.org/10.1007/978-3-319-01303-9_14
http://doi.acm.org/10.1145/2384577.2384591
http://doi.acm.org/10.1145/2384577.2384591
http://dx.doi.org/10.1007/978-3-642-31991-4_14


132 bibliography

Representation and Inference, volume 2317. Springer Berlin / Hei-
delberg, 2002. ISBN 978-3-540-43561-7.

[81] Masaki Suwa, Terry Purcell, and John Gero. Macroscopic analy-
sis of design processes based on a scheme for coding designers’
cognitive actions. Design Studies, 19(4), 1998. ISSN 0142-694X.
doi: 10.1016/S0142-694X(98)00016-7.

[82] Marcel Taeumel, Bastian Steinert, and Robert Hirschfeld. The
vivide programming environment: Connecting run-time infor-
mation with programmers’ system knowledge. In Proceedings of
the ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! ’12, pages
117–126, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1562-
3. doi: 10.1145/2384592.2384604. URL http://doi.acm.org/10.

1145/2384592.2384604.

[83] Wikipedia: the free encyclopedia. Design, May 2014.
http://en.wikipedia.org/wiki/Design.

[84] Dave Thomas and Kent Johnson. Orwell — A configuration man-
agement system for team programming. In OOPSLA’88: Inter-
national Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, New York, NY, USA, 1988. ISBN 0-89791-
284-5.

[85] Sascha Topolinski and Fritz Strack. The analysis of intuition: Pro-
cessing fluency and affect in judgements of semantic coherence.
Cognition and Emotion, 23(8):1465–1503, 2009.

[86] Linus Torvalds and Junio Hamano. Git: Fast version control
system. URL http://git-scm. com, 2010.

[87] David Ungar and Randall B Smith. Self: The power of simplicity,
volume 22. ACM, 1987.

[88] Evie Vergauwe, Pierre Barrouillet, and Valérie Camos. Do mental
processes share a domain-general resource? Psychological Science,
21(3):384–390, 2010.

[89] Bret Victor. Magic Ink: Information software and the graphical
interface, 2005. URL http://worrydream.com/MagicInk/.

[90] Martin von Löwis, Marcus Denker, and Oscar Nierstrasz.
Context-oriented programming: beyond layers. In Proceedings
of the 2007 international conference on Dynamic languages: in con-
junction with the 15th International Smalltalk Joint Conference 2007,
pages 143–156. ACM, 2007.

[91] Alessandro Warth, Yoshiki Ohshima, Ted Kaehler, and Alan Kay.
Worlds: Controlling the scope of side effects. In ECOOP’11:

http://doi.acm.org/10.1145/2384592.2384604
http://doi.acm.org/10.1145/2384592.2384604
http://worrydream.com/MagicInk/


bibliography 133

Proceedings of the 25th European Conference on Object-Oriented Pro-
gramming, pages 179–203, Lancaster, UK, 2011. Springer. doi:
10.1007/978-3-642-22655-7_9.

[92] Benjamin Hosain Wasty, Amir Semmo, Malte Appeltauer, Bas-
tian Steinert, and Robert Hirschfeld. ContextLua: Dynamic be-
havioral variations in computer games. In Proceedings of the 2Nd
International Workshop on Context-Oriented Programming, COP ’10,
pages 5:1–5:6, New York, NY, USA, 2010. ACM. ISBN 978-1-
4503-0531-0. doi: 10.1145/1930021.1930026. URL http://doi.

acm.org/10.1145/1930021.1930026.

[93] Robert J. Youmans. The effects of physical prototyping and
group work on the reduction of design fixation. Design Studies,
32(2), 2011. ISSN 0142-694X. doi: 10.1016/j.destud.2010.08.001.

http://doi.acm.org/10.1145/1930021.1930026
http://doi.acm.org/10.1145/1930021.1930026




colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of July 28, 2014 (classicthesis version 1.0).

http://code.google.com/p/classicthesis/
http://postcards.miede.de/




S E L B S T S TÄ N D I G K E I T S E R K L Ä R U N G

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Disser-
tation selbst angefertigt und nur die im Literaturverzeichnis aufge-
führten Quellen und Hilfsmittel verwendet habe. Alle Ausführungen,
die anderen Schriften wörtlich oder sinngemäß entnommen wurden,
sind kenntlich gemacht. Diese Arbeit oder Teile davon wurden nicht
als Prüfungsarbeit für eine staatliche oder andere wissenschaftliche
Prüfung eingereicht.

Ich versichere weiterhin, dass ich diese Arbeit oder eine andere
Abhandlung nicht bei einer anderen Fakultät oder einer anderen Uni-
versität eingereicht habe.

Berlin, May 2014

Bastian Steinert


