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CoExist reduces the need to prevent recovery because it makes re-
covery fast and easy to accomplish problems. The presented tools
would have helped the student in the reported case example to with-
draw recent changes and start over from a previous development
state. Easy and fast recovery is made possible by continuously ver-
sioning the source code based on its structure. The automatically
recorded meta-information about each change helps users to rapidly
identify a previous versions of interest. With that, recovery becomes
inexpensive and programmers have reduced need to rely on best prac-
tices.

CoExist is implemented by versioning meta-objects. With that, it
provides full and immediate access to previous development states.
To reduce overhead, meta-objects are shared among versions. Shar-
ing classes and compiled methods is enabled by making classes late
bound, which required changes to the compiler and VM. A perfor-
mance evalution indicates that access to previous versions is suffi-
ciently fast for frequent use and that the required memory overhead
is acceptable.

Recovery support such as CoExist has considerable effects on cog-
nition during explorative programming tasks. The reduced need for
problem prevention decreases the mental workload and the need for
self-control. Low recovery costs further enable programmers to sep-
arate creative from analytical concerns. Even more, it encourages
programmers to make changes as a means to learn and reflect about
ideas.

In a controlled lab study, 22 participants improved the design of
two different applications. Using a repeated measurement setup, the
study examined the effect of CoExist as additional tool support on
programming performance. The results of analyzing 88 hours of pro-
gramming suggest that built-in recovery support such as provided
with CoExist increases programming performance in explorative pro-
gramming tasks.

CoExist fills a gap between conventional undo/redo of text editors
and VCS. Like undo/redo, no explicit control is required; it runs con-
tinuously in the background. Like VCS, the scope of the history is not
restricted to invididual files; CoExist versions the entire development
state, even independent of project boundaries. Furthermore, while
the developed concepts and tools are related to previous concepts
and tools, they are notably different in their support for recovery
needs.
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10.3 future work

CoExist is a first step in providing a rich set of tools supporting an
explore-first programming approach. The following paragraphs out-
line directions how the presented work can be advanced.

10.3.1 Continuous Versioning

In a “live system” such as a typical Smalltalk environment, appli-
cations keep running while their implementation is changed. The
Smalltalk environment makes this possible by automatically migrat-
ing the application state after structural changes to source code. A
possible improvement could involve snapshotting the state of the run-
ning application alongside its source code and meta-objects. With this
snapshotting in place, going to different version would immediately
bring back the application to the state it was when the version was
created.

10.3.2 Juxtaposing Versions

Juxtaposing multiple versions currently consists in getting a main
window presenting the current version and one sub-window for each
different version to juxtapose. This setup works fine when the pro-
grammer wants to browse the source code of multiple versions at
once. Nevertheless, this setup could be improved in cases where a
programmer wants to see the changes for a particular program el-
ement (such as a class or a method). For these cases, future work
could provide programming tools dedicated to presenting multiple
versions of one program element. For example, a code browser could
present synchronized views of the same element in different versions.

Beyond comparing static information, tools could provide compar-
isons of dynamic data such as object states and call trees. These data
could be gathered during program and unit-test execution and then
presented to the programmer [58]. These tools would help the pro-
grammer understand the impact of a set of changes on the execution.
In the spirit of what Bret Victor proposes with dynamic pictures [89],
this idea could be expanded with comparison of application output.
For example, in the context of a game, tools could show the differ-
ences between two versions of an animation.
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10.3.3 Fine-grained Back-in-Time Impact Analysis

Beyond unit test results, CoExist’s infrastructure for running compu-
tations for each version could be extended for use cases beyond unit
tests.

performance feedback . While run-time performance can be
important, programmers typically ignore performance during an ini-
tial implementation and consider performance only when it becomes
critical. Nevertheless, when the application is already optimized for
speed, programmers must pay attention that new changes do not de-
grade performance. As with bug squashing, automated continuous
performance analysis could help a programmer find the change that
slowed-down the application.

quality feedback . Quality-management platforms, such as
Sonar,1 help developers manage code quality by combining metrics
and visualizations. These platforms are automatically triggered upon
commits. Our approach could bring these platforms to a next level by
providing change-level instead of commit-level feedback. The metrics
and visualizations could then be integrated within the development
environment to provide on-demand feedback about the quality im-
provement (or decrease) of the not-yet-committed changes.

10.3.4 Re-assembling Changes into Incremental Improvements

CoExist enables programmers to select and re-apply individual
changes to any version. This feature allows for extracting incremental
improvements that are spread over a set of many changes. Neverthe-
less, CoExist does not detect dependencies between changes which
makes the feature less than ideal to use. For example, CoExist could
automatically apply the class-creation change when the programmer
wants to apply a method-creation change to a version that does not
contain the corresponding class. This kind of support can further
be improved by detecting behavioral dependencies. For example, a
method change often depends on other method changes to make the
application compile and behave properly. Besides static analysis, Co-
Exist could leverage the results of the continuously ran unit tests to
detect such dependencies.

1 http://www.sonarsource.org/

http://www.sonarsource.org/
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