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ABSTRACT
Traditional behavior-centric debuggers are organized around an
extensive call stack, making it hard for programmers to navigate
and explore large programs.We present object traces, a novel, object-
centric approach to time-travel debugging that enables program-
mers to directly interact with recorded states of objects and explore
their evolution in a simplified call tree. Our approach allows pro-
grammers to send messages to the object trace to ask questions
of different granularity, from single variable values to custom rep-
resentations of object graphs. We demonstrate practicability by
applying it to the TraceDebugger, a time-travel debugger for
Squeak/Smalltalk. We examine the practical opportunities and limi-
tations of object traces and suggest directions for future work.
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1 INTRODUCTION
Debuggers are an important tool in the toolbox of many program-
mers. They do not only facilitate the namesake activity of fault iso-
lation but are also used by programmers to explore object-oriented
software, understand its design and implementation by example, or
reason about possible changes and extensions in context. In the last
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two decades, time-travel debuggers have attracted more attention
since they give programmers the freedom to explore a program
independently of its original execution order.

While time-travel debuggers facilitate exploring and navigat-
ing through a program, these activities remain challenging. Pro-
grammers are overwhelmed by complex object choreographies and
message flows. For many tasks, programmers are interested in the
state and behavior of particular objects. However, traditional de-
buggers and recent implementations of time-travel debuggers are
behavior-centric and mainly provide means for navigation through
the hierarchy of method activations, making it hard for program-
mers to locate and survey the relevant subset of a program trace.

To simplify that activity, we propose object traces which pro-
vide a novel object-centric perspective for debugging. Using object
traces, programmers are enabled to explore programs through the
evolution of specific objects. We further demonstrate the practica-
bility of object traces by applying them to the TraceDebugger1,
a time-travel debugger for the interactive programming system
Squeak/Smalltalk [12, 15, 32]. In this work, we prioritize the demon-
stration of the new concept over optimizations such as memory
efficiency or handling large traces; still, our prototype is fast enough
to be used interactively for small to medium-sized programs.

In the remaining sections, we provide some background on
our notion of debugging object-oriented systems and related ap-
proaches (section 2), describe the concept and implementation of
our solution (section 3), discuss the practical opportunities and
limitations of object traces (section 4), and conclude with some
possible directions for future work (section 5).

2 BACKGROUND
The essence of object-oriented programming is objects andmessages.
Objects have three defining properties: behavior, state, and identity.
Behavior is described by messages that are sent from one object
to another and is implemented by methods that process messages.
State is described by variables of an object which point to further
objects and can change as the side effect of a method execution.
Identity is the unique characteristic of an object that distinguishes it
from all other objects within the system. For instance, a morph is a
graphical object in Squeak whose state describes its geometry, color,
and composition, and whose behavior describes its ability to get or
change its composition, render itself to the screen, or react to user
events. An example is aWatchMorph (for displaying the current
time) that responds to the message initialize by constructing itself
with a composition of twelve StringMorphs for the labels of the
clock. So, we can represent the simple domain of clocks as objects.
1https://github.com/hpi-swa-lab/squeak-tracedebugger
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Programmers can debug sending a message to an object to ex-
plore the resulting behavior and the caused side effects. For example,
if we wonder why the labels of ourWatchMorph are constructed in
the wrong direction, or if we wish to change the color of the labels,
we can debug sending initialize to the morph. However, identifying
the methods that are relevant to a particular task or question is
often not straightforward, as behavior can be complex and a single
message send can result in thousands or millions of other message
sends. Traditional debuggers address this complexity by allowing
the user to execute a program step-by-step and displaying a context
stack of the currently active methods. Time-travel debuggers, also
referred to as back-in-time debuggers or omniscient debuggers, en-
hance this workflow: by recording a program trace that consists of
all previous message sends and, optionally, all prior object states,
they allow programmers to discretionarily navigate through the
context tree, i.e., the recorded hierarchy of method activations, and
observe the respective historical states [14, 19, 27].

Still, existing time-travel debuggers are behavior-centric, making
it hard for programmers to follow specific objects and observe the
changes that have been made to their (composed) state as a result
of different message sends. If we wish to identify the methods that
are relevant to constructing the labels on our WatchMorph by
using a traditional or time-travel debugger, our best chance is to
continually try, fail, and repeat: step into or over single message
sends during the initialization of the morph depending on whether
they seem relevant, observe the current state of the morph until
a relevant change has occurred, and finally restart or revert the
program execution to descend into the last skipped message send.

Object-centric breakpoints attempt to address this problem by
providing programmers with a set of commands for advancing the
execution of a program until a selected portion of state in particular
objects changes [5, 29]. On the contrary, the Whyline approach
looks back into the past of a program to explain the origin of se-
lected objects or states by using a combination of program slicing
and tracing [16]. Scriptable debugging or declarative debugging2
addresses the same problem on a more holistic level by defining
a query language for retrieving various events from a program
trace [8, 11, 13, 17, 23, 25, 26]. In addition to method activations,
returns, or read accesses to state, some event types cover side ef-
fects such as assignments to variables. Some approaches visualize
query results using interactive object diagrams or sequence dia-
grams to show the connection between events and their location
in the program [18]. Still, queries are expressed from an indirect
metaperspective and can only refer to atomic states (e.g., the size of
the array in the submorphs variable of ourWatchMorph) instead
of communicating directly with the objects in question (e.g., by
sending our WatchMorph the message numberOfSubmorphs).

Some other approaches to behavior-centric program exploration
trace the flow of objects [20], the side effects between them [21],
or their intercommunication [7, 30], and visualize the results in an
interactive graph. It is furthermore possible to take a source-code-
centric perspective by employing manual or automatic logging
techniques to trace all evaluations of a selected expression in the

2The term “declarative debugging” is overloaded. In this paper, we refer to the concept
of declarative queries on program traces but not to semi-automated bug detection
which employs a human oracle for declaring correct program behavior.
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Figure 1: An object trace for the construction of theWatch-
Morph. After tracing the program WatchMorph basicNew
initialize, the programmer has expressed the query self num-
berOfSubmorphs for the WatchMorph instance. The output
is a hierarchical list of different time-bounded results for the
query, each of which is associated with themethod activation
that caused the change in the composition of the morph.

program [6, 28]; however, this approach places the burden of iden-
tifying relevant locations in the source code on programmers.

We try to tackle the limitations of existing object-centric debug-
ging tools by proposing object traces through that programmers
interact directly with the history of relevant objects to explore a
program from the perspective of these objects.

3 SOLUTION
In the following, we introduce object traces and sketch an imple-
mentation of them for the TraceDebugger.

3.1 Approach
An object trace is a dynamic view on an object in the course of
program execution over time (fig. 1). Object traces are defined by
the following four properties:

object: An object trace refers to an object that was involved
in the executed program and possibly modified by it, and
whose prior states have been recorded in the program trace.

view: An object trace is based on a query for the object. The
query is an expression that communicates with the object
by sending it messages.

time: A view’s query divides the program trace into one or
multiple time ranges for each of which the expression evalu-
ates to a different value. The resulting time ranges and values
are arranged in a filtered version of the context tree that con-
tains only the method activations that caused a change in
the query result.

dynamic structure: By revising the query, the level of detail
of the object trace can be adjusted.

Like any other object in the live system, an object trace is a
tangible entity that programmers can interact with directly: they
can ask questions about an object from a traced program by sending
it messages to explore its state and evolution over time.

By using the full protocol of messages that an object provides,
programmers can ask questions of varying granularity, ranging
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(a) Viewing the entire history for the num-
ber of submorphs.

(b) Viewing the morph’s geometry after opening
it.

(c) Inspecting the morph’s geometry after open-
ing it, evolved after the third change.

(d) Inspecting a rendered screenshot of the
morph after constructing the fourth label.
All render errors (due to uninitialized vari-
ables) have been excluded through a filter
from the context menu of the tree.

Figure 2: Exploring different object traces for the construction of the WatchMorph in the history explorer. In the upper part of
the window, users can enter a query against the morph (self) and edit it to update the object trace. In the summary mode (figs. 2a
and 2b), all results are displayed in a compact hierarchical list. In the details mode (figs. 2c and 2d), users can select a method
activation from the tree and inspect the associated value using a custom representation.

from simple accessor messages for a single variable value to com-
plex messages that retrieve aggregated or composed information
from an object. Queries can also send messages that create custom
representations of the object such as a printString (a textual repre-
sentation), a list of properties, or custom visualizations. Thereby,
object traces constitute a moldable tool [3, 4] whose utility is sub-
stantially improved through the offer of domain-specific tools for
the object being explored. Queries describe the amount of detail in
the resulting object trace: by extending or reducing the expression,
programmers can control the level of granularity of the resulting
context tree. For example, they can decide the changes of which
variables they want to see.

Figure 2 shows some screenshots of the history explorer, our
prototypical UI for exploring object traces within the TraceDe-
bugger. In the summary mode, programmers can get an overview
of all the different method activations and values in a hierarchical
list. In the details mode, they can select an entry from the tree and
inspect the associated value in a custom representation. By asking
different questions about an object, programmers can explore its
creation or evolution and identify relevant methods for particular
state changes. For example, we can change the query in the object
trace on ourWatchMorph to retrieve different information about
its composition, geometry, or appearance.

3.2 Implementation
In the remaining section, we describe our implementation of object
traces for the TraceDebugger in Squeak/Smalltalk.

Tracing. To create the program trace, we record both the pro-
gram’s behavior and its state during the execution.3 For the behav-
ior, we log all method activations in a context tree together with

3In our metamodel of programs, information about the current execution such as the
program counter or the variable stack is treated as state of the respective context
objects.

their child contexts and lifespans, which we represent by pairs of
time indices that refer to a global instruction counter (fig. 3).

For the state, we maintain an incremental historic memory struc-
ture that contains a sparse array of former values for each changed
slot of any object (fig. 4). The sparse arrays are time-indexed using
the global instruction counter. Whenever an object slot is assigned
a new value, we append the previous value to the corresponding
sparse array with the current time index. Each array contains only
such displaced values since the current values can be retrieved from
the present object space. Given a typically large object space with a
small number of changes, incremental snapshots scale better than
full snapshots, usually fit into the main memory (section 4), and
allow for efficient random access to particular states at different
points in time.

Accessing historic state. To evaluate an expression for a historic
version of an object at a single point in time (point retracing), we

[7, 52]
Morph»initialize

[11, 12]
Array class»empty

[16, 43]
Morph»defaultBounds

[23, 42]
Point»corner:

[27, 41]
Rectangle class»
origin:corner:
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[47, 51]
Morph»

defaultColor

[49, 50]
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Figure 3: A context tree for tracing the behavior of sending
initialize to a newMorph instance. Each context is associated
with a time interval describing its lifespan.

Figure 2: Exploring different object traces for the construction of the WatchMorph in the history explorer. In the upper part of
the window, users can enter a query against themorph (self) and edit it to update the object trace. In the summarymode (a and b),
all results are displayed in a compact hierarchical list. In the details mode (c and d), users can select a method activation from
the tree and inspect the associated value using a custom representation.
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a Morph(2826611) 0@0 corner: 50@40

submorphs bounds color

< 13 < 80 < 131

nil #() {a Morph(1795436)}

< 44 < 136

nil 0@0 corner: 50@40

< 52

nil

origin corner

< 37

nil

< 39

nil

Figure 4: Example of the incremental historic memory struc-
ture for tracing the state of sending initialize to a newMorph
instance. The dark boxes represent associative arrays of
pointers. For each involved object slot, all former displaced
states are preserved in a sparse array. For example, the
morph’s submorphs variable was assigned the empty col-
lection #() during the time interval [13, 80).

instrument the execution of the expression and forward read ac-
cesses to any state to the historic memory. If the requested state is
not present in the historic memory for the requested time index, we
fall back to the present object space. We further run the expression
inside a sandbox to isolate any side effects (e.g., a cache update
caused by a message send to an object) from the present object
space by managing them in a separate memory structure.

Evaluating range queries. Naively, we could evaluate a range
query by point-retracing it separately for each time index in the
requested range and combining the results. However, to ensure
a practical performance, we instead evaluate the expression once
only for the entire time range but instrument its execution with
vectorization (range retracing).

For each read access to state, we pass back a sparse vector to
the query that contains all different values and time ranges of the
requested state from the historic memory. We extend all operators
of the query (e.g., the arithmetic addition) with optional vector
semantics. If the control flow diverges according to the values in
a vector (e.g., at a conditional branch), we fork the execution into
independent threads for subintervals of the original time range.
Thus, range retracing compares to the hardware concept of SIMD
semantics where multiple data are handled by a single processor
instruction [10]. It also compares to a form of online symbolic exe-
cution [1, 2] where the symbolic state has time-based semantics.4

Instrumented execution in Squeak/Smalltalk. In Squeak, we cus-
tomize the code simulator (an interpreter that resides in the object
space) using SimulationStudio5 to instrument the execution of
programs for tracing and queries for retracing. We override the
bytecode instructions and primitives relevant to activating methods,
reading or writing state, or working with possibly vectorized state.

4In fact, we believe that by applying concolic execution or veritesting (two optimized
styles of symbolic execution), the performance of range retracing could be improved
further.
5https://github.com/LinqLover/SimulationStudio

4 DISCUSSION
Experience report. In the past few months, we have successfully

used our prototypical implementation of object traces to explore
several components of Squeak. For example, we have discovered
possible extension points for a new feature in the regular expression
parser (appendix A), pinpointed the origin of a rendering bug in the
Morphic UI system, and created an animation of a Morphic layout
computation that served as an artifact for refining and discussing
our understanding of the layout engine.

We do not view object-centric debugging as a replacement but as
a complement to behavior-centric debugging. While we see great
potential in object traces for surveying large program traces on
a high level and for aiding navigation, traditional, source-centric
views remain a key component of fine-grained program explo-
ration. Thus, we tightly integrated our prototype with the existing
behavior-driven interfaces of the TraceDebugger and the default
forward debugger in Squeak to combine the best of all worlds (fig. 5)

Object traces entail an alternative navigationworkflow for debug-
ging: instead of performing a non-specific search (i.e., “browsing”)
in the context tree, programmers select a specific object and express
a query about it. While this allows for a more targeted and efficient
search, it requires programmers to make a greater initial cognitive
investment, which can reduce the experience of immediacy. The
benefit of object traces depends on the size and complexity of the
program trace and on the design of the system under exploration.
Suitable systems have an intuitive and concise state model, or they
offer tools for exploration (e.g., meaningful string representations
or convenience accessors6). However, systems with a very simple
behavioral model and primarily functional architectures with few
side effects may be easier to explore with other types of debuggers.
6For example, each morph in Squeak contributes a screenshot field to the general-
purpose inspector tool (fig. 5), removing the need from programmers to manually find
the correct message for rendering the morph.

Figure 5: Integration of the history explorer into the behavior-
centric interface of the TraceDebugger. Programmers can
select an object from the program trace, choose a predefined
query, and explore its evolution in a history explorer. From
the history explorer, they can switch back to the behavior-
centric view on a selected context.
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Performance. Our current prototype is a proof of concept and,
like the entire TraceDebugger project, favors a simple and ex-
plorable architecture over maximum performance. Compared to
regular execution in the virtual machine (VM), tracing introduces a
runtime overhead between 100 000 % and 1 000 000 % and retracing
introduces an overhead between 2000 % and 100 000 %. Nevertheless,
the history explorer offers practical performance and interactive
response times [31, p. 473] of less than 1 second for typical small-
sized workloads and less than 5 seconds for typical medium-sized
workloads (table 1). To enable interactive exploration of data- or
compute-intensive programs in the future, we see great potential in
replacing our current implementation strategy of code simulation
with a program-instrumentation-based approach [9, 14, 24].7

5 CONCLUSION
We have proposed object traces as a novel tool for object-centric
debugging which allows programmers to explore program traces
based on specific object changes. We believe that object traces offer
a promising new perspective for understanding the creation or evo-
lution of objects and object-based compositions and for navigating
through large programs. We have shown that an implementation
of our concept is feasible and provides practical performance even
in our unoptimized prototype. The concept is not limited to the
Squeak/Smalltalk environment but can be implemented in any envi-
ronment that offers a program tracer and a symbolic execution en-
gine with customizable memory access. For instance, programmers
could use object traces to debug user interactions with a JavaScript
application by asking for the session state or for screenshots of a
graphical user interface [22].

Two limitations of object traces are that programmers need to
ask the right questions which can be a cognitive overhead but helps
to efficiently navigate large program traces, and that the system
being explored should model changes through side effects but not
through a functional programming style with copies of immutable
objects.

In the future, we plan to improve the performance of our proto-
type by employing efficient program instrumentation and possibly
concolic execution for query evaluation. Qualitatively, we envi-
sion a filtering mechanism to reduce the complexity of large object
traces, and we are considering designs to reduce the semantic dis-
tance [33] between state-centric and behavior-centric views on the
same program trace. Finally, we look forward to exploring ways

7Hypothetically, for a maximally efficient implementation of program tracing and
retracing within the VM, we could also trade in our own programming experience.

that enhance the interactive exploration of object traces. Program-
mers should be able to express queries and navigate results through
domain-specific representations to save debugging time and im-
prove the overall quality of the program.
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A CASE STUDY: EXTENDING A REGULAR
EXPRESSION PARSER

Here, we describe another real-world use case of object traces to
identify a possible extension point for a new feature in an existing
software system. At the time of writing, the regular expression
engine of Squeak (Regex) does not support atomic groups such as
ab(?>cd|c)de which restrict computing-intensive backtracking.
To implement this capability in the engine, we first need to add
support for the new syntactic element to the parser. Provided that
we are not yet familiar with the parser’s implementation details,
a traditional dynamic approach to this problem is to debug the
parser with the new regular expression ('ab(?>cd|c)de' asRegex)
and to find out where the execution starts behaving “wrong”, i.e.,
to identify the first method in the context tree whose behavior
should be changed to respect the extended syntax. Unfortunately,
running the parser for our regular expression involves more than
400 method activations with more than 800 source lines of code in
the Regex package. To avoid this complexity for our task, we instead
take an object-centric perspective on the parsing process (fig. 6).

In the TraceDebugger, we explore the execution of the pro-
gram (fig. 6a) and find that the RxParser, near the root of the context
tree below the message parse:, indirectly accesses the source string
through an intermediate ReadStream instance (an iterator object
for a collection). We inspect this stream object and learn that it
holds the current reading state in a position variable (fig. 6b). Given
this information, we can construct an object trace for the position of
the stream by exploring the history of the field from the inspector.
The resulting object trace breaks down the original context tree

8https://www.hpi.de/en/research/research-schools

Table 1: Time andmemory consumption for recording (tracing) and exploring (retracing) program traces for different workloads.
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Table 1: Time andmemory consumption for recording (tracing) and exploring (retracing) program traces for different workloads.

Tracing Retracing
Domain Program Time [s]a Memory [kB] Query Time [s]a Memory [kB]

Regular expression parser '\w+' asRegex 0.174 1802 collection first: position - 2
"evaluate for ReadStream" 0.253 374

UI widget construction
(13 elements) WatchMorph basicNew initialize 0.797 15 299 self imageForm 4.558 523 804

UI rendering
(89 elements, 650 px × 425 px) aSystemBrowserWindow imageForm 8.905 2 567 832 self copy: self relativeRectangle 153.857 6 307 677

a Test machine: Intel i7-8550U CPU @ 1.80GHz. Environment: Open Smalltalk Cog/Spur VM of version 202206021410.
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(a) Exploring the top of the recorded context tree in a TraceDebugger.
(b) Inspecting a snapshot of the ReadStream in-
stance taken from the program trace.

(c) Exploring the history of the ReadStream instance using an object trace. The query
asks for the prefix of the input stream that has already been consumed.a All computation
errors (due to uninitialized variables) have been excluded through a filter.

(d) Adding support for atomic groups in the imple-
mentation of RxParser»group.

aWe add a position offset of -1 because the RxParser maintains an internal lookahead character.

Figure 6: Exploring Squeak’s regular expression parser using the TraceDebugger and object traces to find a possible extension
point for a new syntactic element. The recorded program is 'ab(?>cd|c)de' asRegex.

into a reduced version with only 12 leaf contexts that increment the
position, i.e., consume the next character from the input string. To
improve the visual intuition of each historic stream state, we change
the query of the object trace to request the already-consumed prefix
of the input string for each step of the parser (fig. 6c).

From the final object trace, we can see that the current version of
the parser interprets the > as a normal character (atom) instead of as
a special instruction. We can also see that the parsing of the whole
construct (?>cd|c) takes place inside and below the method group.
By browsing this method, we find out that the method already
handles other special cases such as lookarounds or non-capturing
groups, and we can finally place our new check next to the existing
ones (fig. 6d). Thus, by identifying a meaningful object state in

the program trace that relates to our intended perspective on the
program execution, we were able to more efficiently search the
context tree for the relevant methods.
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