
Storage Combinators
Marcel Weiher

marcel.weiher@hpi.uni-potsdam.de
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany

Robert Hirschfeld
hirschfeld@hpi.uni-potsdam.de

Hasso Plattner Institute, University of Potsdam
Potsdam, Germany

Abstract
The ability to compose software from high level components
is as sought after as it is elusive. The REST architectural style
used in the World Wide Web enables such plug-compatible
components in distributed settings.

We propose storage combinators, a type of plug-compatible
component that can be used as generic intermediary in a
non-distributed setting.

Storage combinators combine several stores – components
that support REST-style verbs – into a single component that
also provides a store interface.
This mechanism allows a few basic components to be

combined in many different ways to achieve different effects
with or without adaptation. It correlates with reported in-
creases in productivity while performing well in commercial
applications with millions of users.

CCS Concepts • Information systems→RESTful web
services; • Software and its engineering → Software
architectures; Abstraction, modeling and modularity;
Interoperability; Software performance; Multiparadigm lan-
guages.

Keywords modularity, components, REST, composition
ACM Reference Format:
Marcel Weiher and Robert Hirschfeld. 2019. Storage Combinators.
In Proceedings of the 2019 ACMSIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Soft-
ware (Onward! ’19), October 23–24, 2019, Athens, Greece. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3359591.3359729

1 Introduction
Plug-composability, where software systems, or at least parts
of software systems, can be constructed by simply snapping
together pre-made components like lego bricks, without

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward! ’19, October 23–24, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6995-4/19/10. . . $15.00
https://doi.org/10.1145/3359591.3359729

time-consuming adaptation or glue code, is one of the most
highly sought feature of modern software systems. It is also
one of the most highly claimed characteristic, a claim that
rarely turns out to survive closer scrutiny.
Two mechanisms that meet a high degree of syntactic

composability are Unix pipes and filters and the World Wide
Web (WWW). Standard Unix filters have one input inter-
face, the stdin stream, and one output interface, the stdout
stream [38][12][41]. The pipe connector is independent of
any domain-specific structure or semantics. This highly re-
duced interface makes filters syntactically compatible by
default: any filter’s stdout can be connected to any other
filter’s stdin and the composition will be syntactically legal,
though semantic compatibility is not guaranteed.

This default syntactic compatibility also makes it possible
for shells to offer a composition syntax using the vertical bar
that is concise, precise, and obvious: the shell program “ls |
wc” is fully determined and specifies the relationship between
the ls and wc components in this composition statically,
rather than with instructions that set up the relationship.

The mechanism is closed under composition, so a compo-
sition of filters can be used like a filter in a new composition.
Similarly the REST architectural style [19] of the WWW

has only a very small number of methods1 (nine total), of
which only two are required [18]. The small number of verbs
to implement makes it easy to achieve syntactic compatibil-
ity of components. Both a simple web server and a simple
web browser can be created using only the GET and HEAD
methods, taking a URI as a parameter and returning header
information and tagged data.
What’s more, symmetric components such as proxies,

caches or load-balancers can be constructed generically with-
out having to be adapted for or even aware of any domain-
specific structure or semantics. Like Unix filters, these sym-
metric components can be inserted between any other com-
ponents without affecting further composability.
In contrast to this composability-by-default for filters

and REST, the situation at least appears to be significantly
more complicated in-process. Instead of unadapted compos-
ability being the default, architectural and packaging mis-
match [23][17] are the norm. Many techniques are in use
or have been proposed to alleviate these mismatches, for
example a number of Design Patterns [22] such as Bridge
and Adapater or more specialized techniques such as Binary

1Also referred to as verbs

111

https://doi.org/10.1145/3359591.3359729
https://doi.org/10.1145/3359591.3359729

Onward! ’19, October 23–24, 2019, Athens, Greece Marcel Weiher and Robert Hirschfeld

Component Adapatation [31], though with arguably limited
progress, as documented in a ten year follow-up paper to
the original publication [24].
To illustrate the difference, wee will use the example of

caching. In a pure HTTP setting, there are a number of ready-
made web caches available such as squid [2] or varnish [5].
These caches run as separate processes. Once configured,
they all have the same interfaces and can be used with any
mix of unmodified HTTP clients and servers, so the choice
of caching software depends on the cost/benefit analysis of
the particular package, not compatibility concerns.
In the in-process case, we encounter caches in many dif-

ferent settings, for example HTTP servers, HTTP clients,
most software that has both an in-memory and a disk repre-
sentation [30], but none of these caches are interchangeable.
Both the Apache [1] and nginx [3] web servers have caching
modules, but they are coupled tightly to their respective
servers so cannot be exchanged without changing servers,
and certainly cannot be reused in clients or for non-HTTP
application software.
One way to obtain composability-by-default and generic

intermediaries such as caches is to architect even physically
co-located systems as distributed systems in the REST archi-
tectural style, for example asmicroservices [36][21]. However,
the cost of a distributed systems in time or complexity can be
prohibitive, or in the case of iOS simply prohibited2. Looking
at Fielding’s evaluation of HTTP suggests that distribution
may not actually be necessary [19]:

“What makes HTTP significantly different from
RPC is that the requests are directed to resources
using a generic interface with standard seman-
tics that can be interpreted by intermediaries
almost as well as by the machines that originate
services. The result is an application that allows
for layers of transformation and indirection that
are independent of the information origin, [..]”

Although the text talks about HTTP, RPC, and machines,
there is nothing in the structural parts (“directed to resources
using a generic interface with standard semantics”) that re-
quires a distributed implementation. Something that “[sepa-
rates requests from] resources using a generic interface with
standard semantics that can be interpreted by intermedi-
aries” should make such intermediaries possible, regardless
of being distributed or not.

We propose Storage Combinators as just such a kind of com-
posable and (sometimes) generic intermediaries to be used
and composed in-process. Based on In-Process REST[47],
these intermediaries can be used to create layers of transfor-
mations similar to HTTP intermediaries in REST.
Storage combinators are specific kinds of stores, objects

that implement a storage-oriented interface modelled on
the REST verbs and very similar to dictionary APIs. Stores
2iOS programs are not allowed to have multiple processes

were introduced in Polymorphic Identifiers [48] and abstract
over different kinds of storage, such as files, databases and
dictionaries. Storage combinators specialise stores in that
they don’t just provide the storage interface to their clients,
but in turn use the storage API themselves to fetch and store
data.
Section 2 provides a brief introduction to the parts of In-

Process REST and the Store abstraction necessary for the
rest of the paper. Section 3 introduces the Store Combinator
concept itself and describes the implementations of a set of
combinators to be composed in the later sections. Section 4
demonstrates how complex behaviours can be obtained by
plugging together combinators. Section 5 recounts practi-
cal experience using combinators and larger compositions
in industry. Section 6 discusses qualitative and quantitative
effects of Storage Combinator use. Section 8 shows related
work and finally Section 9 gives a summary of the contri-
bution of Storage Combinators and provides an outlook at
further work.

2 In-Process REST: References, Operations,
and Stores

At its most basic, taking the REST principles in-process
means implementing some or all of the HTTP methods as
an API in the software, and calling those methods instead
of sending HTTP requests. This can be as simple as a single
method that implements the equivalent of an HTTP GET by
taking a string-encoded path as used by the system that intro-
duced In-Process REST [47]. The method, shown in Figure 1,
resolved the path by walking a tree of named nodes3.

public SiteMapNode nodeForUri(String path) {
return root().subobjectForPath(path);

}
...
node = nodeForUri("football/premiereLeague");

Figure 1. GET implementation and use in Java

The nodeForUri() method separates the location of the
value, which is passed as a parameter to the method, from the
operation, a simple fetch, which is specified in the method
name. This separation mirrors the way HTTP protocol meth-
ods are defined, which also separate the verb from the URI.
This separation of location and action is necessary for

Storage Combinators, but completely missing from the typ-
ical storage access mechanisms defined for programming
languages, be they Strachey’s Load-Update Pairs (LUP) defin-
ing L-Values, or accessors and properties in object-oriented
languages, all of which define separate operations for each
location to access.

3Construction of the tree was handled separately.

112

Storage Combinators Onward! ’19, October 23–24, 2019, Athens, Greece

Table 1 shows how the separate concepts, location, op-
eration, and resolver are mapped to HTTP and In-Process
REST, respectively. Object Oriented Progamming, on the
other hand, does not separate location and operation, in-
stead combining the two into messages and thereby limiting
what an intermediary can do.

Table 1. Location, operation, and resolver

OO In-Process REST HTTP
location message reference URI
operation Storage protocol HTTP methods
resolver object store HTTP server

In the remainder, we will use a specific implementation of
In-Process REST and storage combinators to illustrate the
concept. The implementation is in form of a framework [44]
that supports the language Objective-Smalltalk [45].

2.1 Location: Polymorphic Identifiers/References
Polymorphic Identifiers in Objective-Smalltalk [48] are used
to identify the location of a resource. They serve the same
role in In-Process REST as URIs for REST/HTTP and are
closely modeled on URIs.
They are also called references or refs for short. Figure 2

shows the protocol refsmust conform to: a scheme and a path,
which for convenience can also be accessed by components.

protocol Reference {
-<Array>pathComponents.
-<String>path.
-<String>scheme.
}

Figure 2. Reference protocol in Objective-Smalltalk

Any object that conforms to the Reference protocol can
act as a reference.

2.2 Operation: Storage Protocol
The equivalent of HTTP methods in REST is modelled as
messages or procedure calls in In-Process REST. The im-
plementation used here uses the messages defined in the
Storage protocol shown in Figure 3.

protocol Storage {
-at:ref.
-<void>at:ref put:object.
-<void>at:ref merge:object
-<void>deleteAt:ref;
}

Figure 3. Storage protocol expressed in Objective-Smalltalk

The messages are equivalent to the GET, PUT, PATCH and
DELETE HTTP methods, and closely mirror the protocol of
Smalltalk dictionaries.

2.3 Resolver: Stores
Where HTTP servers act as the resolvers in REST, stores act
as resolvers in In-Process REST. Any object that implements
the Storage protocol can act as a store.

Figure 4 shows how to use a dictionary-based store via the
API. First, an instance of the store is created, then the store is
asked to provide a reference for a string path (references are
scoped by store). Finally a data item is placed into the store
using and later retrieved using messages from the Storage
protocol.

store := DictStore store.
ref := store referenceForPath:'hello'.
store at:ref put:'world'.
store at:ref. // result: "world"

Figure 4. Using a dictionary-based store via API

Figure 5 shows the equivalent code that uses a Smalltalk
dictionary directly. For this simple example, it is almost iden-
tical to the store-based code.

dict := Dictionary new
ref := 'hello'.
dict at:ref put:'world'.
dict at:ref. // result: "world"

Figure 5. Using a Smalltalk dictionary directly

The similarity between the dictionary-based code and the
store-based code is intentional: dictionaries are often used as
simple and lightweight dynamic storage mechanism. Using a
dictionary-based store instead of an actual dictionary keeps
the simplicity while not tying clients to the actual dictionary-
based storage implementation.
Figure 6 shows how to use the a disk-store via the store

API. The code is identical to Figure 4 except that DictStore
is replaced by DiskStore and the effect is the same except
that the data is stored in a file on disk instead of in a dictio-
nary.

store := DiskStore store.
ref := store referenceForPath:'hello'.
store at:ref put:'world'.
store at:ref. // result: "world"

Figure 6. Using a disk-based store via API

Figure 7 demonstrates the usage of a dict-based store using
Polymorphic Identifiers. Its effect is the same as the Figure 4,

113

Onward! ’19, October 23–24, 2019, Athens, Greece Marcel Weiher and Robert Hirschfeld

but it registers the store as the handler for the scheme dict
and then uses URIs with that scheme.

scheme:dict := DictStore store.
dict:hello := 'world'
dict:hello. // result: "world"

Figure 7. Using a dictionary-based store via Polymorphic
Identifiers

Finally, Figure 8 shows the use of the disk-store via the
pre-defined file scheme. Its effect is identical to Figure 64 .

file:hello := 'world'
file:hello. // result: "world"

Figure 8. Using a disk-based store via Polymorphic Identi-
fiers and the pre-defined file scheme

Table 2 shows the four operations supported by the Storage
protocol and their equivalent HTTP methods, Strachey LUP
operations, dictionary operations, the Java In-Process-REST
method shown above and equivalent Java accessors. The
at: message is equivalent to the HTTP GET method, read-
ing from a dictionary and fetching the specified node using
nodeForUri() calling the Load function of a Load-Update
Pair or calling a get accessor on a Java object.

The library comeswith a number of pre-built simple stores,
such as the DictStore and DiskStore already mentioned.
Many more stores have already been implemented, such
as those for the common URL schemes, http, https, and
ftp, in-process schemes for environment variables (env) and
memory variables (var). In addition there are stores to access
databases such as key-value stores and the SQLite database,
with the latter a template for connecting other relational
databases. More exotic stores provide access to windows
managed by the system or to other applications’ data via
AppleScript.

The benefits of decoupling clients from specific storage im-
plementations via a uniform protocol roughly correspond to
the general benefits of loose coupling in software engineer-
ing [50] and were discussed in detail in Polymorphic Identi-
fiers: Uniform Resource Access in Objective-Smalltalk [48].
4 Although file:hello is not valid URI syntax, it is a valid Polymorphic
Identifier

In this specific case, the uniformity both enables the com-
posability required for the storage combinators introduced
in the next section and also incentivises it: making combina-
tors composable and reusable is much more worthwhile if
they can actually be reused in many different contexts.

3 Storage Combinators
As discussed in the previous section, any object that im-
plements the Storage protocol can act as a store. This is
depicted in Figure 9. There is no requirement for a store to
actually store data, it can just as easily compute it, something
that is common for HTTP servers, as long as it implements
the protocol.

storeStorage

Figure 9. A store implements the storage protocol

A subset of stores compute their results by referring to
other stores, combining, filtering or otherwise processing
the results obtained from those other stores or being sent to
those other stores. Such stores are called storage cobinators,
shown in Figure 10.

storage
combinator

Storage [1-n] Storage

Figure 10. A storage combinator both implements and uses
the storage protocol

Due to the separation of locations and meaningful opera-
tions, these storage combinators can act as intermediaries
that perform useful operations, and due to their symmetry
can be composed to create layers of transformation and in-
direction very similar to HTTP intermediaries in the REST
distributed style, but without the distribution aspect.

Table 2. Operation equivalences: In-Process REST, REST, and non-REST

Store HTTP L-Values Smalltalk dictionary Java In-Proc. REST Java accessor
store at:ref. GET <uri> Load dict at:key. nodeForUri(ref) obj.getVar()
store at:ref put:val. PUT <uri> <val> Update <val> dict at:key put:val. - obj.setVar(val)
store at:ref merge:val. PATCH <uri> <val> - - - -
store deleteAt:ref. DELETE <uri> - dict deleteAt:key. - -

114

Storage Combinators Onward! ’19, October 23–24, 2019, Athens, Greece

3.1 Example Combinators
This section introduces a number of storage combinators that
have been refined over the years and proven to be generally
useful as generic intermediaries. They will also be the basis
for the examples compositions in Section 4.

Figure 13 sketches a quick overview of the class hierarchy
introduced here, deriving from an abstract Store superclass.
Combinators are shown with solid outlines.

3.1.1 Pass Through Store
The simplest storage combinator is the Pass Through store. It
simply passes all its requests to its source5 store unchanged.
Its implementation is shown in Figure 11. It implements
every single one of the messages of the Storage protocol
with a method that passes that message to the store’s source
and returning the result to its caller.

class PassThrough : Store {
var source.
-at:ref {

self source at:ref.
}
-<void>at:ref put:object {

self source at:ref put:object.
}
-<void>at:ref merge:object {

self source at:ref merge:object.
}
-<void>deleteAt:ref {

self source deleteAt:ref.
}

}

Figure 11. Definition of a pass-through store

Figure 12 shows how to configure and use a pass-through
store with a DictStore as its source. After instantiating the
PassThrough store, we configure it by setting a DictStore
as its source. Its use is identical to the DictStore example
in Figure 7, and as it just passes every request through un-
changed, the results are also the same.

scheme:p := PassThrough store.
scheme:p setSource:DictStore store.
p:hello := 'world'.
p:hello.

Figure 12. Configuration and use of a pass-through store

5 We use the point of view of the GET operation to determine what is source.

3.1.2 Mapping Store
The Mapping Store is an abstract superclass modelled af-
ter a map() function [37] or a Unix filter, applying simple
transformations to its inputs to yield its outputs when com-
municating with its source. Due to the fact that stores have a
slightly richer protocol than functions or filters, the mapping
store has to perform three separate mappings:

1. Map the reference before passing it to the source.
2. Map the data that is read from the source after it is

read.
3. Map the data that is written to the source, before it is

written.
The implementation of the mapping store is shown in

Figure 14. In this particular implementation of the Mapping
Store, the Storage protocol methods do not perform any ac-
tual mapping themselves, instead they take care of the proper
sequencing of operations, deferring the mapping operation
to overridable mapping methods.
The actual mapping is performed in the three methods

mapRef:, mapRetrieved:ref:, and mapToStore:ref:. As
these mapping methods are implemented as identities, re-
turning their argument, the abstract mapper functions iden-
tically to the PassThrough store shown in Section 3.1.1.

The basic mapping store has stubs for these three mapping
methods, which can be refined in subclasses. Having these
be overridable instead of function arguments is deliberate in
this particular library in order to encourage named, reusable
components.

3.1.3 Relative Store
A relative store is a mapping store that maps references by
prepending them with a prefix that is set at initialisation. Its
implementation is shown in Figure 15.

Relative stores are useful for decoupling clients from abso-
lute locations, for example a document directory or the URL
of a service. The client uses relative URIs, which get mapped
to the absolute URLs by the relative store. Substituting a dif-
ferent relative store can point the application to a test-server,
or to a different directory in the filesystem. Figure 16 shows
how to set up and use a disk-store

First, the code obtains a reference to the user’s home direc-
tory by fetching the HOME environment variable and plugging
that into the file scheme. It then creates the home scheme as
relative store with that reference and sets that as the source
of the DiskStore that’s backing the file scheme. Once set
up, the user’s .bashrc file can be accessed using the ex-
pression home:.bashrc, assuming the user has a Unix-style
operating system and a .bashrc file.

3.1.4 Serialiser
Where the relative store maps only references, serialisers
map only data, between an external, serialised format such
as JSON or XML and an internal object representation.

115

Onward! ’19, October 23–24, 2019, Athens, Greece Marcel Weiher and Robert Hirschfeld

Store

Dict PassThrough Mapping URL-Based

Switching Logging Cache Relative JSON Sequential Disk

Figure 13. Stores

class MappingStore : Store {
var source.
-mapRef:ref {

ref.
}
-mapRetrieved:object ref:ref {

object.
}
-mapToStore:object ref:ref {

object.
}
-at:ref {

var retrieved:=(self source at: (self mapRef:
ref)).

self mapRetrieved: retrieved ref:ref.
}
-<void>at:ref put:object {

var toStore := self mapToStore:object ref:ref:
self source at: (self mapRef: ref) put:toStore

.
}
-<void>at:ref merge:object {

var toMerge := self mapToStore:object ref:ref:
self source at: (self mapRef: ref) merge:

toMerge.
}
-deleteAt:ref {

self source deleteAt:(self mapRef:ref).
}

}

Figure 14. Definition of a mapping store

3.1.5 Switching Store
The switching store is used to distribute requests to one of a
number of subsidiary stores based on a user-definedmapping.
The default mapping is to take the first path-component of
the reference provided to select a store from a dictionary.

class RelativeStore : MappingStore {
var prefix.
-mapReference:ref {

self prefix referenceByAppending: ref.
}

}

Figure 15. Path relative store

homeRef := ref:file:{env:HOME}.
scheme:home := RelativeStore storeWithRef:homeRef.
scheme:home setSource: scheme:file.
home:.bashrc // result: <the current user's .bashrc>

Figure 16. A relative store pointing to the user’s $HOME
directory

This is comparable to a mount point with mounted file sys-
tems.
The implementation of the switching store is shown in

Figure 17. It has a single method that maps the incoming
ref to a store. All the methods of the Storage protocol than
forward their request to the store returned by that method.

3.1.6 Caching Store
A caching store works as you would expect: the store has a
source store and a cache store. It first tries to satisfy reads
from the cache and if that fails, gets the result from its source
and in addition to returning it also stores that result in the
cache. Onwrites, it works like a write-through cache, writing
to both the cache and the source. The implementation is
shown in Figure 18.
It does not provide any automatic invalidation mecha-

nism, instead adding an invalidateReference: message
to the protocol, which removes the specified element from
the cache but not from the source.

116

Storage Combinators Onward! ’19, October 23–24, 2019, Athens, Greece

class SwitchingStore : DictStore {
-storeForRef:ref {

super at: ref firstPathComponent.
}
-at:ref {

(self storeForRef:ref) at:ref.
}
-<void>at:ref put:object {

(self storeForRef:ref) at:ref put:object.
}
-<void>at:ref merge:object {

(self storeForRef:ref) at:ref merge:object.
}
-deleteAt:ref {

(self storeForRef:ref) deleteAt:ref.
}

}

Figure 17. Definition of a switching store

3.2 Logging and Filters
The logging store is a little different from the previously pre-
sented store combinators in that it is an adapter. Within the
store combinator system, it acts as just a pass-through store,
so just passes requests to its source without modification.

However, it also logs a description of the operation to its
log instance variable. It does this by bundling the operation
and the reference together into a RESTOperation (without
the data) and then writing that object to its log using the
-write: message, as shown in Figure 19. This particular
logging store only logs writes.

Implementors of the write:message are called filters, and
they fill roles similar to both Unix filters and output streams.
As an example, the Unix stdout stream is mapped to a filter
in Objective-Smalltalk, also called stdout. A similar map-
ping applies for stderr. Figure 20 shows how to configure
a logging filter so it logs a textual description of write opera-
tions that reached its DictStore.
Beyond traditional logging, a logging store can also be

used to inform other parts of a system that data has changed,
and exactly which piece of data has changed. Since the in-
formation identifying the data that changed is a ref and
not a pointer, notifications don’t have to include the actual
data, and the data doesn’t even have to exist in memory, for
example when data deleted.

3.2.1 MVC Notifications
One part of the MVC architecture [35] is a mechanism for
informing the view(s) when the model has changed. The
StoreNotifications filter transforms RESTOperation into
MVC notifications using the NSNotificationCenter class
of Apple’s Cocoa framework.

class CachingStore : PassThrough {
var cache.
-copyFromSourceToCache:ref {

var result := super at:ref.
self cache at:ref put:result.
result.

}
-<void>at:ref {

var result := self cache at:ref.
result ifNil: {

result := self copyFromSourceToCache:ref.
}
result.

}
-<void>at:ref put:object {

self cache at:ref put:object.
super at:ref put:object.

}
-<void>at:ref merge:object {

self copyFromSourceToCache:ref.
var merged := self cache at:ref merge:object.
self source at:ref put:merged.

}
-<void>deleteAt:ref {

self cache deleteAt:ref.
super deleteAt:ref.

}
-<void>invalidate:ref {

self cache deleteAt:ref.
}

}

Figure 18. Definition of a caching store

Any view object that has registered for this notification
will be notified whenever an object in the store changes, and
will also receive the reference to that object.

3.2.2 Copier
In addition to helping keep views synchronised with their
model using notifications, logging stores can also be used
to implement Constraint Connectors [49], using the Copier
shown in Figure 22 to keep one store, the target, synchro-
nised with another, the source.

What distinguishes constraint connectors from other one-
way dataflow constraint systems is that they work with ar-
bitrary data stores.

3.3 Discussion
This section has introduced the storage combinator concept
and illustrated that concept by showing both implementa-
tions and use-cases for a number of simple and fairly generic

117

Onward! ’19, October 23–24, 2019, Athens, Greece Marcel Weiher and Robert Hirschfeld

class LoggingStore : PassThrough {
var log.
-<void>at:ref put:object {

super at:ref put:object.
self log write: (RESTOperation verb:'PUT'

reference:ref).
}
-<void>at:ref merge:object {

super at:ref merge:object.
self log write: (RESTOperation verb:'MERGE'

reference:ref).
}
-<void>deleteAt:ref {

super deleteAt:ref.
self log write: (RESTOperation verb:'DELETE'

reference:ref).
}

}

Figure 19. Definition of a logging store

scheme:p := LoggingStore store.
scheme:p setSource:DictStore store.
scheme:p setLog: stderr.
p:hello := 'world'. // "PUT hello" logged to stderr

Figure 20. Configuring a logging store to send a textual
description to stderr

class StoreNotofications {
var notificationName.
-<void>write:restOperation {

NSNotificationCenter defaultCenter
postNotificationName:self

notificationName
object:

anObject.
}

}

Figure 21. A filter for sending MVC changed notifications
via NSNotificationCenter

combinators. This list of combinators is by no means exhaus-
tive, but it should be sufficient to clarify the ideas and serve
as a basis for some compositions in the next section.
It should be noted that storage combinators cannot be

viewed in isolation, they need to be combined with non-
combinator stores and will frequently also be augmented
by application-specific combinators. The fact that stores can
unify dictionaries, file access, database access and remote
interaction via HTTP give combinators very broad applica-
bility. In Objective-Smalltalk, that applicability is extended
to general variable access.

class Copier {
var source.
var target.
-<void>write:restOperation {

restOperation verb = 'PUT' ifTrue:{
var ref:=restOperation reference.
target at:ref put:(source at:ref).

}
restOperation verb = 'DELETE' ifTrue:{

target deleteAt:ref.
}

}
}

Figure 22. A filter for copying between stores

4 Composition
Having defined storage combinators and shown a few very
simple compositions in the previous section, this section will
construct some larger compositions.

4.1 Convenience Composition Syntax
So far, composition of stores was done procedurally: a store
was instantiated, configured and then connected by calling
individual methods. This approach means that the static
relationship between the stores is not expressed directly,
instead it is hidden in the dynamic unfolding of the execution
of the program, and upon reading the program has to be
recovered by the reader by simulating the execution in their
head.
Stores support two syntactical convenience mechanisms

for constructing store compositions. The first is array-based
and works in any language that supports literal arrays. The
abstract store class can be initialisedwith an array containing
either store classes or store instance. The former will first
have an instance created, the latter used as is and connected
in the order they appear in the array. Figure 23 constructs
the same home scheme handler as Figure 16.

homeRef := ref:file:{env:HOME}.
scheme:home := #Store(RelativeStore storeWithRef:

homeRef , scheme:file).
home:.bashrc // result: <the current user's .bashrc>

Figure 23. Composing a $HOME-relative store via array
convenience

The second syntax, only available in Objective-Smalltalk,
uses right arrows to denote component connections via their
default ports, and allows a few shortcuts such as using the
reference directly without having to convert to a store manu-
ally, the conversion is performed as part of component adap-
tation that is part of the connection mechanism. Figure 24
constructs the same composite as Figure 23 and Figure 16.

118

Storage Combinators Onward! ’19, October 23–24, 2019, Athens, Greece

scheme:home := ref:file:{env:HOME} -> scheme:file.
home:.bashrc // result: <the current user's .bashrc>

Figure 24. Composing a $HOME-relative store via connec-
tors

4.2 HTTP Server Stack
Use in a server role is facilitated by SchmeHTTPServer [46],
a minimal web server based on GNU libmicrohttpd [25] that
maps incoming HTTP requests as trivially as possible to
the Storage protocol given in Figure 3 (see Table 2 for the
correspondences).
Given the code in Figure 24, we can minimally extend it

to start serving those files in the user’s home directory over
HTTP on port 8080, as shown in Figure 25.

server := ref:file:{env:HOME} -> scheme:file ->
SchemeHTTPServer port:8080.

server start.

Figure 25. A composition serving the files in $HOME via
HTTP

In case serving everything from disk is too slow, we can
add a cache, as shown in Figure 26. Putting just the name of a
class in a composition will insert an instance of the class. The
default CachingStore configures itself with a DictStore as
its in-memory cache.

server := ref:file:{env:HOME} -> CachingStore ->
SchemeHTTPServer port:8080.

server start.

Figure 26. A composition serving the files in $HOME/Sites,
cached by memory

4.3 Diagrams
Compositions of stores can be represented graphically. The
graphic equivalent of the composition in Figure 26 is shown
in Figure 27.

HTTP-Server
Port: 8081 CachingStorestore

DictStorecache

Relative:
~/

source

DiskStore

Figure 27.Diagram depicting the HTTP-server composition
from Figure 26

These are architectural diagrams, with the nodes repre-
senting components and the arrows representing connectors.
In this case, the rounded rectangles represent store compo-
nents and the solid arrows represent connections via the
Storage protocol.
Since the graphs have a straightforward, 1:1 correspon-

dence to either of the convenience syntaxes presented, fur-
ther compositions will be shown in their graphical represen-
tation rather than as the code constructing them.
The graphical representations shown here can be auto-

matically generated at run time, currently by a graphViz:
method that dumps a textual, GraphViz-compatible repre-
sentation of the stores and their connections onto a stream.

A number of the graphs presented here were, in fact, gen-
erated automatically, guaranteeing their fidelity to the actual
program structures. Displaying these graphs at run time has
been an invaluable debugging aid. More sophisticated tools
that combine the graphs with logging information (via log-
ging store) to show live data flows at run time would be a
useful extension.

4.4 HTTP Client Stack
The same cache that was used to speed up the HTTP server
can also be used for the client, as shown in Figure 28.

CachingStore

DictStorecache

raw http

source

Figure 28. Composition of stores for an HTTP client with
in-memory caching

A slightly more complex setup with both an in-memory
and a disk-based cache is shown in Figure 29

CachingStore 1

DictStorecache

CachingStore 2

source
RelativeStore
temp directorycache

raw http
source

DiskStore

Figure 29. Composition of stores for an HTTP client with
disk and in-memory caching

This composition will first try to satisfy incoming read
requests from the in-memory cache, then from the disk cache
and finally by requesting the original resource via HTTP.

Automatically mapping from bytes to usable objects would
be accomplished by plugging in a number of serialiser stores
(Section 3.1.4), with a switching store (Section 3.1.5) indexed

119

Onward! ’19, October 23–24, 2019, Athens, Greece Marcel Weiher and Robert Hirschfeld

by MIME type selecting the appropriate serialiser. The mem-
ory cache could then be moved behind the serialisers in order
to cache native objects instead of the raw bytes.

4.5 Storage Stack
One common configuration we have encountered for mo-
bile and desktop applications is the storage stack shown in
Figure 30.

CachingStore

DictStore

cache

JSON

 source

Disk

Figure 30. Common storage stack

It features an in-memory store, a disk-store with serialiser
and a caching store that automatically shuffles data between
disk andmemory on-demand. The in-memory representation
is effectively a cache of the on-disk representation.

4.6 Asynchronous Writer
One potential disadvantage of the storage stack described in
the previous section is that it performs synchronous writes
to disk. This is great if we want to ensure perfect consistency,
but can potentially slow down operations that expect to write
at memory speed.
One solution is the asynchronous writer shown in Fig-

ure 31. The ovals in this diagrams represent objects that
are not stores but single-in/single-out filters discussed in
Section 3.2.2.

This construction is based on the storage stack in Figure 30,
but replaces the direct connection of the writing part of the
source (disk) side of the cache with a reference to a logger
(Section 3.2). For writes, instead of writing the data, the
reference is to the data is entered into a queue that feeds into
a a copier (Section 3.2.2). The copier copies the data from
the in-memory cache where it was previously written to the
its target, in this case the serializer and disk store.

The queue is asynchronous, decoupling writes to the stor-
age stack from the speed of the underlying disk storage. The
queue also coalesces writes. As the copier always gets the
most current version of the data from the memory store, it
does not need to write the same data multiple times.

CachingStore

Memory

 cache Logger

 source
 (writes)

JSON

 source
 (reads)Queue

 refs
Copier

source target

refs

Disk

Figure 31. Asynchronous writer as a composition

The asynchronous writer was initially implemented as a
single store with a very complex and error-prone procedural
implementation. The realization that it could also be imple-
mented by composing existing components only came later.
The compositional implementation was both significantly
simpler and more compact. It also worked out of the box
after the pre-tested components were assembled.
It should be noted that the composition is hidden inside

a version of the CachingStore, so for clients it has the same
interfaces as CachingStore, the only difference being the
asynchronous nature of writes. It should also be noted that
it slightly changes the nature of the data in the cache: as
long as there are writes outstanding, the data in the cache
for those writes is the actual source of truth and not just a
cache, and should therefore not be discarded.
A similar construction also queues up requests to web

backends.

5 Experience
The stores concept was developed over several iterations of
industry projects, storage combinators emerged over time
as a highly useful and in-hindsight obvious addition to the
mechanism.

5.1 BBC SportStats
Version 2 of the Sport Statistics system for BBC News In-
teractive was where the In-Process REST approach was in-
troduced [47]. The rewrite turned a distributed system with
over 100 processes and dozenmachines into a single Java pro-
cess. Web-sites for specific sports such as Cricket, Football
or Rugby were represented by individual In-Process REST
“servers” constructed out of domain objects.

A first version of the SwitchingStore component allowed
these separate sites to be “mounted” on a single combined

120

Storage Combinators Onward! ’19, October 23–24, 2019, Athens, Greece

“server” representing all the sports, with /cricket, football
etc. “subdirectories”. Each of the sites was translated to one
of several output media (HTML, WAP, Ceefax) by early vari-
ants of the mapping store.

The previous system used a relational database for storage
and procedural rules to map from that representation to
the final output tree. Using a tree for storage removed the
need for that mapping step, simplified coding and improved
traceability during production, as there was a clear, static
correspondence between internal representation and output.

Accessing that tree in-process rather than via an HTTP in-
terface in a microservices architecture removed deployment
complexity, removed the need for an intermediate represen-
tation that could be transformed into the final output formats
and made high performance straightforward to achieve, as
detailed in Section 6.

5.2 Wunderlist
Although the basic In-Process REST approach was used in
several other applications, including Livescribe Mac Desk-
top [6], the first refinement to the actual concepts came with
the the version 3 rewrite of the Wunderlist task management
application for iOS and macOS [9]. The previous version 2
had used Apple’s CoreData ORM (Object Relational Mapper),
which had turned out to be a major source of instability,
performance issues and thus ongoing rework.
There initially was no overarching plan for the storage

mechanism, the team responsible for the iOS and macOS
clients just implemented The Simplest Thing that Could Possi-
bly Work [4] as a placeholder until we could figure out how
to implement storage properly. This turned out to be a set of
nested in-memory dictionaries, keyed by the type of object
and the object’s id.
Instead of using these dictionaries directly, we exploited

the similarity between the Storage interface and the dictio-
nary interface to “lift” the access to a store with minimal
additional effort. By using the Storage interface, the team
could start with a simple dictionary implementation without
being tied to that implementation, for example to add actual
persistence.
When the need came to actually persist data, the initial

implementation grew, first to the generic storage stack from
Figure 30 and then to the production version shown in Fig-
ure 32, all without having to change the interface or the client.
The version shown added the ability to store some sensitive
items such as credentials in the Keychain, a system-wide
secure storage facility in macOS and iOS.
The core element represents the rest of the application

that is the client of the storage subsystem depicted here. The
caching-store is the same object used earlier in HTTP
server and client implementations. The switcher is the
SwitchingStore, keyed by object type. The object-types
representing sensitive information are diverted to the key-
chain, the remainder written to disk as JSON.

core caching
store

switchersource

memory
store

cache

JSON
serializer

keychain
sensitive

disk
store

Figure 32. Composition of stores making up the Wunderlist
storage architecture

Unit and system tests of application functionality use the
simpler hierarchy shown in Figure 33. That way tests are
fast and do not impact global state such as the developer’s
actual keychain.

core memory
store

Figure 33. Simpler composition of stores making up the
Wunderlist test configuration

Note that the test configuration uses no special-purpose
mocks or stubs, instead creating a slightly simpler config-
uration of the elements that were already used elsewhere.
This reduces not only the total amount of code written, but
also the chances of falsifying tests due to code that runs only
during test.

5.3 Microsoft To-Do
For Microsoft To-Do, started by the same team that built
Wunderlist 3, the focus was expanded to domain logic and
user-interface support. For example, the user interface of
both Wunderlist and To-Do included a sidebar as a top-level
navigational element. In Wunderlist, this was created with
regular object-oriented code, in To-Do, it was generated by
a mapping store.
The resulting, much more complex store hierarchy is

shown in Figure 34. The core element once again represents
the application’s entry point into the store hierarchy. Ac-
tual storage management is shown near the bottom, starting
with the caching store. It is very similar to the Wunderlist
storage hierarchy shown in Figure 32, except that handling
of sensitive user credentials has been delegated to Microsoft
libraries and moved near the top.
The CascadingRemoveStore handles deleting of associ-

ated data, such as tasks in a deleted list. The id-redirector
maps object ids assigned locally when creating an object,
for example when offline, to the server-provided ids that are

121

Onward! ’19, October 23–24, 2019, Athens, Greece Marcel Weiher and Robert Hirschfeld

core

switcher1 UI notifications

filter

suggestions sidebar day search detail user-store

id-redirector

authentication
frameworks

CascadingRemoveStore

caching store

JSON
serializer

memory
store

disk-store

Figure 34. Composition of generic and domain-specific
stores for Microsoft To-Do

substituted once the locally created object has been uploaded
and assigned an id by the server.

5.4 Other
Stores and storage combinators are also in use in various
projects at the Software Architecture Group at HPI, for ex-
ample the Lively Kernel and Squeak Smalltalk implementa-
tions [33]. In one example, the Lively team had a performance
problem with one of their stores that was fixed by plugging
in a Caching Store without altering any other code [34].
The MPWFoundation project that storage combinators

are a part of also contains UI components, including a miller-
column-browser based on Cocoa’s NSBrowser6 class that
works with any object conforming to the Storage protocol.
One application is a file browser, composing the browser
with the DiskStore using the code shown in Figure 37.

The resulting output is shown in Figure 36. Unfortunately,
the combination of APIs forces quadratic complexity: the
browser’s data source API for fetching data is invoked sep-
arately for each individual row of each column, whereas
the DiskStore cannot fetch individual directory entries by
6https://developer.apple.com/documentation/appkit/nsbrowser?
language=objc

browser := MPWBrowser new.
fb setStore: MPWDiskStore store.
fb openInWindow:'file␣browser'.

Figure 35. Configuring a file browser

ordinal index without reading the entire directory. For large
directories, the quadratic complexity caused the UI to be
severely laggy.

Figure 36. File Browser

The solution to the performance problems in this case was
adding a caching store from Section 3.1.6 to the composition
that’s used to configure the browser, as shown in Figure 37.
This is exactly the same cache previously used for HTTP
servers, HTTP clients and for coordinating memory and disk
storage in Wunderlist and To-Do. It was not adapted for this
application.

browser := MPWBrowser new.
fb setStore: (MPWCachingStore storeWithSource:

MPWDiskStore store cache: MPWDictStore store).
fb openInWindow:'file␣browser'.

Figure 37. Configuring a file browser with cache

Other applications include the server for the http://objective.
st site for the Objective-Smalltalk language and several live
programming environments, including one for web sites and
one for iOS and macOS applications.

6 Evaluation
The REST architectural style enabled symmetric reusable
components such as HTTP load balancers and caches. The
goal of storage combinators was to provide similar kinds of
composable intermediaries without requiring making pro-
grams distributed.
Such components can clearly be built, as shown in Sec-

tion 3. Section 4 demonstrates that they can be composed.

122

https://developer.apple.com/documentation/appkit/nsbrowser?language=objc
https://developer.apple.com/documentation/appkit/nsbrowser?language=objc
http://objective.st
http://objective.st

Storage Combinators Onward! ’19, October 23–24, 2019, Athens, Greece

The CachingStore proved to be particularly useful and ver-
satile, being used with an HTTP server, HTTP clients in
multiple configurations, in a GUI browser component, and
last not least as central part of the storage layer of several
widely used applications.

The straightforward composability inherent in the mech-
anism allowed the definition of convenience syntax that
comes close to the Unix shell notation for specifying compo-
sitions in a straightforward and declarative manner.

6.1 Reliability
As pointed out by Waldo et al in their Note on Distributed
Computing, moving from local to distributed computing in-
troduces a number of failure modes, particularly partial fail-
ures [32]. Conversely, moving from distributed to local com-
puting, as with storage combinators, simply removes these
failure modes entirely.

The BBC Sport Statistics rewrite with storage combinators
saw reliability improve by a factor of 50 as measured by
production outages. While this cannot be attributed solely
to the move from a distributed system with over a hundred
processes spread over a dozen machines to a local system
consisting of a single Java process, it certainly played a large
part.

The Wunderlist 3.0 macOS/iOS release reduced crashes by
a factor of ten compared to Wunderlist 2, which is unusual
for an x.0 release. Crashes were reduced significantly further
a couple of minor releases later after the usual x.0 oversights
had been corrected. Although this was not a move from
distributed to local computing, the storage subsystem was
the major source of crashes in the previous version, so this
improvement can be attributed at least partially to the new
storage architecture, including storage combinators.

6.2 Performance
Another of the key benefits of replacing a distributed imple-
mentation with a local one is performance: the overhead of
an in-process method call is orders of magnitude less than
any kind Inter Process Communication (IPC).
In order to quantify this well-known difference, we com-

pared the overhead of threeHTTP-based servers (the node.js [7]
based fastlify [10], the Python [42] based flask [40] and
the Ruby [51] based Sinatra [15]) with storage combinators
served over HTTP and used in-process.
For each, we used the minimal “hello world” program

provided by the documentation, which in each case consisted
of server that returns a single constant string with no further
computation or marshalling overhead. The measurements
were performed on a MacBook Pro 2018 with a 4 core Intel
i7 CPU running at 2.7 GHz and 16GB of RAM, running Mac
OS 10.14.5. For the HTTP servers, wrk was used to generate
load.

The results are shown in Figure 38, plotted as requests per
second on a log-scale.

1

10

100

1000

10000

100000

1000000

10000000

100000000

Sinatra Flask Fastify SC/HTTP Storage Combinators

Requests/s

Figure 38. Overhead of Storage Combinators compared to
HTTP servers (log scale)

In basic overhead, the systems compared fall into three
groups, separated by 1-2 orders of magnitude in performance:

1. Sinatra and Flask with 938 and 1523 requests per sec-
ond, respectively.

2. Fastlify and storage combinators overHTTPwith 58120
and 63735 requests per second, respectively.

3. Storage combinators in-process with 49 million re-
quests per second.

The in-process variant of storage combinators is 3 orders
of magnitude faster than the next fastest variant, storage
combinators over HTTP, and the overall range of the results
is almost 5 orders of magnitude.

This comparison only accounts for the intrinsic overhead
of access via the systems involved, for real systems the dif-
ferences will vary depending on the actual work performed.
In production, the BBC Sports Statistics system saw a

performance improvement of around a factor 100, surpassing
the goal set for the rewrite and removing performance as an
issue.
For the consumer-centric Wunderlist and To-Do applica-

tions we did not do a systematic, quantitative before/after
analysis. We knew that performance was an issue for cus-
tomers in the previous version based on qualitative customer
feedback. Both ad-hoc performance analysis as well as the
need to continuously tune the storage stack pinpointed the
source of the problems sufficiently even without a systematic
analysis.
After the rewrite, customer feedback on the topic of per-

formance switched from complaint to rave, and the new
storage stack never warranted further study in performance
investigations.

6.3 Productivity
Productivity is harder to quantify than reliability and perfor-
mance. One rough proxy for productivity is code size, and for
the BBC Sport Statistics system, we saw a decrease in overall
code size by a factor of four, despite adding two more output
media (Ceefax and WAP) to the existing HTML output [47].

123

Onward! ’19, October 23–24, 2019, Athens, Greece Marcel Weiher and Robert Hirschfeld

In Wunderlist and To-Do, both complexity and pure bulk
of client code was also significantly reduced compared to the
version utilising theORMdespite the ORM itself being a built-
in component that does not count towards our code bulk.
Behaviour became much more predictable, with team effort
chasing down storage-related problems virtually eliminated.
For the more comprehensive integration of storage com-

binators in Microsoft To-Do, the following benefits of the
architecture were reported [28]:

• “unified interface of communication between
layers means the system is infinitely exten-
sible with very little overhead of writing re-
peated glue code

• it gave the team a very minimal but powerful
framework to communicate, work separately
and successfully combine the results of their
work

• specific data storage combinators could be
turned on/off on the fly–.great for feature tog-
gles and rapid development; this allowed the
team to merge more often

• by applying this architecture I would be confi-
dent enough that we could rewrite Wunderlist
in 50-60% of the amount of code, while intro-
ducing better testability ([..] I’ve managed to
rewrite some of the parts in even less that 50%
from the original — sidebar, tasks and detail
view models)”

The downsides were reported as follows:

• “because of the unified interface and store ob-
jects being separate, it was often impossible to
determine the dataflow path before runtime;
dataflow would be encoded in the object de-
pendencies, which means one has to always
keep the object graph in their mind or at least
before their eyes;

• often it would be difficult to debug, because
a programmer has to step through the whole
data transformation path during runtime”

The current Objective-C implementation of storage com-
binators is also fairly small, at less than 1KLOC including
unit tests. Many implementations of single stores run to less
than 50 LOC, again including tests.

7 Discussion
In-Process REST in general and storage combinators in par-
ticular take an architectural style known to work well in
the distributed case and scale it down to work in the non-
distributed, local case in order to bring along the modularity
benefits associated with that style.

7.1 Inverting OO
This technique of scaling a distributed case down to the
local case for structural reasons is very similar to the con-
ception of object-oriented computing as explained by Alan
Kay: “[Smalltalk’s] semantics are a bit like having thousands
and thousands of computers all hooked together by a very
fast network.” [29]. The computers are the (strongly encap-
sulated) objects, and they communicate by exchanging mes-
sages over the “network”.
This network of thousands and thousands of computers

was, at the time, mostly notional: no networks of that scale
existed. Instead of such a notional network and its hypothe-
sised communication structure, the authors were able to look
at how the interconnection mechanism of a real network
with billions of connected computers works in practice.

The actual architecture of the World Wide Web is based
on REST, the combination of URIs to name objects and a
small set of verbs with fixed, state-based semantics.
REST inverts the conventional view of object-oriented

computing, which posits that in order to achieve polymor-
phism and encapsulation, interfaces must be procedural and
“state” hidden. REST has shown that you can hide both actual
state and computation behind a state-oriented interface.
In the OO view, the recursive decomposition of systems

must proceed on procedural lines, because it is the proce-
dures that make up interfaces. However, whereas procedures
are a computational abstraction, storage has actually re-
placed computation as the main driver of data processing
workloads for over a decade [13].

It is unlikely that this fundamental mismatch between
what our systems do and how our tools force us to structure
them is helpful for creating or understanding those systems.
It could be considered an instance of architectural mismatch,
the problems of which have been well-documented [23][24].

Allowing storage-oriented decomposition should ease this
mismatch. In fact, Brooks pointed out the importance of data
for system comprehension many decades ago when he wrote:
“Show me your flowchart and conceal your tables, and I shall
continue to be mystified. Show me your tables, and I won’t
usually need your flowchart; it’ll be obvious” [16].

7.2 Architecture-Oriented Programming
Storage-oriented composition has been very successful in
organising distributed systems such as the World Wide Web
and, as this work shows, can also be very helpful in structur-
ing local computation. Although one could make the case
for turning this into a unifying, all-encompassing ontology
similar to OO, we feel that one should refrain from making
this leap.
As John Hughes wrote in Why Functional Programming

Matters [27]:

Modular design brings with it great pro-
ductivity improvements. First of all, small

124

Storage Combinators Onward! ’19, October 23–24, 2019, Athens, Greece

modules can be coded quickly and easily.
Second, general-purpose modules can be
reused, leading to faster development of
subsequent programs. Third, the modules
of a program can be tested independently,
helping to reduce the time spent debug-
ging.
The ways in which one can divide up

the original problem depend directly on
the ways in which one can glue solutions
together. Therefore, to increase one’s abil-
ity to modularize a problem conceptually,
one must provide new kinds of glue in the
programming language.

We need many different kinds of glue, many different
kinds of connectors, in order to find appropriate and useful
decompositions of our problems that allow us to write well-
modularised programs.

8 Related Work
The Genesis project [14] was capable of synthesising a DBMS
out of prefrabricated components. However, its focus was
on creating a single store out of components of sub-store
granularity. It did not compose subsystems with a uniform,
symmetric store-like interface.
Stackable filesystems [26] are common in Unix systems

nowadays. As they are services provided by the operating
system kernel, they need to be provided by the kernel and
either have to be compiled into the kernel itself or require
special privileges to be loaded by the kernel. As such, they are
typically not suitable for providing user-defined abstractions
within a process. They are visible globally on a machine, so
more applicable between processes, not in-process, and more
typically used to structure systems, not programs. While the
POSIX API to access them is also narrow and uniform, it is
byte-oriented and therefore requires serialisation.
File System in User Space (FUSE) mitigates some of the

problems of filesystems by providing a single in-kernel ser-
vices that can bemultiplexed ontomultiple user-space filesys-
tem providers. However, the general FUSE facility still re-
quires privileges to install in the kernel, filesystems are still
globally visible and require multiple processes. FUSE does al-
low file-oriented utilities such as cat and ls and shell scripts
in general to interact directly with user-defined data struc-
tures so exposed. MPWFoundation provides a FUSE-adapter
for exposing stores to the filesystem in this fashion.
In-Process REST shares with Plan 9 the concept of using

a storage-oriented interface to represent a diverse set of
storage and non-storage-oriented resources alike located
in a hierarchical name space [39]. However, Plan 9 is very
much an operating system7, with the facilities provided to
processes by file-servers. Unlike Unix kernel filsystems and
7 Plan 9 from User Space nonwithstanding

FUSE, the name space is configured on a per-process basis.
However, access does involve at least communication with
a separate server process or a kernel transition when the
server is provided by the kernel, and also uses a byte-oriented,
rather than an object-oriented API. This makes transparent
distribution transparent, but in-process use somewhat more
Where recursive services analogous to storage combina-

tors are mentioned, they are also for operating-system level
services such as networking, file-serving and display/window-
servers. Implementing Plan 9
HTTP middleware [43][8] provides a mechanism for fil-

tering HTTP requests entering HTTP application servers
such as then ones used in Section 6. It is similar to storage
combinators in that middlewares are used in-process, can
be stacked and modify requests and data, for example com-
pressing the request body via gzip before sending. Storage
combinators go beyond middleware by not being tied to a
specific HTTP server, or to HTTP at all, but instead applying
the REST principles to arbitrary domains.
The large number of existing middlewares almost cer-

tainly includes a rich source of inspiration for the creation
or adaption of specific combinators.

The idea of moving distributed systems back into the pro-
cess has also been picked up by Fast key-value stores: An idea
whose time has come and gone [11]. The authors argue that
what they call “Remote, in-memory key-value (RInK) stores”
such as the popular memcached and Redis servers impose
too much overhead due to marshalling costs and network
hops and should be replaced by stateful application servers
or custom in-memory stores. Storage combinators could help
with keeping these designs modular.

Properties in languages such as C#, Objective-C, Eiffel and
Swift provide a data-like interface for procedural abstraction.
Unlike HTTP and in-process-REST, they do not separate the
name from the operation completely, so there is no straight-
forward way to capture all the names for a specific operation
and provide generic services such as caching or translation.

Lenses [20] share the aspect of bi-directionality with stor-
age combinators, however they work an a per-function basis,
rather than abstracting over an entire set of identifiers at
once.

9 Summary and Outlook
This paper introduces storage combinators, generic interme-
diaries that can be used as part of a plug-composable storage-
oriented abstraction. These composable intermediaries have
proven to be compact, reusable and versatile, and are suc-
cessfully used in mobile, desktop and server applications
serving many millions of users. Their use correlates strongly
with positive effects on code-size, performance, reliability
and productivity, both observationally and in the minds of
developers.

125

Onward! ’19, October 23–24, 2019, Athens, Greece Marcel Weiher and Robert Hirschfeld

One area of future research is how to type and statically
type-check storage combinators. The same generic nature
that makes storage combinators so composable also makes it
difficult to verify when they are connected correctly. Existing
generic approaches are probably insufficient, because even
single instances of the combinators will usually be processing
many different types. One possibility is that the types move
from the operations to the polymorphic identifiers.
Another opportunity is debugging: debugging the com-

positions by tracing the method invocations in their imple-
mentation can be cumbersome, but finding mechanism for
directly tracing and debugging the compositions, for exam-
ple by automatically inserting logging stores (see Section 3.2)
could enable debugging at a higher level of abstraction than
current technologies. This type of tracing could be presented
graphically using a variant of the graphical representation
generated.

The availability of a graphical representation that can be
derived automatically from the composed stores suggests
that it might be possible to create a graphical notation for
specifying these compositions.

By combining some of the best ideas from Unix, the World
Wide Web and object-oriented programming, storage combi-
nators have already proven themselves to be highly versatile
and effective at structuring software systems, while opening
many avenues for further improvement.

References
[1] 1995. Apache Web Server. https://httpd.apache.org
[2] 1995. Squid Web Cache. http://www.squid-cache.org
[3] 2004. Nginx Web Server. https://nginx.org
[4] 2005. http://c2.com/xp/DoTheSimplestThingThatCouldPossiblyWork.

html
[5] 2006. Varnish Web Cache. https://varnish-cache.org
[6] 2009. Macworld: Best of Show 2009. https://www.itworld.com/article/

2782292/macworld--best-of-show-2009.html
[7] 2009. node.js. https://nodejs.org/en/
[8] 2015. HTTP Middleware. https://laravel.com/docs/5.0/middleware
[9] 2015. Wikipedia: Wunderlist. https://en.wikipedia.org/wiki/

Wunderlist
[10] 2016. Fastify. https://www.fastify.io
[11] Atul Adya, Daniel Myers, Henry Qin, and Robert Grandl. 2019. Fast

key-value stores: An idea whose time has come and gone. In HotOS
XVII.

[12] M.J. Bach. 1986. The Design of the UNIX Operating System. Prentice-
Hall. https://books.google.de/books?id=NrBQAAAAMAAJ

[13] Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara, An-
dreas Nowatzyk, Shaz Qadeer, Barton Sano, Scott Smith, Robert Stets,
and Ben Verghese. 2000. Piranha: A Scalable Architecture Based on
Single-chip Multiprocessing. SIGARCH Computer Architecture News
28, 2 (May 2000), 282–293. https://doi.org/10.1145/342001.339696

[14] Don Batory and Sean O’Mally. 1992. The Design and Implementation
of Hierarchical Software Systems with Reusable Components. ACM
Transactions on Software Engineering and Methodology (October 1992).

[15] Konstantin Haase Blake Mizerany. 2007. Sinatra. http://sinatrarb.com
[16] Frederick P. Brooks. 1975. The Mythical Man-Month. Addison Wesley,

Reading, Mass.
[17] Robert DeLine. 1999. Avoiding Packaging Mismatch with Flexi-

ble Packaging. In Proceedings of the 21st International Conference on

Software Engineering (ICSE ’99). ACM, New York, NY, USA, 97–106.
https://doi.org/10.1145/302405.302456

[18] R. Fielding and J. Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content. RFC 7231. RFC Editor. http://www.rfc-editor.
org/rfc/rfc7231.txt http://www.rfc-editor.org/rfc/rfc7231.txt.

[19] Roy Thomas Fielding. 2000. Architectural Styles and the Design of
Network-based Software Architectures. Ph.D. Dissertation. AAI9980887.

[20] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. 2005. Combinators for Bi-directional
Tree Transformations: A Linguistic Approach to the View Update Prob-
lem. SIGPLAN Not. 40, 1 (Jan. 2005), 233–246. https://doi.org/10.1145/
1047659.1040325

[21] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. 2019. Archi-
tecting with microservices: A systematic mapping study. Journal of
Systems and Software 150 (2019), 77 – 97. https://doi.org/10.1016/j.jss.
2019.01.001

[22] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995.
Design Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[23] David Garlan, Robert Allen, and John Ockerbloom. 1995. Architectural
Mismatch: Why Reuse Is So Hard. IEEE Softw. 12, 6 (Nov. 1995), 17–26.
https://doi.org/10.1109/52.469757

[24] David Garlan, Robert Allen, and John Ockerbloom. 2009. Architectural
Mismatch: Why Reuse Is Still So Hard. IEEE Softw. 26, 4 (July 2009),
66–69. https://doi.org/10.1109/MS.2009.86

[25] Christian Grothoff and other authors. 2003. GNU libmichrohttpd.
https://www.gnu.org/software/libmicrohttpd/

[26] John S. Heidemann and Gerald J. Popek. 1994. File-system Develop-
ment with Stackable Layers. ACM Trans. Comput. Syst. 12, 1 (Feb. 1994),
58–89. https://doi.org/10.1145/174613.174616

[27] J. Hughes. 1989. Why Functional Programming Matters. Comput. J.
32, 2 (April 1989), 98–107. https://doi.org/10.1093/comjnl/32.2.98

[28] Mykhailo Karpenko. 2019. Personal Communication. (4 2019).
[29] Alan C. Kay. 1996. History of Programming languages—II. ACM,

New York, NY, USA, Chapter The Early History of Smalltalk, 511–598.
https://doi.org/10.1145/234286.1057828

[30] Michael Keith and Randy Stafford. 2008. Exposing the ORM Cache.
Queue 6, 3 (May 2008), 38–47. https://doi.org/10.1145/1394127.1394141

[31] Ralph Keller and Urs Hölzle. 1998. Binary Component Adaptation.
In Proceedings of the 12th European Conference on Object-Oriented
Programming (ECCOP ’98). Springer-Verlag, Berlin, Heidelberg, 307–
329. http://dl.acm.org/citation.cfm?id=646155.679694

[32] Samuel C. Kendall, Jim Waldo, Ann Wollrath, and Geoff Wyant. 1994.
A Note on Distributed Computing. Technical Report. Mountain View,
CA, USA.

[33] Marius Lichtblau, Patrick Rein, Stefan Ramson, Johannes Henning,
Marcel Weiher, and Robert Hirschfeld. 2018. Squeak/Smalltalk Imple-
mentation of Polymorphic Identifiers. https://github.com/hpi-swa-
lab/squeak-polymorphic-identifiers

[34] Jens Lincke. 2019. Personal Communication. (4 2019).
[35] Trygve M. H. Reenskaug. 1979. Thing-Model-View-Editor – an Exam-

ple from a Planning System. http://heim.ifi.uio.no/ trygver/1979/mvc-
1/1979-05-MVC.pdf. http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-
05-MVC.pdf

[36] James Lewis Martin Fowler. 2014. Microservices: a definition of
this new architectural term. https://martinfowler.com/articles/
microservices.html

[37] John McCarthy. 1959. Recursive Functions of Symbolic Expressions and
Their Computation by Machine. Technical Report. Cambridge, MA,
USA.

[38] Doug McIlroy. 1964. Pipes Proposal. http://doc.cat-v.org/unix/pipes/
[39] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil

Winterbottom. 1993. The Use of Name Spaces in Plan 9. Operating
Systems Review 27, 2 (April 1993), 72–76. http://plan9.bell-labs.com/

126

https://httpd.apache.org
http://www.squid-cache.org
https://nginx.org
http://c2.com/xp/DoTheSimplestThingThatCouldPossiblyWork.html
http://c2.com/xp/DoTheSimplestThingThatCouldPossiblyWork.html
https://varnish-cache.org
https://www.itworld.com/article/2782292/macworld--best-of-show-2009.html
https://www.itworld.com/article/2782292/macworld--best-of-show-2009.html
https://nodejs.org/en/
https://laravel.com/docs/5.0/middleware
https://en.wikipedia.org/wiki/Wunderlist
https://en.wikipedia.org/wiki/Wunderlist
https://www.fastify.io
https://books.google.de/books?id=NrBQAAAAMAAJ
https://doi.org/10.1145/342001.339696
http://sinatrarb.com
https://doi.org/10.1145/302405.302456
http://www.rfc-editor.org/rfc/rfc7231.txt
http://www.rfc-editor.org/rfc/rfc7231.txt
http://www.rfc-editor.org/rfc/rfc7231.txt
https://doi.org/10.1145/1047659.1040325
https://doi.org/10.1145/1047659.1040325
https://doi.org/10.1016/j.jss.2019.01.001
https://doi.org/10.1016/j.jss.2019.01.001
https://doi.org/10.1109/52.469757
https://doi.org/10.1109/MS.2009.86
https://www.gnu.org/software/libmicrohttpd/
https://doi.org/10.1145/174613.174616
https://doi.org/10.1093/comjnl/32.2.98
https://doi.org/10.1145/234286.1057828
https://doi.org/10.1145/1394127.1394141
http://dl.acm.org/citation.cfm?id=646155.679694
https://github.com/hpi-swa-lab/squeak-polymorphic-identifiers
https://github.com/hpi-swa-lab/squeak-polymorphic-identifiers
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://doc.cat-v.org/unix/pipes/
http://plan9.bell-labs.com/sys/doc/names.pdf
http://plan9.bell-labs.com/sys/doc/names.pdf

Storage Combinators Onward! ’19, October 23–24, 2019, Athens, Greece

sys/doc/names.pdf
[40] Armin Ronacher. 2010. Flask: a Python Web Microframework. https:

//palletsprojects.com/p/flask/
[41] Mary Shaw and David Garlan. 1996. Software Architecture: Perspectives

on an Emerging Discipline. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA.

[42] Guido van Rossum and Fred L. Drake. 2011. The Python Language
Reference Manual. Network Theory Ltd.

[43] Xing Wang. 2017. What is HTTP middleware? Best practices for
building, designing and using middleware. https://www.moesif.com/
blog/engineering/middleware/What-Is-HTTP-Middleware/

[44] Marcel Weiher. 1998. MPWFoundation Framework. https://github.
com/mpw/MPWFoundation

[45] Marcel Weiher. 2003. Objective-Smalltalk. http://objective.st
[46] Marcel Weiher. 2003. ObjectiveHTTPD Framework. https://github.

com/mpw/ObjectiveHTTPD
[47] Marcel Weiher and Craig Dowie. 2014. In-Process REST at the BBC.

In REST: Advanced Research Topics and Practical Applications, Cesare

Pautasso, Erik Wilde, and Rosa Alarcon (Eds.). Springer New York,
193–209. https://doi.org/10.1007/978-1-4614-9299-3_11

[48] Marcel Weiher and Robert Hirschfeld. 2013. Polymorphic Identifiers:
Uniform Resource Access in Objective-Smalltalk. In Proceedings of the
9th Symposium on Dynamic Languages (DLS ’13). ACM, New York, NY,
USA, 61–72. https://doi.org/10.1145/2508168.2508169

[49] Marcel Weiher and Robert Hirschfeld. 2016. Constraints As Polymor-
phic Connectors. In Proceedings of the 15th International Conference on
Modularity (MODULARITY 2016). ACM, New York, NY, USA, 134–145.
https://doi.org/10.1145/2889443.2889456

[50] Edward Yourdon and Larry L. Constantine. 1979. Structured Design:
Fundamentals of a Discipline of Computer Program and Systems Design
(1st ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[51] Nobuyoshi Nakada et al. Yukihiro Matsumoto, Koichi Sasada. [n. d.].
MRI - Matz’s Ruby Interpreter - The Ruby Programming Language.
https://www.ruby-lang.org/en/

127

http://plan9.bell-labs.com/sys/doc/names.pdf
https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://www.moesif.com/blog/engineering/middleware/What-Is-HTTP-Middleware/
https://www.moesif.com/blog/engineering/middleware/What-Is-HTTP-Middleware/
https://github.com/mpw/MPWFoundation
https://github.com/mpw/MPWFoundation
http://objective.st
https://github.com/mpw/ObjectiveHTTPD
https://github.com/mpw/ObjectiveHTTPD
https://doi.org/10.1007/978-1-4614-9299-3_11
https://doi.org/10.1145/2508168.2508169
https://doi.org/10.1145/2889443.2889456
https://www.ruby-lang.org/en/

	Abstract
	1 Introduction
	2 In-Process REST: References, Operations, and Stores
	2.1 Location: Polymorphic Identifiers/References
	2.2 Operation: Storage Protocol
	2.3 Resolver: Stores

	3 Storage Combinators
	3.1 Example Combinators
	3.2 Logging and Filters
	3.3 Discussion

	4 Composition
	4.1 Convenience Composition Syntax
	4.2 HTTP Server Stack
	4.3 Diagrams
	4.4 HTTP Client Stack
	4.5 Storage Stack
	4.6 Asynchronous Writer

	5 Experience
	5.1 BBC SportStats
	5.2 Wunderlist
	5.3 Microsoft To-Do
	5.4 Other

	6 Evaluation
	6.1 Reliability
	6.2 Performance
	6.3 Productivity

	7 Discussion
	7.1 Inverting OO
	7.2 Architecture-Oriented Programming

	8 Related Work
	9 Summary and Outlook
	References

