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Abstract

Aspect-oriented programming languages provide new composition
mechanisms for improving the modularity of crosscutting con-
cerns. Implementations of such language support use advanced pro-
gram representations, like abstract syntax trees or stack traces, to
enable an indirect specification (pointcut) of executions of program
elements at which aspect code (advice) is invoked. During the evo-
lution of a program, this representations will change and, hence,
advice may not be executed as intended by the developer.

In this paper we present a tool-supported refactoring approach that
addresses this evolution problem by automating the detection of
change effects on pointcuts and the generation of pointcut updates.
A new model for decomposing pointcuts into simpler expressions is
used as the base for deriving the change impact on pointcuts. Based
on this model, we show how program analysis can detect affected
or even broken pointcuts, how suitable pointcut adjustments can be
derived, and when developer feedback is unavoidable.
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1.

Aspect-oriented programming (AOP) has been proposed for im-
proving the modularity of crosscutting concerns. It introduces new
adaptation mechanisms that allow for structural extension of im-
plementation modules and adaptation of existing program behav-
ior. The adaptation mechanisms are often supported by new lan-
guage constructs, such as pointcut and advice. A pointcut specifies
where and when an advice is executed by selecting well-defined
points in the program execution, so called joinpoints. Every time
a joinpoint is reached, some dedicated runtime support ascertains
matching pointcuts. If a matching pointcut is defined, every bound
advice is executed. With this complex but powerful mechanism,
aspects can declare an adaptation without modifying the source of
the adapted implementation module. To select a certain set of join-
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points, a pointcut can specify structural and behavioral properties
of the program that have all desired joinpoints in common. These
properties are made accessible by the implementation of the pro-
gramming language, which provides access to static and dynamic
program representations, such as the program’s abstract syntax tree,
the type hierarchy, or the stack trace. A pointcut expresses a join-
point property, like the name of a method, or the declaring type of a
method, and ties the advice execution closely to the representations
used by the language implementation.

Like all software systems, aspect-oriented programs have to
evolve over time. Developers have to adapt the program to chang-
ing requirements, fix bugs, or add new functionality. In today’s
constantly changing environments, the evolvability of a program is
crucial. A widely adopted process for supporting evolution, mainly
applied to object-oriented systems, is called software refactoring.
The term is commonly used as the process for improving the de-
sign of existing code without altering its external behavior [15, 8].
Tool support for refactoring minimizes the effort and prevents the
introduction of new errors in a manual application of the refactor-
ing steps. A refactoring tool determines all change effects and esti-
mates whether a change would alter the program behavior before a
particular change is performed.

With the introduction of pointcuts even very local changes, such
as renaming or inlining a local variable, can have global effects on a
program behavior. Most modifications of program elements that are
referenced by a pointcut can break the specification of a joinpoint
property and cause unexpected advice execution.

In this paper, we present tool-supported refactoring that pre-
serves the joinpoint properties specified in pointcuts, and provides
automated adjustments of pointcuts in case a specified property is
invalidated. Our approach allows for structural improvements of
the design, but helps to preserve existing pointcuts. It guides the
developer in deciding whether change effects on existing pointcuts
invalidate them, and how pointcuts can be adjusted to restore the
original program behavior. In particular, we present as the contri-
butions of this paper:

e a meta-model for pointcut representations as a general basis for
AOP tool-support,

e a change impact analysis for pointcuts based on this meta-
model, and

e a heuristics-based impact assessment to automate the detection
and adjustment of invalidated pointcuts.

The paper is structured as follows. In Section 2 we present a mo-
tivating example. In Section 3 we introduce our refactoring ap-
proach, describe our meta-model for representing pointcuts, ex-
plain the change impact analysis, and introduce an approach for
automating the pointcut update decision. In Section 4 we present
three experiments in which we evaluated our approach, discuss re-
lated work in Section 5, and conclude in Section6.
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public class Client {
void init(int clientID) { /* ... */ }
public class CorporateClient extends Client {
DefaultPolicyCreator creator;
public static void main(String[] args) {

new CorporateClient().init(100); ==
3 Move Method

void init(int clientID) {
createDefaultPolicy(clientID); } (‘DM(5), CM(6), LC(1)
|void createDefaultPolicy(int clientID) { /* ... */ }|

public class DefaultPolicyCreator {
}

public aspect PolicyCreationTracker {
int counter = 0;
after() : execution(

void( CorporateClient)createDefaultPolicy(int)) {

counter++;

int getCounter() { return counter; }

public class Client {

public class CorporateClient extends Client {

3

public class DefaultPolicyCreator {

affected AO-code

atomic changes
00-code edit

void init(int clientID) { /* ... */ }

DefaultPolicyCreator creator;

public static void main(String[] args) {
new CorporateClient().init(100);

}

void init(int clientID) { CM(7)
|creator.createDquultPolicy(clientID);|}

AM(3), CM(4), LC(2)

|void createDefaultPolicy(int clientID) { /* ...

*/ 3}

}

public aspect PolicyCreationTracker {

3

int counter = 0;
after() : execution(

void(befaultPolicyCreatoE)createDefaultPolicy(int)) {
counter++;

}

int getCounter() { return counter; }

Figure 1. Example program, illustrating the change effects of a Move Method refactoring.

2. Motivating Example

In the following example, we illustrate the differences between
refactoring object-oriented and aspect-oriented programs, as well
as how the specification-like nature of pointcuts influence behavior
preservation during a refactoring.

The example application in Figure 1 is implemented using
Aspect] [28]. It can be seen as part of an insurance application
that manages clients and contracted insurance policies. The pro-
gram part consists of three classes, Client, CorporateClient
and DefaultPolicyCreator, as well as one aspect Policy-—
CreationTracker. The class Client implements a method
init (int), which initializes the default policy for newly created
client objects. The class CorporateClient extends class Client
and redefines this method to invoke the local method create-
DefaultPolicy(int). The static method main(String[]) in-
vokes this redefinition with some data. This program is now re-
structured using the Move Method refactoring [8]. The refactor-
ing is applied to move the method createDefaultPolicy(int)
from class CorporateClient to class DefaultPolicyCreator.
Figure 1 shows the particular changes caused by the refactoring in
annotated boxes.

Standard refactoring tools, like the Eclipse JDT [7], use ad-
vanced program representations, such as an abstract syntax tree
(AST) or the static type hierarchy, to check syntactic and semantic
properties of the program for preserving its behavior. For object-
oriented programs the properties relate to inheritance, scoping, type
compatibility and semantic equivalence of references and methods,
i.e., they are related to fundamental concepts of the programming
language that is used to define the program behavior [15]. These
properties must not be violated, if they exist in a program. Most
refactoring tools implement explicit checks for these properties to
determine behavioral changes. In this way, the preservation of the
program behavior is automated by refactoring tools.

In the example, the refactoring tool checks, e.g., whether
the target method createDefaultPolicy(int) is redefined in
sub-classes, if it has incompatible control flow dependencies, or
whether the classDefaultPolicyCreation already contains a
method with the same signature, before it allows the developer to
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apply the refactoring. Also, references to the refactoring targets,
such as method calls, are considered in the refactoring transforma-
tions. The resulting program in the example is then accomplished
by copying the target method to class DefaultPolicyCreation
and updating the method call in method init (int).

This (object-oriented) refactoring does not consider any aspect
composed with the program. The PolicyCreationTracker as-
pect in the example program simply counts the number of asso-
ciated policies, by increasing a counter after a policy-creation-
method was invoked. An aspect-aware version of this refactoring
would consider the program behavior that is defined by aspects and
in particular the advice invocations that are bound by pointcuts, as
well'. New constraints need to be defined that preserve the advice
invocations which lead to the composed behavior.

The aspect in the example defines the following pointcut:

pcl () execution(
void CorporateClient.createDefaultPolicy(int))

It defines that the advice is invoked directly after every
execution of the method CorporateClient.createDefault-
Policy(int). Since the pointcut specifies a single method in a
similar way as it is done by symbolic references, an aspect-aware
version of the refactoring could easily determine that this pointcut
has to be adjusted. A simple name lookup could identify the match-
ing element for the specified method signature, and an adjustment
would just replace the declaring type name. The updated pointcut
as shown in Figure 1 would look very similar to the original speci-
fication and restore the original program behavior.

However, most pointcut languages provide developers with ac-
cess to more joinpoint properties than just element names, and ad-
ditionally allow for under and over-specification. A developer may
specify a joinpoint property incompletely (under specification), so
that executions of multiple elements in the program can be selected
by a pointcut. For example, if the following pointcut is considered
for the program in Figure 1:

! Structural extension mechanisms of aspects, such as inter-type declara-
tions, have to be preserved by refactoring, too. Since this paper concentrates
on a proper handling of pointcuts, this is considered to be out of the scope.



execution(x Client+.x*(..))

pc2()

This pointcut would select all method executions of every method
that is defined in class Client or its sub-classes. It does not state
explicitly which methods it selects, rather than implicitly expect
certain methods within the defined scope. A refactoring tool cannot
simply adjust such a specification by replacing the signature pat-
tern. A more sophisticated approach is required that involves the
evaluation of the pointcut to determine whether matches of newly
added or removed elements cause expected targets for an advice
invocation. This also covers situations in which the composed be-
havior might intentionally be altered. The advice of the example
is used in a logging scenario where executions of every method
defined within class Client or its sub-classes are monitored. The
refactoring moves the method createDefaultPolicy(int)) to
a different class and excludes it from the set of valid matches, which
could be intended by the pointcut’s developer.

In addition to under-specified properties, pointcuts can also re-
fer to highly dynamic joinpoint properties. Consider the following
pointcut, which selects only method calls occurring within a partic-
ular control flow at runtime:

pc3() cflow(call(* Client+.init=x*(..)))
&& execution(void createDefaultPolicy(int))

Such dynamic properties impose additional challenges to the anal-
ysis capabilities of refactoring tools. The tool has to create or
maintain every representation that is used to compute such dy-
namic properties. Otherwise it would not be possible to detect a
potential impact on the composed program behavior. Moreover, the
use of dynamic properties complicates the computation of point-
cut adjustments. Dynamic properties refer to a specific program
behavior. If for some reasons this behavior was changed, the tool
is asked to propose a pointcut that selects the new behavior. An
automated generation of a specification that captures a particu-
lar behavior is, however, more difficult than capturing a partic-
ular structural property. In the example, the refactoring moves
the createDefaultPolicy(int) method into a new containment
scope. The pointcut uses this method to denote a certain control
flow, which is not changed by the refactoring. Hence, the refactor-
ing has no effect on the set of joinpoints selected by this pointcut.

The joinpoint properties specified in pointcuts are properties of
the program that are expected by existing aspects. Refactorings for
aspect-oriented programs have to preserve these properties, in a
similar way as existing refactorings preserve program properties for
object-oriented programs. A refactoring for Java, e.g., ensures that
a method call invokes the same method implementation by protect-
ing the involved type hierarchy and method redefinitions. Pointcuts
of present AOP approaches use additional and more dynamic pro-
gram properties that have to be considered when aspect-oriented
programs are refactored.

To this end, a refactoring tool for aspect-oriented programs
needs access to program representations that are additionally used
by implementations of AOP languages, and it must be enabled to
validate every joinpoint property specified in pointcuts. Further-
more, the tool cannot preserve the program behavior in all cases.
A pointcut may capture only those program elements that exhibit
a particular property, and exclude others by intention. If a refactor-
ing alters this property, the pointcut should not match the modified
elements in the refactored program. The resulting loss of captured
joinpoints would cause an alteration of the composed program be-
havior. Such alterations can be intended, and thus have to be con-
sidered when refactoring aspect-oriented programs.

3. Aspect-aware Refactoring

Unlike approaches to aspect-oriented refactoring which use the
aspect-oriented modularization concept for establishing new refac-
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toring opportunities, we focus on a problem that is fundamental to
refactoring in general, when it is applied to an aspect-oriented pro-
gram: aspect awareness. Aspect-aware refactorings extend (object-
oriented) refactorings [17], in order to make them aware of as-
pect bindings. The main goal of this approach differs from existing
refactoring approaches regarding behavior preservation. In aspect-
aware refactoring it is determined whether affected pointcuts allow
for behavior alterations. If, for example, a pointcut intentionally
under-specifies a joinpoint selection a refactoring may propose to
accept altered matches, and thus an altered behavior. In cases where
affected pointcuts are considered as invalidated, the proposed ad-
justment not only preserves the program behavior, it also needs to
preserve the pointcut’s characteristics, i.e., the way in which it spec-
ifies the joinpoint properties.

Since we focus on a tool-supported refactoring approach, we ex-
tend a standard process for automated refactoring: Input Validation
— Change Preview — Transformation [7]. In particular, this process
is extended by integrating a change impact analysis for pointcuts
into the Change Preview which is used to:

e identify pointcuts that are affected by a refactoring;
e locate pointcut parts that are invalidated by a refactoring;

e determine whether to keep the pointcut or to preserve the be-
havior;

e generate a pointcut preserving adjustment if possible.

Also the Transformation step is extended to apply proposed and
accepted pointcut adjustments.

In the following subsections, we introduce a new meta-model
that explicitly maps program changes to pointcut references, and a
specific change impact analysis that leverages the model to reveal
affected parts of a pointcut. We argue why aspect-aware refactoring
needs to be based on heuristics and present two heuristics that
propose whether a pointcut has to be updated. Based on the meta-
model and the heuristics we show how invalidated pointcuts can be
updated. The complete refactoring approach is described in [27].

3.1 Modeling Pointcut References

Pointcuts specify properties of joinpoints which are manifested by
the implementation of the programming language using different
program representations. Most approaches make use of the pro-
gram’s name space, code containment, static typing and usages of
declaring elements, such as types, methods and fields [3, 4, 19].
More advanced approaches, such as [2, 16, 24], also use properties
of dynamic representations, like the stack trace (cflow), execution
trace (trace match) and object heap (instance values). Every used
program representation provides additional information and makes
the selection of joinpoints more powerful. However, the same in-
formation has to be evaluated in the refactoring process, otherwise,
it cannot be determined whether a certain modification affects a
specified property.

In Figure 2 we give an overview of the models introduced by
the following sections. The figure illustrates how they are used to
compute pointcut references and how program changes caused by a
refactoring are mapped to the pointcut expressions, so that affected
expressions can be ascertained.

3.1.1 Pointcut Model

Our analysis approach uses a pointcut model for evaluating point-
cuts within a particular program. This model is built for every point-
cut defined in the program. It abstracts from the concrete syntax of
the employed pointcut language and represents every single spec-
ification of a property through a separate pointcut expression. A
pointcut expression (PCE) refers to a single joinpoint property, or
to be more precise, to a property of an element of a program repre-
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Figure 2. Overview of the pointcut meta-model

sentation that is used to identify the joinpoint property. The point-
cut model is created by parsing the concrete syntax elements of a
pointcut language and a subsequent decomposition of every partial
specification into a tree of elementary pointcut expressions. The
model represents pointcut expressions as nodes and the evaluation
dependencies between them as directed edges.

Such an abstract, tree-based representation of expressions leads
to three major advantages: (i) every expression refers to a single
program representation, (ii) every expression holds the specifica-
tion of a single property, and (iii) evaluation dependencies between
the expressions are directly represented by the structure. This sig-
nificantly simplifies the detection of program elements that corre-
spond to a single property and allows for a distinct assessment of
change effects on every single part of a pointcut. Pointcuts of every
pointcut language, that specifies properties of joinpoints in a declar-
ative way, can generally be translated in such a pointcut model. The
model was evaluated for the pointcut language of Aspect].

Notation Remarks. In the remainder of the paper we use a sim-
ple textual representation of the model to illustrate which proper-
ties are specified by pointcuts, how the specification is represented
and which parts of the specification are affected by a change. An
expression that specifies a single property has the form expres-
sion(Property) — Property, whereas Property denotes the type of
a joinpoint property, <Property> denotes an ordered list of prop-
erties, and VARIABLE represents a free variable parameter.

Static Properties. Static properties are evaluated on program rep-
resentations that can be obtained from the program code, such as
abstract syntax tree or static type hierarchy. The pointcut model
supports the most common static properties like naming, code con-
tainment, and type relationships. For each property a separate ex-
pression is provided:

field(<Modifier>, TypeProperty, NAME) — FieldProperty
get(FieldProperty) — Property

call(MethodProperty) — Property

within(Property, Property) — Property
subtypes(TypeProperty) — TypeProperty

The program’s name space contains all named elements (decla-
rations) of a program, such as packages, types, methods and fields.
For each of these elements a separate expression is provided that
takes the element signature as input and returns a name-based prop-
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erty. For example, the field expression above expects a list of mod-
ifiers, an expression that selects types, and a free variable NAME,
which denotes the element’s simple name and also allows wild-
cards for specifying partial names. The resulting property can be
matched with field elements of a program’s AST. In the same way,
the pointcut model provides expressions for specifying usages of
declared elements and containment-/hierarchy-based scopes. These
expressions take a property as input and select a set of program el-
ements, e.g., get() or set() select field accesses and call() a method
call. Expressions like within(), contains(), or subtypes() specify the
containment by a certain element or type hierarchy.

Dynamic Properties. Dynamic properties are not evaluated on
the actual runtime structure, but on a conservatively approximated
representation, i.e., the evaluation of expressions selects more ele-
ments than actually occur at runtime. The pointcut model supports
dynamic properties related to dynamic typing and an execution’s
stack trace with expressions like:

this(TypeProperty) — Property
target(TypeProperty) — Property
cflow(Property, Property) — Property

The dynamic type of the element currently under execution (this()),
of the element targeted by the flow of control (target()) and the
parameters (args()) is approximated using static inheritance rela-
tionships. These expressions return a set of possible types, rather
than the actual dynamic type. The cflow() expression specifies con-
tainment in the stack trace using a call graph to approximate every
possible stack trace. The expression receives two sets of elements
and returns frue if there exists at least one possible call path in the
graph from an expression of the first set (start-triggers) to an ex-
pression of the second set (end-triggers). Also conditionals over
runtime values can be used in pointcuts, which are approximated
by returning true.

Composing Expressions. Pointcut expressions can be aggregated
to specify more complex properties. In addition, logical combina-
tions of and (||), or (&&), and not (!) can be used to filter elements
from a given set or combine sets to a set union. With these com-
positors, almost every pointcut can be decomposed into a pointcut
model. For example, the pointcuts from Section 2 can be repre-
sented as the following aggregations:

The model for pointcut pc1() consists of a within() expression
(as root), a type() and a method() expression. Both sub-expressions
specify the signatures completely, only the modifiers are left out.

within( type(” CorporateClient”),
method(<..>, type(”void”), ”createDefaultPolicy”,
<type(”int”)>))

The second pointcut pc2() just specifies that the methods in ques-
tion have to be defined in a certain type hierarchy by defining the
type’s name:

within(subtypes(type(”Client”)), method(<..>, *, * <..>))

The pointcut model for the third pointcut pc3() from the example
section would look like the following:

cflow(
call(
within(
subtypes(type(”Client”)),
method(<..>, * 7init*”, <..>))),
method(<..>, type(”void”), ”createDefaultPolicy”,
<type("int”)>))



3.1.2 Pointcut Selection Model

A pointcut resolver evaluates every pointcut model for a particu-
lar program and computes matching elements. Other approaches
[12, 23] resolve only complete pointcuts and compute joinpoint
shadows [12]. This static projection of a joinpoint into the program
code is also computed by our resolver, but in addition it calculates
matching elements for every partial aggregation of expressions fol-
lowing the inverse order of their evaluation dependencies. The re-
sulting pointcut selection contains every element of a program that
matches every partial aggregation of expressions. A program ele-
ment that matches the root expression, i.e., all specified properties,
is called pointcut match, whereas an element that matches a sub-
set of expressions (partial aggregation), is called property match.
Property matches are elements that are used to recognize a certain
joinpoint property. They form the context in which the property can
be identified. Changing such an element would make the same join-
points unrecognizable if they occur. We call these elements point-
cut anchors because the meaning of the pointcut is affected if they
are changed. The pointcut selection model contains every element
in the program that is selected by a pointcut, including elements
selected by partial aggregations of sub-expressions.

3.1.3 Atomic Change Model

Program changes can vary in extent and complexity. They range
from local edits to adaptations of multiple implementation mod-
ules. We have developed an abstract change representation that rep-
resents program edits by atomic changes. We use a similar notion
for an atomic change as introduced by change impact analysis ap-
proaches for object-oriented programs [18, 21]. An atomic change
represents program edits in terms of a program’s AST. It covers
modifications of program elements on every level of abstraction
ranging from packages down to statements.

Since our impact analysis approach compares original and
refactored program versions, only changes that affect the existence
of the elements in an AST are of interest. Therefore, only changes
that cause the creation or deletion of elements are considered, such
as added type (AT), deleted type (DT), added method (AM),
deleted method (D M), added statement (AS) and deleted state-
ment (D.S). Other edits, like rename or move, can be represented
by these atomic changes if the analysis is aware of the transforma-
tion that causes an atomic change.

Considering the example program, the move of method create-
DefaultPolicy(int) illustrated in Figure 1 is represented by
AM (3) (the method with the new name) and DM (5) (the method
with the old name). Since the method is not empty and not private
additional changes indicate method body modifications (C'M (4),
C' M (6)) and alterations in the lookup table (LC(1), LC(2)).

Refactoring tools realize the individual refactoring steps by
program transformations. These transformations modify a program
in terms of the underlying AST and thus create, remove, move, or
in case of declaration elements also rename, program elements. In
our atomic change model, these kinds of transformations represent
the reasons for an atomic change and are stored in the model if their
changes affect a pointcut expression.

3.2 Change Impact Analysis for Pointcuts

The impact analysis presented in this section is able to detect
whether a pointcut is affected by a refactoring. It can reveal the
expressions of a pointcut that are affected by a refactoring and also
determine which kind of change causes the effect. The primary goal
of the analysis approach is to assess and classify change effects on
pointcuts in aspect-oriented programs, as well as to compute ad-
justments for invalidated pointcuts, making effects on the program
behavior undone. The analysis uses the models introduced in the
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Figure 3. Overview of the impact analysis process.

previous section. We refer to the example program to illustrate the
resulting information of each step.

3.2.1 Overall Analysis Process

The analysis process comprises six, sequentially performed, analy-
sis steps. An overview of this process is given in Figure 3, illustrat-
ing the information gained from every analysis step.

(I) Decomposition of Pointcuts. In the first analysis step, we con-
struct the pointcut model. All existing pointcuts are decomposed
into elementary pointcut expressions. For instance, the pointcuts of
the example are decomposed into representations as shown in Sec-
tion 3.1.1. Then the evaluation dependencies between the expres-
sions of a pointcut are determined, and every partial aggregation of
them is computed. The resulting pointcut model represents a point-
cut as a tree of pointcut expressions, using nodes to represent ex-
pressions (a leaf node indicates an independent expression) and di-
rected edges to represent evaluation dependencies. Continuing with
the example, the resulting model for pointcut pc1 () consists of the
following expressions along their evaluation dependencies’:

{type(”void”); type(”int”); type(” CorporateClient”);
method(<..>, type(”void”), ”createDefaultPolicy”,
<type(’int”)>);
within(type(” CorporateClient”), method(...))}

(II) Computation of Atomic Changes. Our analysis computes the
atomic change model for the chosen refactoring by decomposing
the modifications in atomic changes and by adding the responsible
transformation kind as reason to the changes. The atomic change
model is computed after the refactoring tool has performed the
transformations virtually to produce the refactored program ver-
sion. In Figure 1 the edit caused by the refactoring is illustrated with
annotated boxes. Every box shows the atomic changes that are com-
puted from the edit. The refactoring results in set {AM(3), CM(4),
LC(2)} for the added method in class DefaultPolicyCreator, a
CM(7) for the changed call in methodinit (int), and set {DM(3),
CM(6), LC(1)} for removing the original method.

(I11) Creation of Advanced Program Representations. This step
creates statically available representations for specified joinpoint
properties using the original and the refactored program version. In
particular, an abstract syntax graph (ASG) is computed, represent-
ing containment, inheritance and usage relationships, and partial
call graphs (CGs) are created, representing call dependencies, of
the program. The analysis creates only the program representations
that are required for evaluating specified joinpoint properties, i.e.,
the kinds of pointcut expressions contained in the pointcut model.

(1V) Computation of Pointcut Selections. Our impact analy-
sis uses the advanced program representations to evaluate the

2 The expression method ... ) is used to abbreviate the actual expression due
to space limitations.
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pointcut expressions. This pointcut resolution step evaluates ev-
ery aggregation of pointcut expressions following the evaluation
dependencies defined by the pointcut model. A pointcut resolver
computes the program elements that matches the specified prop-
erties, or to be more precise, the nodes of the employed pro-
gram structure which represent the program elements (pointcut
selection). The pointcut pc1() matches executions of method
createDefaultPolicy(int), and additionally refers to this
method, to class CorporateClient, and to the special types int
and void as pointcut anchors.

(V) Determination of the Pointcut Selection Delta. This analy-
sis step compares the pointcut selection models for the original and
the refactored program and produces the pointcut selection delta.
The delta contains all new and lost matches for the refactored pro-
gram version, and thus represents the direct impact of a refactor-
ing on pointcuts in the program. This delta may contain spurious
effects (in both program versions) of the same program transfor-
mation. The actual delta is determined by locating every program
transformation that causes new or lost matches of a pointcut expres-
sion. Since the transformation is explicitly available, for every lost
match in the refactored program the corresponding added match
in the same version can be located. If two corresponding matches
can be found, both are removed from the pointcut selection delta.
As result, only really new and lost matches remain in the impact
representation for every pointcut. The move refactoring in Figure 1
causes altered matches of the following expression:

within(
type(” CorporateClient”),
method(<..>, type(”void”), " createDefaultPolicy”,
<type(”int”)>))

(VI) Computation of Change Impact. The resulting change im-
pact representation contains all information necessary to assess the
extent of an impact. Three different kinds of information are used
for this assessment: (i) the change reason, (ii) the specification qual-
ity of affected pointcut expressions, and (iii) their relevance to the
pointcut. These impact measures are described in the following sec-
tions.

3.2.2 Impact Classification

Our change impact analysis computes an explicit representation of
the impact, stating which kind of transformation causes new or
lost matches for which expression of the pointcut. It can be used
to assess the effects on the program behavior that is selected by
a pointcut. Since pointcuts are declarative specifications, we can
distinguish changes that (i) alter the program behavior that corre-
sponds to the specification, and (ii) modify properties of program
structures that are used to recognize this behavior. Both kinds of
changes cause a different set of selected joinpoints and, thus, affect
the composed program behavior. The former alters the behavior
of the base program (rarely achieved through refactoring), which
changes how often a specified behavior occurs at runtime. The latter
changes properties that are specified by a pointcut in order to recog-
nize the specified behavior. The same behavior cannot be identified
by the pointcuts, because they expect joinpoints with the original,
unchanged, properties.

Our analysis approach does not consider the first kind of
changes, because all pointcuts still select the joinpoints in the
execution of the base program that are associated with the same
properties, even if they occur more or less often at runtime. For
the second kind of changes we developed an impact classification,
that categorizes the impact on affected properties in terms of their
specification.

The most difficult part in measuring the impact of a change on a
pointcut expression is to assess how much information the expres-
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Table 1. Definition of the execution semantics measure.

Classifier Kind of scope |Focus Measure
behavioral scope control flow statement 100
inheritance method
containment operation
lexical scope type 25

package 5
unscoped no no 0

sion has to specify that it selects the changed element only. An-
other important issue is the approximation of dynamic properties
by static representations. The analyzability of properties, however,
cannot be measured directly. We only distinguish three kinds of
dynamic properties: runtime value-based, dynamic type-based, and
control flow based properties. Runtime values are considered as not
analyzable, whereas dynamic types can be properly approximated
by the corresponding static type hierarchy. Control flow properties
are approximated with the call graphs as described above.

Specification Completeness. A pointcut can under-specify prop-
erties by using partially defined signature patterns [28]. The spec-
ification completeness indicates how complete signature patterns
are defined. A name property is completely specified (100%) if any
part of used signature patterns is fully defined. Incomplete parts,
such as partial names or partial parameter lists, are counted with
50%, while undefined parts (wildcards) are considered with 0%.
For aggregated expressions the completeness is measured by the
average value of all sub-expressions.

Match Scope. An indicator for the importance of a matching el-
ement is the match scope. It indicates whether an affected point-
cut expression is used to select a single or multiple elements. The
match scope measures how many elements along the path that
leads to a matching element within the lexical structure of a pro-
gram are specified by the pointcut. For example, the call to method
init(init) is captured by the call() expression of pc3(). The
match scope indicates whether this expression specifies the call’s
method, its enclosing feature, the type declaring the feature and the
type’s package. The match scope measures how many parts along
the scoping path are specified by a pointcut expression. The basic
assumption behind this metric is the more a matching element is
scoped by an expression, the more important is the match to the
pointcut.

Execution Semantics. A pointcut can specify properties with a
different degree of behavioral meaning. There are properties with
no behavioral meaning, like an unscoped name, and properties with
a specific meaning in the execution of a program, such as a kind of
certain statement. We introduce a naive distance measure that indi-
cates how close selected elements are related to a specific program
behavior. Table 1 shows the particular metric values. The assump-
tion behind this metric is that an altered match of a behavioral prop-
erty (close to execution semantics) is more likely to accept as of a
structural property, because modifications in the structure should
not alter the behavior. Therefore, matches restricted by a behav-
ioral scope are counted as 100% and unscoped matches as 0% of
execution semantics. The two values in between are low indicators
just to distinguish elements somehow related to a behavior from
completely unrelated ones.

Degree of Dependency. The nesting level of a pointcut expres-
sion within a pointcut indicates the degree of its evaluation depen-
dencies. Since the expressions in the pointcut model are nested like
in an AST, an expression is more important to the evaluation result
the deeper it is nested in the tree. A comparison of the nesting in
pointcuts of multiple AOP projects has given a strong indication,
even without hard evidence, that expressions with a deeper nesting
than level 2 can hardly be differentiated in their importance for the



pointcut’s evaluation result [27]. We therefore distinguish the first
three nesting levels in their importance with 0%, 50%, and 100%.

3.3 Update Decision Making

Any affected pointcut expression causes altered matches in the
pointcut selection delta. Based on the four impact measures we
define two heuristics that provide different indicators for whether
an altered match invalidates a pointcut.

Specification Quality. A program element can be explicitly se-
lected by a pointcut or just be one of numerous matching ele-
ments. The specification completeness metric is used measure how
complete matching properties are specified. In addition, the match
scope determines how much an expression restricts its selection to
the element(s) matching in the program. Our impact representa-
tion associates a matching element (pm) with all corresponding ex-
pressions of a pointcut. The expression that specifies the maximum
number of properties for this element is called ez, qz. If @ match-
ing element is modified, the smallest sub-expression of eZ,q. that
matches the element is the (smallest) directly affected part of the
pointcut, called ex, s . Assuming that fully scoped and completely
specified matches are more desired by the developer than less pre-
cisely specified matching elements, we can define the specification
quality SQ as follows:

1
SC(exqry) - 5(100 + MS(exmaz))
100
with ez, sy, eTmaz € PCE; pm € PSM

SQ(pm) =

In the relation of specification completeness and match scope, is
the specification completeness considered to be twice as important
as the match scope, i.e., in the worst case a completely unscoped
expression can reduce the value of the specification completeness
by 50%. The specification quality is computed for the every al-
tered match using the directly affected expression to measure how
precise the changed element is specified, and the largest matching
expression to measure how well it is scoped.

If the pc2() from the example is considered, the refactoring
affects expression within(), which leads to SQ(createDefault-
Policy(int)) = (SC(within()) * 0.5 (100 + MS(within()))) / 100
= (50 *0.5(100 + 75)) / 100 = 44%.

Expression Relevance. An affected pointcut expression can be
more or less relevant for the evaluation of the complete pointcut.
This heuristic assesses an expression’s relevance using the degree
of dependency and execution semantics. Based on these measures
the expression relevance is defined as the zero-bounded difference:

ER(ex) = {ODD(ex) — ES(ex)

withex € PCE

if DD(ex) — ES(ex) > 0
if DD(ex) — ES(ex) <0

The assumption behind this heuristic is that an altered joinpoint
match, representing a certain behavior, is more likely to be wanted
if a behavioral property was changed rather than a structural (like
naming). However, the deeper an expression is nested in the point-
cut the more unlikely it is that effects on the resulting pointcut se-
lection can be intended. For pointcut pc2 the ER is computed for
expression within() which results in ES(within() - DD(within()) =
100 - 50 = 50%.

With these heuristics we can automate the update decision mak-
ing. Our approach follows two general assumptions: (i) elements
that match precisely defined expressions (SQ = high) are wanted
by the developer, and (ii) selections of deeply nested expressions
must be preserved. For both heuristics we have defined an initial
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range that states how precise or relevant affected expressions have
to be, so that they are considered as invalidated. Using these ini-
tial benchmarks we decide whether a pointcut PC'E needs to be
updated as follows:

SO(m) = 0% — {NOUPDATE(ex) in any case
NOUPDATE(ex)  if ER(ex) < 60%
0<S 100%
<SQ(m) < 100% =3 UppATE(ex)  if ER(ex) >= 60%
NOUPDATE(ex) if added match
=1
SO(m) = 100% =\ UppATE(ex)  if lost match

withm € PSM, ex € PCE

Using this table, our refactoring tool recommends to accept addi-
tional matches of unspecified or precisely specified expressions,
and to accept lost matches of unspecified expressions. Moreover,
altered matches of expressions with an average precision are only
accepted if the expression has a relevance of less than 60%. In
case of pc2() the tool would propose not to update, because of
ER(within()) = 50%.

3.4 Generation of Updates

If the analysis has proposed to update an affected pointcut expres-
sion, the most straight forward approach is to exclude unwanted or
include lost matches. A refactoring tool can add an extra pointcut
expression at the same nesting level of the affected expression to the
pointcut. The additional expression specifies a direct and fully spec-
ified exclusion or inclusion of altered matches. This direct exclu-
sion/inclusion of individual matches is already proposed by other
refactoring approaches for AOP [20, 10]. We can summarize this
approach by two update patterns and define them as follows:

pee(ap) = pee(ap) || pee(ip) 1 ap € PCEqyy, ip € PCEipe
pece(ap) = pece(ap) && pce(xp) : ap € PCEq ¢, xp € PCEcy

This update approach, however, leads to several disadvantages,
such as pointcut bloating. Every update adds new pointcut expres-
sions to the existing pointcut, which makes the pointcut unrecog-
nizable to its developer, already after a few updates.

A more sophisticated approach would check whether the af-
fected pointcut expression can be completely replaced by a new ex-
pression. Such a replacement is possible in cases where all matches
of the affected expression are altered and the replaced expression
results in equivalent matches. It can be defined as:

pee(ap) = pee(rp) : ap € PCEy 55, 7p € PCEp¢p

Our approach always tries to replace the affected pointcut expres-
sion. It detects the expression that is directly affected by a refac-
toring’s transformation and determines if the refactoring splits the
set of matching elements. If not, we can directly replace the af-
fected pointcut expression with the same specification quality. The
possibility to directly replace affected pointcut expressions is a pre-
requisite to preserve the pointcut within a refactoring process.

4. Evaluation

The refactoring approach developed in this work was evaluated us-
ing our refactoring tool SOOTHSAYER. In this section we introduce
the tool, describe the employed evaluation methodology, explain
expected results, and present three experiments in which indepen-
dently developed Aspect] programs are refactored using our ap-
proach. We also discuss the evaluation results, expose the kinds of
pointcuts that cannot be properly handled by our tool and elucidate
reasons.

4.1 Refactoring Tooling

Our refactoring tool SOOTHSAYER supports our approach for refac-
toring Aspect] programs. It implements the presented analysis ap-



proach as an Eclipse plugin®. The plugin extends the Java refactor-
ing capability of the Eclipse JDT, it provides an optimized struc-
tural representation of the source code and a call graph for approx-
imating stack trace based pointcut expressions. SOOTHSAYER stat-
ically evaluates pointcut matches for most of the Aspect] pointcut
designators, including dynamic designators, such as cflow, this,
target and args. It creates the atomic change model for several
Java refactorings, such as rename, move, extract and inline, deter-
mines the pointcut selection delta for the refactored program and
computes the presented change impact representation.

SOOTHSAYER implements the presented pointcut update deci-
sion table and proposes pointcut updates for broken pointcuts. Con-
sidering the defined change classification, any affected pointcut ex-
pression is either not adjusted, broadened (to include lost matches),
narrowed (to exclude new matches) or labeled as broken or unre-
solvable.

4.2 Methodology

We evaluated our approach using three different Aspect] applica-
tions. The goal of this evaluation was to validate the computation
of the change impact, the update decision proposals, and the gener-
ated pointcut adjustments. More precisely, we wanted to show that
our impact analysis approach is able to represent change effects
on pointcuts concretely, so that a minimal-invasive update proposal
can be inferred automatically. A pointcut can only remain recogniz-
able to its original developer if its updates change the least possible
number of expressions, i.e., are minimal-invasive. Another goal of
this evaluation was to show that the smallest affected pointcut ex-
pression can be detected for a variety of refactorings. In particular,
we are interested in understanding when a minimal-invasive update
cannot be proposed, and for which kinds of pointcuts it is impossi-
ble.

The Aspect] applications were selected according to the char-
acteristics of their pointcuts, rather than the application’s size. The
size may affect the scalability of our analysis approach, but this was
not the focus of this evaluation. The major goal was to apply our
approach to very different kinds of pointcuts. We have selected the
refactorings and their targets in the source code in a way that at least
some effect on one of the pointcuts in a program can be expected.
Particularly, the target pointcuts have been chosen for whether a
refactoring can affect:

e pointcuts that specify different properties of various program
representations;

e pointcuts that specify these properties in different ways;
e pointcut expressions at different nesting levels of a pointcut.

Every program is tested by a suite of unit tests that reveals altered
executions of existing advice. This way, unexpected side effects
of a refactoring can be made visible. The test suite is run before
and after a refactoring. The comparison of test failures demon-
strates whether all expected change effects are detected, and if pro-
posed pointcut adjustments restore the original behavior. The par-
ticular update decision is validated during a refactoring. Our impact
analysis shows the effects on every pointcut and we have decided,
whether altered property matches can be accepted or the pointcut
has to be updated. In any case where an adjustment was proposed,
the updated pointcut was tested with the refactored program. For
cases where altered matches where supported to be accepted we
run the test suite against the original pointcut in the refactored pro-
gram.

The measured indicators and proposed updated decisions for all
experiments are shown in Table 2. In the table as well as in the de-

3 SOOTHSAYER is a research prototype. The current version is available
upon request from the authors.
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scriptions we use the following abbreviations: Specification Com-
pleteness (SC), Match Scope (MS), Specification Quality (SQ), Ex-
ecution Semantics (ES), Degree of Dependency (DD), Expression
Relevance (ER) and Match Impact (MI).

aspect Timing
(Connection c)
target(c) && call(void Connection.complete())
endTiming (Connection c)
target(c) && call(void Connection.drop())

aspect Billing
(Customer cust)
args(cust, ..) && call(Connection+.new(..))

Figure 4. Pointcuts in Telecom application.

4.3 Experiment 1: Telecom Application

The Telecom application is a small Aspect] program that simulates
telephone connections to which timing and billing features are
added using aspects. It is available from Aspect]’s website [3].

The Timing aspect manages the total time per customer and is
added as a timer to each connection. It defines two pointcuts that
intercept all executions of any call to two specific methods.

The Billing aspect calculates a charge per connection and
builds upon the Timing aspect. It defines one pointcut that is used
to receive the caller who pays for the call. The pointcut intercepts
all invocations of any constructor in Connection (or its subclasses)
and receives the constructor’s first argument in a parameter.

(S1) Rename Method: ’Connection.complete()”. The Rename
Method refactoring changes the name of method complete ()
to completeConnectionCall(). Our impact analysis indicates
the loss of all matches of the completely scoped expression
(MS=100%):

within(type(” Connection”),
method(<..>, type(”void”), ”complete”, <>))

The analysis further recognizes the pointcut expression
method(<..>, type(”void”), “complete”, <) as the smallest
expression that is directly affected by the refactoring’s RENAME
transformation. This expression specifies the method signature
completely, which results in SQ=100%. The analysis decides
to “update the pointcut”, and proposes to replace the affected
expressions, since all of its matches are lost:

(Connection c): target(c)
&& call(void Connection.completeConnectionCall())

(S2) Rename Type: ”Connection”. The Rename Type refactoring
changes the name of class Connection to TelConnection. Our
impact analysis reveals lost matches of the expression type(”Con-
nection”) in every pointcut of aspects Timing and Billing (cf.
Figure 4). The lost matches are completely scoped (MS=100%
through import statements) and the affected expressions are com-
pletely defined (SQ=100%). As result, a precisely defined match
is lost, thus the analysis propagates to update the pointcuts”. The
update computation proposes to replace the affected expression in
each pointcut directly.

(S3) Inline Method: ’Connection.complete()”. Inline Method
targets the method complete (), replacing every call to this method
with its body, and removing the original method declaration. Our
impact analysis detects lost matches of expression:

within(type(” Connection”),
method(<..>, type(”void”), ”complete”, <>))



Table 2. Overview of all refactoring scenarios in the evaluation.

Scenario| SC MS | SQ | DD ES ER | Matches | Transform. Decision Update Legend

S1| 100 | 100 | 100 | 100 0 100 lost rename update replace SC Specification Completeness
S2| 100 | 100 | 100 | 100 5 95 lost rename update replace MS Match Scope
S3| 100 | 100 | 100 | 100 0 100 lost remove update cancel SQ Specification Quality
S4| 0 50 0 100 0 100 new create noupdate - DD Degree of Dependency
S5| 68 0 34 33 | 100 0 new create noupdate - ES Execution Semantics
S6| - - - - - - - - - ER Expression Relevance
S7| 100 | 100 | 100 | 67 100 0 - move = -
S8| 100 | 100 | 100 | 100 0 100 lost rename update replace
S9| 17 | 100 | 17 | 100 | 25 75 new rename update exclude

S10| 100 60 80 67 100 0 new create noupdate -

It also reveals the expression method(<..>, type(”void”), ~com-
plete”, <) as directly affected by the refactoring’s REMOVE
transformation. Our analysis propagates “update the pointcut” for
preserving the original behavior. Since matches of removed ele-
ments cannot be recovered, the update computation proposes ~’can-
cel the refactoring”.

4.4 Experiment 2: Spacewar Application

In the second experiment, we refactor an Aspect] implementation
of the video game Spacewar. The program is slightly bigger than
the Telecom application, but uses significantly more aspects for
various functionalities in the application. It is also available from
the Aspect]’s website [3]. Most of the aspects use simple pointcuts
similar to the pointcuts in the Telecom application, but the pointcuts
of the aspects Debug, DisplayAspect and Ship, could lead to new
refactoring situations (cf. Figure 5).

aspect Debug
allMethodsCut ()
execution(* (spacewar.x && !(Debug+ ||

k(L))

InfoWin+))

aspect DisplayAspect
(Display display)

target (display)
call(Display+.new(..))

call(void setSize(..)) &&

O

aspect Ship
helmCommandsCut (Ship ship)
target (ship) &&
(call(void rotate(int))
|| call(void thrust(boolean)) ||
fire()))

call(void

Figure 5. Pointcuts in Spacewar application.

The Debug aspect specifies debugging information that is dis-
played in the information window. Several of its pointcuts use
nested, partially specified name patterns to select executions of dif-
ferent program elements in classes of package spacewar except if
they are defined in the classes Debug, InfoWin, or its sub classes.

The aspect DisplayAspect defines two particularly interesting
pointcuts. The first pointcut uses incompletely specified signature
patterns to select all executions of setSize () method calls within
classes of class Display, and the second pointcut intercepts all
executions of any constructor call of class Display (or its sub-
classes).

The aspect Ship defines a pointcut that enumerates three differ-
ent methods for intercepting their invocations. It restricts the scope
in which methods with the specified signatures are selected through
a dynamic type.

(S4) Extract Method from ”Game.run()”. The Extract Method
refactoring is performed within method Game . run () to extract the
statements at lines 84-90 into a new method (cf. [22]). It creates
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a new method named createRobots (), copies the selected state-
ments into this method, and replaces the original statements with
a method call to the newly created method. The impact analysis
reveals a new match with MS=50% of expression:

within(package(” spacewar”),
method(<..>, type(”*”), 7*”, <..>))

of pointcut al1MethodsCut in aspect Debug. It further detects that
the sub-expression method(<..>, type(”*”), ”*”, <..>) is directly
affected by the refactoring’s CREATE transformation. Our tool
proposes not to update the pointcut, i.e., to accept the new property
match, because this affected sub-expression is considered to be a
wildcard (SQ=0%).

(S5) Extract Method from ’Display.initializeOffImage()”. The
Extract Method refactoring is performed within method Display
.initializeOffImage() to extract the image size setup (lines
73-76) into the new method setSize(double, double). Our
impact analysis reveals a new match of the unscoped expression
(MS=0%):

call(within(subtypes(type(” Display”)),
method(<..>, type(”void”),”setSize”,<..>)))

of the first pointcut defined in DisplayAspect (cf. Figure 5). It
detects that this expression is directly affected by the refactoring’s
CREATE transformation, and computes a SQ=34%. Since SQ is
neither 0% nor 100% our analysis also considers the relevance
of this expression ER=0%. Our tool proposes not to update the
pointcut.

(S6) Move Type ”Display”. The refactoring moves the class
Display from package spacewar to package spacewar.core.
This refactoring basically changes import declarations and fully
qualified class names. Our impact analysis recognizes this change
by comparing of the pre- and post-refactoring versions but it does
not detect any effect on existing pointcuts, because it is performed
after the standard refactoring that has already updated all import
declarations.

(S7) PullUp Method ’Ship.rotate(int)”. The Pull Up Method
refactoring moves the method rotate (int) from class Ship to its
superclass SpaceObject. Our impact analysis detects pseudo alter-
ations of matches, which are moved within the specified hierarchy
scope. Since the pull up refactoring never removes members from
instances of the sub-class, every instance of Ship still contains the
method, and thus all pointcut matches remain in the program.

4.5 Experiment 3: Simple Insurance Application

The third experiment underlines the usability of our tool for
projects that have properties more comparable to real projects in
size, proportion between aspects and classes and the usage of li-
braries*. We refactor an extended version of the Simple Insurance
Application used in [6].

4 The project contains 3752 lines of code, defines 59 classes and 3 aspects,
and makes use of several libraries.



The program is a scaled down version of an insurance applica-
tion that keeps track of customers and policies of a fictitious in-
surance company. The extended version additionally implements a
treatment of statistical data for contracted life policies. It defines
anew aspect LifePolicyStatistics that uses a cflow pointcut
and adapts the class CustomerEditor.AddPolicyListener. In
addition, we have changed the pointcut findPolicies of aspect
TrackFinders to have another pointcut that differs in its charac-
teristics from the other pointcut®.

aspect TrackFinders
findPolicies(String criteria)
(execution(Set SimpleInsurance.findPoliciesById(
String))
|| execution(Set Simplelnsurance.
findPoliciesByCustomerId(String))
|| execution(Set Simplelnsurance.
findPoliciesByCustomerLastName(String)))
&& args(criteria);

aspect PolicyChangeNotification
notifyingListeners ()
call(* PolicyImpl.notifyListeners(..))
policyStateUpdate(PolicyImpl policy)
execution(* set*(..)) && this(policy)

aspect LifePolicyStatistics
policyContracted ()
cflow( execution(public void *.widgetSelected(
SelectionEvent)) )
&& execution(LifePolicyImpl.new(Customer))

Figure 6. Pointcuts in Simple Insurance application.

The TrackFinders aspect tracks the executions of queries for
policies. It defines a pointcut that enumerates the three methods ex-
plicitly by specifying their complete signatures and their enclosing
type (cf. Figure 6).

The PolicyChangeNotification aspect implements a notifi-
cation mechanism to observe updates of policies. It defines a point-
cut to select all executions of setter methods of type PolicyImpl.
The pointcut identifies setter methods by the first three characters
”set” of their names (cf. Figure 6).

The last aspect LifePolicyStatistics implements a treat-
ment of statistical data for contracted life policies. It defines a
cflow pointcut to intercept any creation of a LifePolicyImpl
object “after” the Add-Button was pressed in the user interface (cf.
Figure 6). The point in time “after pressing the Add-Button” is
specified as ”being in the control flow of a method” that is invoked
when the Add-Button is pressed. Thus, the pointcut only selects ex-
ecutions of the LifePolicylmpl constructor that are inside the con-
trol flow of the method widgetSelected(SelectionEvent).

(S8) Rename Method: ”Simplelnsurance.findPoliciesByCust-
omerLastName(String)”. The refactoring renames method find-
PoliciesByCustomerLastName (String) in class SimpleIn-
surance to findPoliciesByCustomerName. Our impact anal-
ysis reveals one lost match of an exactly specified expression
(SQ=100%) in pointcut findPolicies (String) of aspect Track-
Finders. Our tool is able to replace the affected expression and to
restore the program behavior.

(S9) Rename Method: Policylmpl.createPolicyID()” The Re-
name Method refactoring changes the name of method create-
PolicyID() in class PolicyImpl to setupPolicyID. Our im-

5 For a more detailed description of the application cf. [6]. The extended
version is available from http://user.cs.tu-berlin.de/~jwloka/sia.zip.
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pact analysis reveals a new, completely scoped match (MS=100%)
of expression:

within(subtypes(type(” Policylmpl”)),
method(<..>, type(”*”), "set*”, <..>))

in pointcut policyStateUpdate (PolicyImpl) of aspect Poli-
cyChangeNotification. The analysis further detects the expres-
sion method(<..>, type(”*”), "set*”, <..>) as directly affected
by the refactoring RENAME transformation. Since this expression
is not sufficiently precise (SQ=17%), but quite relevant to the point-
cut (ER=75%), the tool proposes to update the pointcut.

The update computation detects other matches when trying to
replace the affected expression and proposes to exclude the addi-
tional match explicitly:

execution(* set*(..)) && this(policy)
&& !execution(private void setupPolicyID())

(S10) Inline Local Variable lp”. The Inline Local Variable
refactoring is applied to the variable 1p in method widget-
Selected of class CustomerEditor.AddPolicyListener. This
refactoring replaces all variable usages with its initialization (cf.
lines 281, 283, 286) and affects the pointcut policyContracted
of aspect LifePolicyStatistics. The pointcut captures any in-
stantiation of type LifePolicyImpl that occurs in the control flow
of any method widgetSelected(SelectionEvent). The cflow
property is used to filter instantiations that occur in other contexts.
The refactoring duplicates the variable initialization and causes
(unintentionally) an alteration of the base program behavior.

Our impact analysis detects a new match path in the call graph
between an already existing pair of start- and end-triggers. The
additional match path is a new pointcut match with MS=60%. The
directly affected expression:

execution(within(type(” LifePolicylmpl” ),
constructor(<..>, <type(”Customer”)>)))

is completely specified which leads to SQ=80%. Our tool proposes
no update, because the definition of the expression is sufficiently
precise and contains an inheritance-based scope (ES=100%).
Nonetheless, an altered behavioral property, like cflow, always in-
dicates a changed behavior of the base program, thus, the developer
should cancel the refactoring if this alteration is not explicitly in-
tended.

4.6 Discussion

As the primary result, our refactoring tool provided the correct up-
date decisions (and adjustments if proposed) in 9 of 10 refactoring
scenarios. In three scenarios (S1, S2, S8), the affected expressions
were directly replaced, whereas in scenario S9 the pointcut was
extended with an explicit exclusion. Also, in two scenarios (S4,
S5) new matches of intentionally under-specified expressions were
correctly recognized. However, structurally similar matches with a
completely different behavior as in S5 seem not to be recognizable
with the current approach.

In Table 2 we present an overview of the experiment, enumer-
ating every refactoring scenario in these experiments. Regarding
our two heuristics (specification quality, expression relevance) the
refactoring scenarios have dealt with four kinds of pointcuts:

Precise and relevant expressions. For these pointcuts, all lost
matches were detected and affected expressions were directly re-
placed (cf. S1, S2, S3, S8). Hence, as long as a refactoring does
not try to remove a matching element, those pointcuts are the most
suitable for reliable refactoring support. Since these expressions
do not specify dynamic anchors (i.e., ER = high) neither new nor
lost matches can be accepted. In particular because of their precise



specification any adjustment keeps the pointcut recognizable even
after multiple updates.

Imprecise but relevant expressions. Imprecisely specified prop-
erties often cause new matches which represent a special challenge
for refactoring tools (cf. S4, S5, S9). For newly matching elements,
the refactoring tool has to determine whether they are specified
completely, or if they just match accidently. Our approach mea-
sures the name-based completeness (SC) and the specified scope
of any match (MS) for this decision. Since this kind of expres-
sions is relevant for the evaluation of other parts of the point-
cut, we only accept matches of completely unspecified properties
(SQ=0%). Our heuristics are able to deal with intentionally under-
specified matches, however, they cannot deal with poorly written
pointcuts in general. If a pointcut is not properly defined our tool
warns the developer of altered matches of a poorly written pointcut
expression, but it may present a wrong suggestion.

Imprecise and less relevant expressions. Such expressions should
only refer to elements which are closely connected to the targeted
behavior, because any change can cause new and lost matches, and
no analysis of the pointcut can determine whether such matches are
intended. For example, in scenario S5, the refactoring created an
element with similar properties but the affected pointcut specified
the properties incompletely. The result, a nearly correct match, can-
not be recognized as a different match because its similarity to the
correct matches was not intended. Such expressions are most chal-
lenging for aspect-oriented refactoring tools, because the intention
whether their matches are wanted remains in the developer’s mind.

Precise but less relevant expressions. Our refactoring tool was
able to accept the maximal impact for such expressions. The moved
method in scenario S7 has even no effect on the selected joinpoint
set. The almost completely specified cflow property in scenario S10
also belongs to this category. The only downside is that it is more
expensive to differentiate additional occurrences of already speci-
fied behavior from alterations of the specified behavior introduced
by the refactoring.

5. Related Work

Various approaches have been proposed to cope with evolution is-
sues in aspect-oriented programs [9, 13, 26]. The most related re-
sults provide extensions to object-oriented refactorings, new IDE
support for determining altered pointcut matches and more expres-
sive pointcut languages, making a pointcut less coupled to brittle
implementation details. This section discusses the refactoring and
program analysis related approaches in more detail.

Aspect-oriented Refactoring. New refactorings for aspect-
oriented programs have been identified which allow for improve-
ment of object-oriented programs by using AO-modularization, the
refactoring of aspect language constructs or the refactoring of base
code while existing AO adaptations are preserved. In particular,
Monteiro et al. have developed a catalogue of new refactorings and
bad smells for Aspect] programs [14]. Ceccato et al. developed an
AOPMigrator [5] which supports the extraction of class members
and statements into aspects. They propose a specific refactoring
workflow that generates a single pointcut for every extracted pro-
gram element. Hannemann et al. present in [11] also a tool for ex-
tracting crosscutting concerns into aspects. The tool supports a spe-
cific workflow for migrating design patterns implemented in Java
to an Aspect] implementation.

All these refactoring approaches have to cope with base code
changes that may affect existing pointcuts. Our approach reveals
altered joinpoint selections, proposes suitable pointcut updates and
generates rephrased pointcuts. Thus it can be seen as an orthogonal
extension to these AO refactoring approaches.
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Behavior Preservation in AO Refactoring. Hanenberg et al. de-
scribe initial ideas on how to treat pointcuts within a refactoring
workflow [10]. They extend the refactoring constraints to preserve
the number of captured joinpoints, the position of a captured join-
point within the program’s control flow and the information pro-
vided at a captured joinpoint for every pointcut. Based on these ad-
ditional constraints, the previous program behavior is reestablished
by extending affected pointcuts. Two problems are not considered
in this approach: (i) a pointcut may intentionally capture additional
joinpoints after a refactoring and (ii) joinpoints are points in the
program execution which have to be statically approximated. Rura
and Lerner advance the AO-specific refactoring constraints [20].
They present a “pointcut pattern equivalence” constraint, that re-
duces the rule “each advice must apply at semantically equivalent
joinpoints” to a more simple determinable but stronger require-
ment “signature patterns used in a pointcut must match semanti-
cally equivalent program elements”. In cases where the signature
patterns do not match the same elements as before the refactoring,
the patterns are broadened/narrowed in a way that new and lost pat-
tern matches are prevented.

However, additional and lost matches are always excluded or
included, which makes, on the one hand, pointcuts unrecognizable
and more difficult to read, and, on the other hand, it does not con-
sider the pointcut’s meaning. Our approach can be seen as an ex-
tension to this work. We explicitly consider the change impact of a
refactoring by assigning atomic changes with a distinct impact on
a pointcut to referenced program structures (i.e., pointcut expres-
sions). Rura and Lerner’s approach is limited to signature pattern
matches, which e.g., does not allow to move a program element
if its matching pattern is restricted by a certain location (i.e., in-
tersected with a within expression). We distinguish whether a se-
lected program element is a joinpoint shadow or used as a pointcut
anchor. With this distinction, we can ensure semantically equivalent
matches not only of signature patterns, but also of every program
structure used to express a joinpoint property.

Change Impact Analysis. Another possibility to cope with frag-
ile pointcuts is tool support that assesses change effects between
two program versions. Such an assessment can be done either by
comparing two different program versions or by analyzing the ap-
plied changes. An approach that detects differently bound advices
by comparing two program versions is presented by Storzer and
Graf in [23]. The proposed pointcut delta analysis approximates
the bound joinpoints for every pointcut and compares the point-
cut matches between two program versions. New, lost and modified
matches (in terms of match quality) are discovered.

Our change impact analysis extends this approach in several
ways. The computed match delta is extended to a complete point-
cut selection delta that also contains matches for partial sub-sets
of the pointcut, rather than only complete pointcut matches. More-
over, our selection delta entries are directly associated with the re-
sponsible change. This direct association allows the automated cal-
culation of pointcut updates. Similar to Ryder et al. [18, 21] we
divide program edits (performed by a refactoring) into their con-
stituent atomic changes. Every change represents a distinct impact
on the program’s source. Based on the atomic change model Ryder
et al. have developed different change classifications that indicate
the likelihood of a change to be failure-inducing.

In contrast to Ryder et al. we do not employ the atomic changes
to identify affected unit tests, but affected pointcuts. Our change
classification indicates the likelihood that a change invalidates the
program structures a pointcut relies on. A combination of both
approaches allows us to distinguish changes that cause a repairable
impact from changes that result in an irreparable impact. With this
distinction a tool is enabled to deny critical transformations while
others can be safely performed.



6. Conclusions and Future Work

In this paper we have presented a new approach to the refactoring of
aspect-oriented programs. Our approach introduces aspect aware-
ness to standard object-oriented refactorings, providing a meta-
model for pointcut representations. Based in our meta-model, we
have developed a change impact analysis for pointcuts, which com-
putes and assesses the change effects on pointcuts. The resulting
change impact information is used for detecting invalidated point-
cuts and for computing minimal invasive adjustments of pointcuts.
In the evaluation we have shown that our approach can deal with
very different kinds of pointcuts, and discussed which kinds can be
considered very fragile in general.

Our aspect-aware refactoring approach differs in two ways from
existing refactoring approaches: (i) it preserves the characteristics
of a pointcut, so it can be recognized by its developer, and (ii) it
guides the developer in deciding whether a change invalidates a
pointcut, and thus allows for alterations of the composed program
behavior. We have shown as the main contributions of our paper:
(i) a meta-model for pointcut representations as a general basis for
AQP tool-support, (ii) a change impact analysis for pointcuts based
on this meta-model, and (iii) two heuristics for impact assessment
to automate the detection and adjustment of invalidated pointcuts.

Our approach has been implemented in a refactoring tool, and
evaluated in a feasibility study. In this study we have demonstrated
that commonly used pointcuts can be statically evaluated, invalida-
tions detected, and pointcut-preserving adjustments computed.

Our evaluation has shown that under-specified joinpoint prop-
erties are challenging, but not impossible to solve. However, the
use of under specification combined with behavioral properties can
lead to wrongly matching joinpoints which are nearly undetectable.
They are recognized by similar structural properties but may exhibit
completely different behaviors. Future pointcut languages should
provide an extra concept for such combinations or prevent them
completely.

Our future work will target more general criteria for refactoring-
compliant AOP. The exploration and evaluation of equivalence
rules for joinpoint properties need to be automated further. Finally,
it would be very interesting to see how aspect-aware refactoring can
be integrated with class-to-aspect refactorings to make them more
generally applicable.
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