
Hierarchical Image Computation with Dynamic Conjunction Scheduling

Christoph Meinel
FB Informatik

University of Trier
meinel@uni-trier.de

Christian Stangier
FB Informatik

University of Trier
stangier@uni-trier.de

Abstract

Image computation is the core operation for optimization and
formal verification of sequential systems like controllers or pro-
tocols. State exploration techniques based on OBDDs use a
partitioned representation of the transition relation to keep the
OBDD-sizes manageable. This paper presents algorithms for
building a hierarchically partitioned transition relation and con-
junction scheduling based on this partitioning. The conjunc-
tion scheduling algorithm allows to dynamically reorder parti-
tions and is targeted to improve the AndExist operation. Model
checking experiments prove the effectiveness of the new algo-
rithms.

1 Introduction

The computation of the reachable states (RS) of a finite state
machine (FSM) is an important task for synthesis, logic op-
timization and formal verification. The increasing complexity
of sequential systems like controllers or protocols requires effi-
cient RS computation methods. If the RS are computed by using
Ordered Binary Decision Diagrams (OBDDs) [2], the system
under consideration is represented in terms of a transition re-
lation (TR). Since the monolithic representation of the circuit’s
TR usually leads to unmanageable large OBDD-sizes, the TR
has to be partitioned [3, 6]. The quality of the partitioning is
crucial for the efficiency of the RS computation. The computa-
tion of transitions will be unnecessarily time consuming, if the
TR is divided into too many parts. On the other hand a number
of partitions that is too small will lead to a blow-up of OBDD-
size and hence, memory consumption.

The standard method is to sort the latches according to a ben-
efit heuristic [7, 13] and then, apply a clustering algorithm. This
clustering algorithm follows a greedy scheme [5] that is guided
only by OBDD-size, i.e if the OBDD-size of a partition is ex-
ceeding a certain threshold a new partition has to be created.

Recently, new approaches for partitioning of the transition
relation have been published: [9] presents a heuristic that mini-
mizesactive lifetimeof the variables to gain a good conjunction
schedule computed from a dependency matrix. Additionally the
authors give a blocking strategy for the clustering. But, this
method is restricted to forward image computation. In [11] and
[12] heuristics are presented that focus on grouping related vari-
ables to increase the quality of the partitioning, clustering takes

place only within the given groups. The groups are determined
from RTL descriptions resp. from a dependency matrix.

In this paper we extend the method of [11] to produce a real
hierarchical partitioning of the transition relation. The hierar-
chical image computation is completed by an algorithm that
performs the AndExist operation on the treelike partitions that
result from the hierarchical partitioning algorithm. The main
impact comes from the heuristic that solves the problem of or-
dering the clusters for conjunction. It emerged that the AndEx-
ist algorithm works very well with a hierarchical partitioning
and that this heuristic optimizes the performance of the AndEx-
ist. Additionally, the scheduling heuristic allows a true dynamic
rescheduling of the partitions.

The paper is structured as follows: The next section gives
some basic definitions. In Section 3 the hierarchical partition-
ing algorithm is described. The hierarchical image computa-
tion algorithm and the dynamic rescheduling heuristic are given
in Section 4. Section 5 presents experimental results of model
checking experiments with the new algorithms. The last section
concludes the paper and gives an outlook on future work.

2 Preliminaries

2.1 Hierarchical FSM description

Modern complex designs require a structured hierarchical de-
scription to be feasible. Often they are written in a hardware de-
scription language (HDL) at register transfer level (RTL). The
term RTL is used for an HDL description style that utilizes a
combination ofdata flowandbehavioral constructs. Logic syn-
thesis tools take the RTL HDL description to produce an opti-
mized gate level netlist and high level synthesis tools at the be-
havioral level output RTL HDL descriptions. Verilog [15] and
VHDL [8] are the most popular HDLs used for describing the
functionality at RTL.

The design methodology in Verilog is a top down hierarchical
modeling concept based on modules, which are the basic build-
ing block. Our experimental work is based on designs written
in this language, but this approach can be easily extended to any
hierarchical finite state machine representation as it is e.g. pro-
vided by state space decomposition algorithms (see. e.g. [10]).

Christoph Meinel, Christian Stangier: 
Hierarchical Image Computation with Dynamic Conjunction Scheduling 
in Proceedings of the 2001 International Conference on Computer Design (ICCD 2001), IEEE Press, Austin, Texas, USA, 
pp. 354-359, 9, 2001. ISBN: 0-7695-1200-3.



2.2 Partitioned Transition Relations

The computation of the RS is a core task for optimization and
verification of sequential systems. The essential part of OBDD-
based traversal techniques is the transition relation TR:

TR(x; y; e) =Yi Æi(xi; e) � yi;
which is the conjunction of the transition relations of all latches
(Æi denotes the transition function of theith latch). Thismono-
lithic TR is represented as a single OBDD and usually is much
too large to allow an efficient computation of the RS. Sometimes
a monolithic TR is even too large for a representation with OB-
DDs. Therefore, more sophisticated RS computation methods
make use of apartitionedTR [3], i.e. a cluster of OBDDs each
of them representing the TR of a group of latches. A transi-
tion relation partitioned over sets of latchesP1; : : : ; Pj can be
described as follows:

TR(x; y; e) =Yj Yi2Pj Æi(xi; e) � yi:
2.3 Image Computation using AndExist

The RS computation consists of repeated image computationsImg(TR; R) of a set of already reached statesR:Img(TR; R) = 9x;e(TR(x; y; e) � R)
With the use of a partitioned TR the image computation can

be iterated overPj and the9 operation can be applied during
the product computation(early quantification). The so called
AndExist[3] or AndAbstractoperation performs the AND op-
eration on two functions (here partitions) while simultaneously
applying existential quantification (9xf = fx=1 _ fx=0) on a
given set of variables, i.e the variables that are not in the sup-
port of the remaining partitions. Unlike the conventional AND
operation the AndExist operation only has a exponential upper
bound for the size of the resulting OBDD, but for many practi-
cal applications it prevents a blow-up of OBDD-size during the
image computation.

Since the number of quantified variables depends on the or-
der in which the partitions are processed, finding an optimalor-
der of the partitions for the AndExist operation is an important
problem. We refer to this problem as theconjunction scheduling
problem. Geist and Beer [7] presented a heuristic for schedul-
ing of partitions each representing a single state variable. More
sophisticated heuristics for partitions with several variables are
given by [13, 9].

3 Hierarchical Partitioning of Transi-
tion Relations

In [11] a partitioning heuristic that utilizes hierarchical infor-
mation – i.e. RTL modules of a Verilog description – was pre-
sented. The main idea of this work was to have few groups

consisting of the main modules of a design (e.g. sender and re-
ceiver or two CPUs and a cache) and to put the latches of the
FSM in the according groups. This keeps closely related vari-
ables in one group. Also, the groups are separated, this means
clustering takes place only within the groups.

The positive effect of this heuristic on the partitioning isbest
described by acluster dependency matrix(CDM). Entry (i; j)
denotes the number of variables that clusteri and clusterj
share. By using the RTL method the CDM of the design be-
comes much sparser and the entries are smaller compared to the
standard method [13]. Sparseness in a CDM means easier to
perform AndExist operations and smaller entries in the CDM
generally result in smaller OBDDs, as fewer variables are in-
volved in the AndExist operation.

Although the RTL method utilizes hierarchical information
it produces a kind offlat clustering as only the top level of the
hierarchy is taken under consideration. The intention for this
was not to produce a partitioning that consists of too many very
small clusters that might have a bad performance.

The heuristic that we describe in the following extends the
RTL method to use the whole given hierarchical structure.

As in the RTL method the hierarchical information is ob-
served from the module structure given in the RT level descrip-
tion of Verilog designs. The heuristic is not restricted to RTL,
but any method that detects hierarchical modules or FSMs in a
design is suitable. RTL Verilog has just been chosen for easeof
understanding and portability.

The main idea of the hierarchical partitioning is to take a
complete tree of FSMs and subFMSs (see. Figure 1) and pro-
duce a partitioning based on this tree. The partitioning algo-
rithm is recursive and consists of two steps:

1. The modules own latches are clustered, following the con-
ventional scheme, i.e add latches to a cluster until a given
threshold (cluster-threshold) for the OBDD size of the
cluster is exceeded

2. Call the procedure recursively for all submodules of the
module.

The result of this partitioning is outlined in Figure 1.

FSM

Modules

Latches

TR

BDD-cluster

Figure 1: Hierarchical FSM and Transition Relation.

The effect of this strategy on the partitioning is the follow-
ing: Smaller and less complex submodules that have a small



TR will result in a small OBDD, nevertheless this OBDD is
isolated from the other submodules and does not interfere with
other parts of the partitioning. Larger and more complex sub-
modules will have in addition to their own submodules a cluster
of OBDDs representing the more complex TR. We can see this
strategy as a morenaturalpartitioning that reflects the intention
of the designer.

One of the major benefits of this heuristic is that we are
able to reduce the influence of the cluster-threshold resulting
in a more robust partitioning. For comparison, when using the
IWLS95 method we face abutterfly effecti.e. small changes in
the cluster-size result in a large influence in the performance of
the method (positive as well as negative).

The influence of the cluster-threshold has now been reduced
to the clustering of a single (sub)module. But, we can reduce
the influence even further: We introduced apreclusteringstep,
where latches representing a multivalued register are clustered
separately. Each multivalued register results in one or more
clusters that are passed to the standard clustering routinede-
scribed above. The impact of this preclustering was so evident
that we increased the cluster-threshold for this step of thecom-
putation by a factor of two to allow more latches of a multival-
ued register to stay in one cluster. For comparison: increasing
the standard cluster-threshold size of the IWLS method leads to
a much poorer performance. See Figure 2 for a sketch of the
clustering algorithm.

HierarchicalCluster(module,threshold)f
/* First, cluster the modules own latches */
mv relations =

preclusterMVlatches(module!latches,threshold*2 );
latch cluster =

CreateClusters(mv relations,threshold);

append(cluster array,latch cluster);
/* Then, cluster the children of the module */
ForEachItem(module!children, child)f

child cluster =
HierarchicalCluster(child,threshold);

append(cluster array,child cluster);g
return cluster array;g

Figure 2: Algorithm in pseudocode for hierarchical partitioning.

The benefits of the hierarchical partitioning heuristic are:� We gain a less arbitrary and more structured partitioned
transition relation.� The partitioning method is more robust, i.e. the cluster-
threshold can be widely extended to increase performance
for larger designs.� The heuristic performs excellently for structured design.� The heuristic is applicable to forward and backward image
computation.

But one problem remains: The heuristic is not able to pro-
duce a schedule for conjunction of clusters during the AndExist
operation. Also, it seems unlikely that conjunction scheduling
heuristics like [13, 9] improve the performance of this heuris-
tics since their ordering strategies conflict with the grouping
paradigm of this method.

4 Hierarchical Image Computation

In the following we will present algorithms to complete our
framework for hierarchical image computation. The result of
the algorithmHierarchicalClusteris a (linear) list of clusters
that are not ordered (see. Figure 3a). This type of linearly ar-
ranged clusters is the same that we get from other partitioning
algorithms (e.g. [13]). The image of a certain state set (repre-
sented by the OBDDS) is obtained by consecutively applying
AndExist (
) to the OBDDs (T ) representing the transition re-
lation. This algorithm is called “LinearAndSmooth”.

On the other hand, fromHierarchicalClusterwe obtain a ba-
sic ordering of clusters that are local to a certain (sub)module,
and this is not adequately represented by a linear list.

Up to now no order for the processing of the submodules of
a module has been computed. It is reasonable to think of an
ordering for these submodules, since there is no way to detect an
efficient schedule for processing from hierarchical description.

S T
T

T T

T

T

T

S

TTTTTT

IMG IMG

a) Linear Image Computation b) Hierarchical Image Computation

BDD-cluster

Figure 3: Linear and Hierarchical Image Computation.

4.1 General Algorithm

The algorithm outlined in Figure 4 describes the general way
to compute an image hierarchically. To allow hierarchical im-
age computationHierarchicalClusterhas to be modified. The
clusters are no longer put in a list, but stored in their according
module (see. Figure 3b).

HierarchicalAndSmoothcomputes the image recursively in
preorder style, i.e. first the module’s local clusters are con-
juncted in the temporary product, then the computation contin-
ues with the submodules. The preorder computation introduces
the modules’ control variables first, resulting in an increase in
the number of variables during the AndExist. On the other hand
after finishing a submodule all variables that control only this
module are quantified out, resulting in a decrease in OBDD-
size.



HierarchicalAndSmooth(fromSet,module)f
product = fromSet;
ForEachItem(img!cluster,cluster)f

smoothVars = ComputeSmoothVars(module,cluster);
if (smoothVars)

tmpProduct = bdd and smooth(product,cluster,
smoothVars);

else
tmpProduct = bdd and(product, cluster);

product = tmpProduct;g
childrenreamining = module!children;
while(childrenremaining)f

child = ChooseBestSubmodule(childrenremaining);
tmpProduct =

HierarchicalAndSmooth(product,child);
product = tmpProduct;
remove from(childrenremaining,child);g

return product;g
Figure 4: Algorithm in Pseudocode for Hierarchical Image
Computation.

4.2 Dynamic Reordering of the Conjunction
Schedule

The conjunction schedule for the image computation is deter-
mined in theHierarchicalAndSmoothby ChooseBestSubmod-
ule, which can be computed statically or dynamically (the sim-
plest solution would be the list order). Ordering heuristics
like [13, 9] may be applied as well, but they are not useful for
dynamic rescheduling as they only take structural information
of the transition relation into account and will always result
in the same schedule. Nevertheless, adjusting the conjunction
schedule to changing state sets, OBDD-sizes, or variable orders
might be very profitable.

We describe a strategy to improve the performance of the
AndExist operation twofold: The AndExist operation generally
profits from a hierarchical partitioning. And, we can use thehi-
erarchy structure to improve the conjunction schedule dynami-
cally.

The AndExist operation profits from acompactcube of
smooth variables. The cube of smooth variables describes the
set of variables that are quantified out during the AndExist op-
eration. We call this cube compact, if the variables that appear
in the cube are adjacent and not spread over the variable order
of the OBDD. During a step of the AndExist recursion the fol-
lowing three cases are possible:

1. The current variable is contained in the smooth variable
set: Then the recursion continues and the two resulting
OBDDS are combined by an OR operation.

2. The current variable is not contained in the smooth variable
set: The result is a new node labeled with the current index
and whose successors are the results of the two recursions.

3. The cube has reached the sink node: The recursion reduces
to an AND operation.

If the smooth variable cube is compact the third case appears
earlier, improving the efficiency of the operation. And, if the
clusters are separated, i.e. do not share many variables, then the
third case may reduce to an identity function, because the cube
and the cluster reach the sink node simultaneously.

This leads us to the following strategy forChooseBestSub-
module:

1. Compute the maximum level (maxlevel) in the OBDD of a
variable to be quantified out in all clusters and submodules
of a given submodule.

2. Choose the submodules of the current module in increasing
order of their maxlevels.

This strategy gives us a good schedule as we expect from
the hierarchical partitioning that the clusters of the modules
have highly separated variable sets resulting in compact cubes.
Also, the schedule is changed dynamically as the variable order
changes during the computation as a result of increasing state
sets etc.

5 Experiments

We implemented our algorithms in the VIS-package [5] (version
1.3) using the underlying CUDD-package [14] (version 2.3.0).
VIS is a popular verification and synthesis package in academic
research. It inherits state of the art techniques for OBDD ma-
nipulation, image and reachable states computation as wellas
formal verification techniques. Together with the vl2mv trans-
lator VIS provides a Verilog front-end.

5.1 Benchmarks

For our experiments we used Verilog designs from the Texas97
benchmark suite [1]. This publicly available benchmark suite
contains real life designs from industry and academics includ-
ing: MSI Cache Coherence Protocol, PCI Local BUS, PI BUS
Protocol, MESI Cache Coherence Protocol, MPEG System De-
coder, DLX and PowerPC 60x Bus Interface. The benchmark
suite also contains properties given in CTL formulae for verifi-
cation.

We chose those designs that represent RTL (i.e. including
more than one module) rather than gate level descriptions. Only
those designs were considered that could be read in and whose
transition relation could be build respecting our system limita-
tions. Table 1 shows 32 different benchmarks for which one or
two sets of properties have been checked (resulting in 54 ex-
periments). The runtime heavily depends on the chosen set of
properties to be checked and is not proportional to the number of
image computations. Therefore it is reasonable to check more
than one set of properties. Some very small examples (CPU
time< 10s) are not shown.



5.2 Experimental Setup

We left all parameters of VIS and CUDD unchanged. The most
important default values are:� Partition cluster size = 5000� Partition method for MDDs = inout� OBDD variable reordering method = sifting� First reordering threshold = 4004 nodes

The model checking was preceeded by a forced variable re-
ordering. The CPU time was limited to 6 CPU hours and mem-
ory usage was limited to 200MB. All experiments were per-
formed on Linux PentiumIII 500Mhz workstations.

5.3 Results

We compare our method (Hierarchy) to the standard method
(IWLS95). For results on runtime and space requirements see
Table 1.Icmp is the sum of forward and backward image com-
putation performed during the analysis.Parts gives the number
of partitions of the transition relation. The OBDD-size of the
transition relation cluster and the peak number of live nodes is
given byTRn resp.Peakn. The CPU time is measured in sec-
onds and given asTime. The columns denoted with% describe
the improvement in percent1.

At the bottom of Table 1 you can find the sum of all num-
bers of partitions, BDD-sizes and CPU-times. Also, thetotal
improvementis given.

The experiments show significant improvements in time and
space: The overall CPU time could be reduced to 1/4 of the orig-
inal CPU time (11h instead of 45h). The hierarchical method
outperforms the standard method in 51 of the 54 benchmarks.
The decrease in computation time ranges up to 97%. The
OBDD peak sizes could be lowered by 59% overall (20Mio.
nodes instead of 50Mio.). Interestingly, the average OBDD size
of a cluster reduced from 2464 nodes to 1761 nodes, although
the threshold was doubled for multivalued registers. The overall
number of clusters remains unchanged.

The effort for variable reordering during symbolic model
checking is usually quite high, using the hierarchy method we
were able to reduce, beyond all time improvements, the time
fraction spent for variable reordering from 58% to 54% (over-
all).

6 Conclusion

We have presented algorithms for partitioning of transition rela-
tions and conjunction scheduling. The partitioning algorithm
uses hierarchical information to produce a treelike clustered
transition relation. We used RTL information given in Ver-
ilog, but any other algorithm that detects submodules of a FSM
would work as well. The main impact is due to the algorithm
that performs image computation based on this treelike parti-
tioning. This algorithm allows a dynamic rescheduling of the
clusters, allowing to fine-tune the AndExist operation for ahi-
erarchical partitioning. These algorithms resulted in significant
reductions in CPU-time and space.

10 < improvement< 100; �100 < impairment< 0.

The presented strategy for rescheduling only stands exem-
plarily for a wide variety of possible heuristics that may beim-
plemented on the basis of the hierarchical partitioning, e.g. a
history function that detects “expensive” AndExist operations
and schedules them to a more suitable position.

Acknowledgement

The authors would like to thank Jim Kukula for fruitful discus-
sions and valuable ideas.

References
[1] A. Aziz et. al.,Texas-97 benchmarks,http://

www-cad.EECS.Berkeley.EDU/Respep/Research/Vis/texas-97.

[2] R. E. Bryant,Graph-Based Algorithms for Boolean Function Manipula-
tion, IEEE Transactions on Computers, C-35, 1986.

[3] J. R. Burch, E. M. Clarke and D. E. Long,Symbolic Model Checking with
partitioned transition relations, Proc. of Int. Conf. on VLSI, 1991.

[4] J. R. Burch, E. M. Clarke, D. L. Dill, L. J. Hwang and K. L. McMillan,
Symbolic model checking:1020 states and beyond, Proc. of Logic in Com-
puter Science (LICS’90), 1990.

[5] R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincentelli, F. Somenzi,
A. Aziz, S. Cheng, S. A. Edwards, S. P. Khatri, Y. Kukimoto, A.Pardo, S.
Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shiple, G. Swamy and T.Villa,
VIS: A System for Verification and Synthesis, Proc. of Computer Aided
Verification (CAV’96), 1996.

[6] O. Coudert, C. Berthet and J. C. Madre,Verification of Synchronous Ma-
chines using Symbolic Execution, Proc. of Workshop on Automatic Verifi-
cation Methods for Finite State Machines, LNCS 407, Springer, 1989.

[7] D. Geist and I. Beer,Efficient Model Checking by Automated Ordering
of Transition Relation Partitions, Proc. of Computer Aided Verification
(CAV’94), 1994.

[8] R. D. M. Hunter and T. T. Johnson,Introduction to VHDL, Chapman &
Hall, 1996.

[9] I. Moon, G. D. Hachtel and F. Somenzi ,Border-Block Triangular Form
and Conjunction Schedule in Image Computation, Proc. of Formal Meth-
ods in CAD (FMCAD’00), LNCS 1954, 2000.

[10] I. Moon, J. Jang, G. D. Hachtel, F. Somenzi, J. Yuan and C.Pixley, Ap-
proximate Reachability Don’t cares for CTL Model Checking, Proc. of In-
ternational Conference on CAD (ICCAD’98), 1998.

[11] Ch. Meinel and C. Stangier,Speeding Up Image Computation by using
RTL Information, Proc. of Formal Methods in CAD (FMCAD’00), LNCS
1954, 2000.

[12] Ch. Meinel and C. Stangier,A New Partitioning Scheme for Improvement
of Image Compuation, Proc. of ASP Design Automation Conference (AS-
PDAC’01), 2001.

[13] R. K. Ranjan, A. Aziz, R. K. Brayton, C. Pixley and B. Plessier,Efficient
BDD Algorithms for Synthesizing and Verifying Finite StateMachines,
Proc. of Int. Workshop on Logic Synthesis (IWLS’95), 1995.

[14] F. Somenzi,CUDD: CU Decision Diagram Package,
ftp://vlsi.colorado.edu/pub/ .

[15] D. E. Thomas and P. Moorby,The Verilog Hardware Description Lan-
guage, Kluwer, 1991.



IWLS95 Hierarchy

Icmp Peakn Parts TRn Time Peakn % Parts % TRn % Time %

ONE.pixley cpu 113 24045 3 4456 12 29798 -19 4 -25 3220 27 13 -7
PCIabnorm.PCI 304 176276 14 28613 253 116345 33 10 28 18061 36 152 39
PCInorm.PCI 206 81123 15 35124 56 69291 14 11 26 16993 51 47 16
TWO.PPCliveness 74 263756 8 13118 303 2083768 -87 10 -19 13881 -5 3436 -91
TWO.contention 37 97622 7 11865 47 215686 -54 10 -30 10508 11 150 -68
multi main.multim 45 38694 5 14700 34 33423 13 6 -16 1578 89 18 47
p62 LS LS V01.ccp 64 166074 23 49952 200 124430 25 23 0 41246 17 84 58
p62 LS LS V01.p6l 99 452267 23 49952 831 158021 65 23 0 41246 17 173 79
p62 LS LS V02.ccp 54 146494 22 59487 105 117628 19 23 -4 42463 28 70 33
p62 LS LS V02.p6l 97 167454 22 59487 174 117628 29 23 -4 42463 28 79 54
p62 LS L V01.cc 64 176540 23 49684 210 132128 25 22 4 41091 17 103 50
p62 LS L V01.p6li 99 1617162 23 49684 3511 183674 88 22 4 41091 17 252 92
p62 LS L V02.ccp 54 148560 23 62140 106 91257 38 23 0 37319 39 74 30
p62 LS L V02.p6li 89 183811 23 62140 193 91257 50 23 0 37319 39 76 60
p62 LS S V01.ccp 64 176540 23 49684 210 132128 25 22 4 41091 17 103 50
p62 LS S V01.p6li 99 1614473 23 49684 3601 183674 88 22 4 41091 17 260 92
p62 LS S V02.ccp 54 148560 23 62140 106 91257 38 23 0 37319 39 74 30
p62 LS S V02.p6li 89 183811 23 62140 193 91257 50 23 0 37319 39 74 61
p62 L L V01.ccp 52 164244 23 48961 189 117269 28 23 0 41165 15 78 58
p62 L L V01.p6liv 89 477543 23 48961 934 189172 60 23 0 41165 15 159 82
p62 L L V02.ccp 53 144504 23 48971 172 119677 17 23 0 41992 14 71 58
p62 L L V02.p6liv 96 242452 23 48971 377 119677 50 23 0 41992 14 90 76
p62 L S V01.ccp 75 168782 22 62479 121 123551 26 23 -4 42294 32 93 23
p62 L S V01.p6liv 118 192410 22 62479 231 137714 28 23 -4 42294 32 166 28
p62 L S V02.ccp 55 140767 22 57365 104 98699 29 22 0 40454 29 73 29
p62 L S V02.p6liv 96 140767 22 57365 106 98699 29 22 0 40454 29 74 30
p62 ND LS V01.ccp 83 396642 24 63506 830 299289 24 24 0 46550 26 559 32
p62 ND LS V01.p6l 128 5583160 24 63506 21039 1747044 68 24 0 46550 26 4544 78
p62 ND LS V02.ccp 103 191386 22 63321 331 156783 18 23 -4 44262 30 175 47
p62 ND LS V02.p6l 192 1564426 22 63321 3611 445241 71 23 -4 44262 30 669 81
p62 ND L V01.ccp 75 356794 25 65964 781 380121 -6 24 4 45076 31 577 26
p62 ND L V02.ccp 161 5614430 23 60383 timeout 1352990 75 23 0 47981 20 3050 85
p62 ND L V02.p6li 200 5573568 23 60383 timeout 3009524 46 23 0 47981 20 4965 77
p62 ND S V02.ccp 84 150630 23 46744 188 133586 11 24 -4 41048 12 142 24
p62 ND S V02.p6li 177 645917 23 46744 1231 164486 74 24 -4 41048 12 200 83
p62 S S V01.ccp 43 147063 23 62209 101 97360 33 23 0 39901 35 62 38
p62 S S V01.p6liv 80 153012 23 62209 106 97360 36 23 0 39901 35 67 36
p62 S S V02.ccp 37 129492 23 54800 94 90710 29 23 0 39819 27 60 36
p62 S S V02.p6liv 74 129492 23 54800 95 90710 29 23 0 39819 27 61 35
p62 V LS V01.ccp 108 283494 24 58415 587 210147 25 23 4 45928 21 362 38
p62 V LS V01.p6li 153 4483034 24 58415 timeout 2126524 52 23 4 45928 21 6236 71
p62 V LS V02.ccp 90 165200 23 52073 221 128016 22 22 4 41985 19 148 33
p62 V LS V02.p6li 178 1059895 23 52073 1864 224255 78 22 4 41985 19 286 84
p62 V S V01.ccp 82 213245 23 61795 245 142930 32 23 0 43513 29 173 29
p62 V S V01.p6liv 127 964988 23 61795 2168 442596 54 23 0 43513 29 890 58
p62 V S V02.ccp 84 163439 22 54807 189 126542 22 23 -4 41969 23 120 36
p62 V S V02.p6liv 177 351553 22 54807 475 228621 34 23 -4 41969 23 241 49
packet.packet 65326 53790 3 9704 5122 68473 -21 4 -25 4742 51 5068 1
single main 108 14936 2 6352 13 9360 37 4 -50 884 86 8 38
single main.1 52 14936 2 6352 13 9360 37 4 -50 884 86 7 46
three processor.p 244 4621235 9 19750 timeout 3062696 33 7 22 4838 75 2959 86
three processor bin. 140 8779857 7 20387 timeout 560970 93 7 0 5140 74 522 97
two processor.pro 264 903917 4 12311 676 88215 90 5 -19 1810 85 72 89
two processor bin 141 252974 4 11610 150 64924 74 5 -19 2623 77 42 72

Sum: 70748 50497236 1022 2518138 160514 20625941 1027 1809018 38307
Total Improvement: 59% 0% 28% 76%

Table 1: Comparison of IWLS95 Method and Hierarchy Heuristic




