Christoph Meinel, Christian Stangier:

Hierarchical Image Computation with Dynamic Conjunction Scheduling

in Proceedings of the 2001 International Conference on Computer Design (ICCD 2001), IEEE Press, Austin, Texas, USA,
pp. 354-359, 9, 2001. ISBN: 0-7695-1200-3.

Hierarchical Image Computation with Dynamic Conjunctiom&aduling

Christoph Meinel Christian Stangier
FB Informatik FB Informatik
University of Trier University of Trier
meinel@uni-trier.de stangier@uni-trier.de
Abstract place only within the given groups. The groups are determined

from RTL descriptions resp. from a dependency matrix.
Image computation is the core operation for optimization and |, this paper we extend the method of [11] to produce a real

formal verification of sequential systems like controllers or propjerarchical partitioning of the transition relation. The hierar-
tocols. State exploration techniques based on OBDDs USE-@ical image computation is completed by an algorithm that

partitioned representation of the transition relation to keep the, to:ms the AndExist operation on the treelike partitions that
OBDD-sizes manageable. This paper presents algorithms Qg it from the hierarchical partitioning algorithm. The main

building a hierarchically partitioned transition relation and Conl'mpact comes from the heuristic that solves the problem of or-

junction scheduling based on this partitioning. The cONjuNGering the clusters for conjunction. It emerged that the AndEx-

tion scheduling algorithm allows to dynamically reorder partii; 5g0rithm works very well with a hierarchical partitioning

tions and is targeted to improve the AndExist operation. Model, ¢ this heuristic optimizes the performance of the AndEx-
checking experiments prove the effectiveness of the new alggy aqditionally, the scheduling heuristic allows a true dynamic

rithms. rescheduling of the partitions.

. The paper is structured as follows: The next section gives

1 Introduction some basic definitions. In Section 3 the hierarchical partition-
ing algorithm is described. The hierarchical image computa-

The computation of the reachable states (RS) of a finite staign algorithm and the dynamic rescheduling heuristic are given
machine (FSM) is an important task for synthesis, logic ofin Section 4. Section 5 presents experimental results of model
timization and formal verification. The increasing complexitychecking experiments with the new algorithms. The last section

of sequential systems like controllers or protocols requires effgoncludes the paper and gives an outlook on future work.
cient RS computation methods. If the RS are computed by using

Ordered Binary Decision Diagrams (OBDDs) [2], the system
under consideration is represented in terms of a transition re-

lation (TR). Since the monolithic representation of the circuit® Preliminaries

TR usually leads to unmanageable large OBDD-sizes, the TR

has to be partitioned [3, 6]. The quality of the partitioning i2 1 Hjerarchical FSM description
crucial for the efficiency of the RS computation. The computa-
tion of transitions will be unnecessarily time consuming, if th(i/l

TR i dided 0 100 maypars. O h e hand a b1 COMDeX esins e ¢ strchred nerarica e
of partitions that is too small will lead to a blow-up of OBDD- P i y

size and hence, memory consumption. scription language (HDL) at register transfer level (RTL). The

The standard method is t tthe latch dinatoab term RTL is used for an HDL description style that utilizes a
€ standard method 1S to sort the lalches according 1o a bely, in ation ofata flowandbehavioral constructd_ogic syn-

efit heu_ristic [7. _13] and then, apply a clustering algorit_hm. Thi?hesis tools take the RTL HDL description to produce an opti-
clustering algorithm follows a greedy scheme [5] that is gu'deﬁwized gate level netlist and high level synthesis tools at the be-

only by OBDD-size, i.e if the OBDD-size of a partition is ex-p . iq | jevel output RTL HDL descriptions. Verilog [15] and

ceeding a certain threshold a new partllt.|on. has to be creatgq ‘VHDL [8] are the most popular HDLs used for describing the
Recently, new approaches for partitioning of the trans't'oﬂmctionality at RTL.

relation have been published: [9] presents a heuristic that mini-]) o _)
mizesactive lifetimeof the variables to gain a good conjunction The design methodology in Verilog is a top down hierarchical
schedule computed from a dependency matrix. Additionally tH80d€ling concept based on modules, which are the basic build-
authors give a blocking strategy for the clustering. But, thi'd Plock. Our experimental work is based on designs written
method is restricted to forward image computation. In [11] and this language, but this approach can be easily extended to any
[12] heuristics are presented that focus on grouping related Valﬁ]_erarchlcal finite state machme_r_epresent_atlon asitis e.g. pro-
ables to increase the quality of the partitioning, clustering takédded by state space decomposition algorithms (see. e.g. [10]).

2.2 Partitioned Transition Relations consisting of the main modules of a design (e.g. sender and re

ceiver or two CPUs and a cache) and to put the latches of the

The_.\ _computatlon of th_e RS is a core task for ppt|m|zat|on anESM in the according groups. This keeps closely related vari
verification of sequent.|al sys_tems. The.e_ssentlal.part @DB ables in one group. Also, the groups are separated, thissnean
based traversal techniques is the transition relation TR: clustering takes place only within the groups.

The positive effect of this heuristic on the partitionindisst
TR(z,y,€) = H di(zi,€) = yi, described by aluster dependency matr{lCDM). Entry (i, j)

! denotes the number of variables that clusteand cluster;
which is the conjunction of the transition relations of alidhes Share. By using the RTL method the CDM of the design be-
(6; denotes the transition function of thi latch). Thismono- comes much sparser and the entries are smaller compares to th
lithic TR is represented as a single OBDD and usually is muciandard method [13]. Sparseness in a CDM means easier to
too large to allow an efficient computation of the RS. Sometim Perform AndExist operations and smaller entries in the CDM
a monolithic TR is even too large for a representation with- OBgenerally result in smaller OBDDs, as fewer variables are in
DDs. Therefore, more sophisticated RS computation metho¥g!ved in the AndExist operation.
make use of artitioned TR [3], i.e. a cluster of OBDDs each Although the RTL method utilizes hierarchical information

of them representing the TR of a group of latches. A transit Produces a kind ofiat clustering as only the top level of the

tion relation partitioned over sets of latch®s, . .., P; can be hierarchy is taken under consideration. The intention fas t

described as follows: was not to produce a partitioning that consists of too mamy ve
small clusters that might have a bad performance.
TR(z.y,e) = [[] di(zi.e) = vi. The heuristic that we describe in the following extends the
j iEeP; RTL method to use the whole given hierarchical structure.

As in the RTL method the hierarchical information is ob-
served from the module structure given in the RT level descri
tion of Verilog designs. The heuristic is not restricted f6LR
The RS computation consists of repeated image computatidnst any method that detects hierarchical modules or FSMs in a

2.3 Image Computation using AndExist

Img(TR, R) of a set of already reached stafes design is suitable. RTL Verilog has just been chosen for eise
understanding and portability.
Img(TR, R) = 3, .(TR(z,y,¢) - R) The main idea of the hierarchical partitioning is to take a

complete tree of FSMs and subFMSs (see. Figure 1) and pro-

With the use of a partitioned TR the image computation caguce a partitioning based on this tree. The partitioning-alg
be iterated over’; and the3 operation can be applied during rithm is recursive and consists of two steps:

the product computatiotearly quantification) The so called .
AndEXxist[3] or AndAbstracbperation performs the AND op- 1. The modules own latches are clustered, following the con-

eration on two functions (here partitions) while simultansly ventional scheme, i.e add latches to a cluster until a given
applying existential quantificatiord{ f = f.—1 V fz—o) On a thresho_ld ¢luster-thresholyl for the OBDD size of the
given set of variables, i.e the variables that are not in tie s cluster is exceeded

port of the remaining partitions. Unlike the convention&B
operation the AndExist operation only has a exponentiakupp
bound for the size of the resulting OBDD, but for many practi-
cal applications it prevents a blow-up of OBDD-size durihg t
image computation.

2. Call the procedure recursively for all submodules of the
module.

The result of this partitioning is outlined in Figure 1.

Since the number of quantified variables depends on the or- FSM —
der in which the partitions are processed, finding an optonal |
der of the partitions for the AndEXxist operation is an impoit Q% BDD-cluster (5
problem. We refer to this problem as tbenjunction scheduling \@ / m
problem Geist and Beer [7] presented a heuristic for schedul- Y
ing of partitions each representing a single state varidiitere i ™ \
sophisticated heuristics for partitions with several ahtes are O d Oﬁ"f’ﬂ“'es <>/ A C{
given by [13, 9]. ﬁ i/ﬁﬁ ﬁ%ﬂ A /A

. A A

3 Hierarchical Partitioning of Transi- gé Latches

tion Relations
Figure 1: Hierarchical FSM and Transition Relation.

In [11] a partitioning heuristic that utilizes hierarchidgafor-
mation —i.e. RTL modules of a Verilog description — was pre- The effect of this strategy on the partitioning is the follow
sented. The main idea of this work was to have few groupgag: Smaller and less complex submodules that have a small

TR will result in a small OBDD, nevertheless this OBDD is But one problem remains: The heuristic is not able to pro-
isolated from the other submodules and does not interfette widuce a schedule for conjunction of clusters during the AnstEx
other parts of the partitioning. Larger and more complex-sulbperation. Also, it seems unlikely that conjunction scHiedu
modules will have in addition to their own submodules a @ust heuristics like [13, 9] improve the performance of this hisur
of OBDDs representing the more complex TR. We can see thigs since their ordering strategies conflict with the griogp
strategy as a moneatural partitioning that reflects the intention paradigm of this method.
of the designer.

One of the major benefits of this heuristic is that we argl Hierarchical |mage Computation
able to reduce the influence of the cluster-threshold riesult
in a more robust partitioning. For comparison, when usirgy th

leLSI%tmet_hod we I]j[a_ce Ialutterfl_yftleffect.e._ s?]all ch]:amges N framework for hierarchical image computation. The restlt o
€ cluster-size result in a farge infiuence in the perto the algorithmHierarchicalClusteris a (linear) list of clusters

the method (positive as well as negative). that are not ordered (see. Figure 3a). This type of linearly a

The influence of the cluster-threshold has now been reduc? ged clusters is the same that we get from other partitipni
to the clustering of a single (su_b)module. But, We can redu%ﬁgorithms (e.g. [13]). The image of a certain state setréep
the influence even further: We introducegclusteringstep, (.40 by the OBDI3) is obtained by consecutively applying

where latches represeqtlng a mult!valued reg|st_er ardaries AndExist (O) to the OBDDs (') representing the transition re-
separately. Each multivalued register results in one OréMOftion. This algorithm is called “LinearAndSmooth”

clusters that are passed to the standard clustering rodéne On the other hand, fromierarchicalClustenwe obtain a ba-

scribed above. The impact of this preclustering was so evide_. : .
that we increased the cluster-threshold for this step ottm- sic ordering of clusters that are local to a certain (Subjahad

: . and this is not adequately represented by a linear list.
putation by a factor of two to allow more latches of a multival Ub t0 Now no orger fo:/thep rocessin yof the submodules of
ued register to stay in one cluster. For comparison: inéngas P P 9

the standard cluster-threshold size of the IWLS methoddéad a module has been computed. It is reasonable to think of an

a much poorer performance. See Figure 2 for a sketch of tr(])rderlngforthese submodules, since there is no way to tiatec

clustering algorithm. e?hment schedule for processing from hierarchical degin.

In the following we will present algorithms to complete our

/* First, cluster the modules own latches */

mv_relations = A 6
preclusterMVlatches(module—latches,threshold*2); BDD-cluster / m

Hierar chical Cluster (modulethreshold){ % e

latch_cluster = p
CreateClusters(mv_relations,threshold); /() Q/ \A ({

append(cluster_array,latch_cluster); /

/* Then, cluster the children of the module */ A

ForEachltem(module— children, child){

Ch”d_—dUSte'_' =) a) Linear Image Computation b) Hierarchical Image Computation
HierarchicalCluster(child,threshold);

append(cluster_array,child_cluster);

Figure 3: Linear and Hierarchical Image Computation.

return cluster_array;

}

4.1 General Algorithm

Figure 2: Algorithmiin pseudocode for hierarchical patiing. The algorithm outlined in Figure 4 describes the general way

to compute an image hierarchically. To allow hierarchicad i
age computatiomierarchicalClusterhas to be modified. The

« We gain a less arbitrary and more structured partitioneglusters are no longer put in a list, but stored in their adiray
transition relation. module (see. Figure 3b).
HierarchicalAndSmootltomputes the image recursively in
e The partitioning method is more robust, i.e. the clusterpreorderstyle, i.e. first the module’s local clusters are con-
threshold can be widely extended to increase performanfighcted in the temporary product, then the computationinent
for larger designs. ues with the submodules. The preorder computation intresluc
the modules’ control variables first, resulting in an inGeén
the number of variables during the AndExist. On the otheidhan
« The heuristic is applicable to forward and backward imag@fter finishing a submodule all variables that control otfilis t
computation. module are quantified out, resulting in a decrease in OBDD-
size.

The benefits of the hierarchical partitioning heuristic.are

e The heuristic performs excellently for structured design.

Hier ar chical AndSmooth(fromSet,module){ 3. The cube has reached the sink node: The recursion reduces

product = fromSet; to an AND operation.

ForEachltem(img—cluster,cluster){
smoothVars = ComputeSmoothVars(module,cluster); If the smooth variable cube is compact the third case appears
if (smoothVars) earlier, improving the efficiency of the operation. And, liet

tmpProduct = bdd_and_smooth(product,cluster,

clusters are separated, i.e. do not share many variabéasttile
smoothVars);

third case may reduce to an identity function, because the cu

else . .
tmpProduct = bdd_and(product, cluster); and the cluster reach the sink node simultaneously.
product = tmpProduct; This leads us to the following strategy f@hooseBestSub-
module
childrenreamining = module—children;
while(childrenremaining){ 1. Compute the maximum level (maxlevel) in the OBDD of a
child = ChooseBestSubmodule(childrenremaining); variable to be quantified out in all clusters and submodules
tmpProduct = of a given submodule.

HierarchicalAndSmooth(product,child);

product = tmpProduct; . .
remove_from(childrenremaining,child): 2. Choose the submodules of the current module in increasing

} order of their maxlevels.
return product;
} This strategy gives us a good schedule as we expect from
the hierarchical partitioning that the clusters of the medu
Figure 4: Algorithm in Pseudocode for Hierarchical Imagédiave highly separated variable sets resulting in compamsu
Computation. Also, the schedule is changed dynamically as the varialoleror
changes during the computation as a result of increasirng sta
sets etc.

4.2 Dynamic Reordering of the Conjunction

Schedule 5 Experiments
The conjunction schedule for the image computation is deter
mined in theHierarchicalAndSmoottby ChooseBestSubmod-We implemented our algorithms in the VIS-package [5] (\@nsi
ule, which can be computed statically or dynamically (the simi.3) using the underlying CUDD-package [14] (version 2.3.0
plest solution would be the list order). Ordering heurstic VIS is a popular verification and synthesis package in acatlem
like [13, 9] may be applied as well, but they are not useful fofesearch. It inherits state of the art techniques for OBDD ma
dynamic rescheduling as they only take structural inforamt nipulation, image and reachable states computation asasell
of the transition relation into account and will always fésu formal verification techniques. Together with the vi2mwisa
in the same schedule. Nevertheless, adjusting the comunctlator VIS provides a Verilog front-end.
schedule to changing state sets, OBDD-sizes, or variadkrsr
might be very profitable. 5.1 Benchmarks
We describe a strategy to improve the performance of the
AndEXist operation twofold: The AndEXxist operation gerigra For our experiments we used Verilog designs from the Texas97
profits from a hierarchical partitioning. And, we can useliie benchmark suite [1]. This publicly available benchmarkesui
erarchy structure to improve the conjunction schedule dyna contains real life designs from industry and academicsuhcl
cally. ing: MSI Cache Coherence Protocol, PCI Local BUS, Pl BUS
The AndExist operation profits from aompactcube of Protocol, MESI Cache Coherence Protocol, MPEG System De-
smooth variables. The cube of smooth variables descrilees thoder, DLX and PowerPC 60x Bus Interface. The benchmark
set of variables that are quantified out during the AndEXpst 0 suite also contains properties given in CTL formulae forifier
eration. We call this cube compact, if the variables thateapp cation.
in the cube are adjacent and not spread over the variable ordewe chose those designs that represent RTL (i.e. including
of the OBDD. During a step of the AndExist recursion the folimore than one module) rather than gate level descriptionk: O
lowing three cases are possible: those designs were considered that could be read in and whose
., transition relation could be build respecting our systemitt-
1. The current variable IS conta|_ned in the smooth Va”a? ons. Table 1 shows 32 different benchmarks for which one or
set: Then the recursion continues and_ the wo resulthg\,o sets of properties have been checked (resulting in 54 ex-
OBDDS are combined by an OR operation. periments). The runtime heavily depends on the chosen set of

2. The currentvariable is not contained in the smooth Vwiabproperties tobe ghecked andis n(_)t proportional to the nuoibe
set: The result is a new node labeled with the current indd'29€ computations. Therefore it is reasonable to checlemor

and whose successors are the results of the two recursiops. °"€ set of properties. Some very small examples (CPU
time < 10s) are not shown.

5.2 Experimental Setup

We left all parameters of VIS and CUDD unchanged. The mo
important default values are:

The presented strategy for rescheduling only stands exem-

larily for a wide variety of possible heuristics that mayitre
gﬁemented on the basis of the hierarchical partitioning, e
history function that detects “expensive” AndExist operas

e Partition cluster size = 5000

e Partition method for MDDs = inout

e OBDD variable reordering method = sifting
e First reordering threshold = 4004 nodes

and schedules them to a more suitable position.

Acknowledgement

The authors would like to thank Jim Kukula for fruitful dissu
The model checking was preceeded by a forced variable reions and valuable ideas.

ordering. The CPU time was limited to 6 CPU hours and mem-

ory usage was limited to 200MB. All experiments were perRefer ences

formed on Linux Pentiumlll 500Mhz workstations.

5.3 Results

We compare our method (Hierarchy) to the standard methoél
(IWLS95). For results on runtime and space requirements see
Table 1.lcmp is the sum of forward and backward image com-[3j
putation performed during the analysiarts gives the number
of partitions of the transition relation. The OBDD-size b&t
transition relation cluster and the peak number of live rsode
given byTRn resp.Peakn. The CPU time is measured in sec-
onds and given aéime. The columns denoted wi#h describe
the improvement in perceht

At the bottom of Table 1 you can find the sum of all num-
bers of partitions, BDD-sizes and CPU-times. Also, tb&l
improvemenis given.

The experiments show significant improvements in time angk)
space: The overall CPU time could be reduced to 1/4 of the orig
inal CPU time (11h instead of 45h). The hierarchical method
outperforms the standard method in 51 of the 54 benchmarkg
The decrease in computation time ranges up to 97%. The
OBDD peak sizes could be lowered by 59% overall (20Mio.
nodes instead of 50Mio.). Interestingly, the average OBR2B s (g
of a cluster reduced from 2464 nodes to 1761 nodes, although
the threshold was doubled for multivalued registers. Theral (9]
number of clusters remains unchanged.

The effort for variable reordering during symbolic model
checking is usually quite high, using the hierarchy methed

(1]

(4]

(5]

A. Aziz et. al., Texas-97 benchmarkstp://
www-cad.EECS.Berkeley.EDU/Respep/Research/Vis/t&Xas

R. E. Bryant,Graph-Based Algorithms for Boolean Function Manipula-
tion, IEEE Transactions on Computers, C-35, 1986.

J. R. Burch, E. M. Clarke and D. E. Lon§ymbolic Model Checking with
partitioned transition relationsProc. of Int. Conf. on VLSI, 1991.

J. R. Burch, E. M. Clarke, D. L. Dill, L. J. Hwang and K. L. Nllan,
Symbolic model checking0?? states and beyonéroc. of Logic in Com-
puter Science (LICS’90), 1990.

R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-VincelliteF. Somenzi,
A. Aziz, S. Cheng, S. A. Edwards, S. P. Khatri, Y. Kukimoto,Pardo, S.
Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shiple, G. Swamy andll&,
VIS: A System for Verification and Synthed¥oc. of Computer Aided
Verification (CAV'96), 1996.

O. Coudert, C. Berthet and J. C. Madkrification of Synchronous Ma-
chines using Symbolic ExecutjdProc. of Workshop on Automatic Verifi-
cation Methods for Finite State Machines, LNCS 407, Sprint@89.

D. Geist and |. BeerEfficient Model Checking by Automated Ordering
of Transition Relation PartitionsProc. of Computer Aided Verification
(CAV'94), 1994.

R. D. M. Hunter and T. T. Johnsotntroduction to VHDL Chapman &
Hall, 1996.

I. Moon, G. D. Hachtel and F. SomenzBprder-Block Triangular Form
and Conjunction Schedule in Image ComputatiBroc. of Formal Meth-
ods in CAD (FMCAD’00), LNCS 1954, 2000.

10] I. Moon, J. Jang, G. D. Hachtel, F. Somenzi, J. Yuan an@igley, Ap-

W,
were able to reduce, beyond all time improvements, the tm{e proximate Reachability Don't cares for CTL Model CheckiRgoc. of In-

fraction spent for variable reordering from 58% to 54% (ever
all).

6 Conclusion

We have presented algorithms for partitioning of transitiela-
tions and conjunction scheduling. The partitioning altiori
uses hierarchical information to produce a treelike cheste
transition relation. We used RTL information given in Ver-
ilog, but any other algorithm that detects submodules of sl FS
would work as well. The main impact is due to the algorithm
that performs image computation based on this treelikei-par{
tioning. This algorithm allows a dynamic rescheduling of th
clusters, allowing to fine-tune the AndExist operation fdria
erarchical partitioning. These algorithms resulted imgigant
reductions in CPU-time and space.

10 < improvement< 100; —100 < impairment< 0.

ternational Conference on CAD (ICCAD’98), 1998.

[11] Ch. Meinel and C. StangieGpeeding Up Image Computation by using

RTL Information Proc. of Formal Methods in CAD (FMCAD’00), LNCS
1954, 2000.

[12] Ch. Meinel and C. Stangie® New Partitioning Scheme for Improvement

of Image CompuatigrProc. of ASP Design Automation Conference (AS-
PDAC’01), 2001.

[13] R. K. Ranjan, A. Aziz, R. K. Brayton, C. Pixley and B. P&, Efficient

BDD Algorithms for Synthesizing and Verifying Finite Stdechines
Proc. of Int. Workshop on Logic Synthesis (IWLS'95), 1995.

14] F. SomenziCUDD: CU Decision Diagram Package

ftp://visi.colorado.edu/pub/ .

[15] D. E. Thomas and P. Moorbyhe Verilog Hardware Description Lan-

guage Kluwer, 1991.

| | IWLS95 I Hierarchy

| lcmp| Peakn [Party TRn | Time || Peakn | % [Part§ % | TRn | % [Time] %
ONE.pixley_cpu 113 24045 3 4456 12 29798 | -19 4 | -25 3220 | 27 13 | -7
PClabnorm.PCI 304 | 176276 | 14 | 28613 253 116345 | 33 10| 28 18061 | 36 152 | 39
PCinorm.PCI 206 81123 15| 35124 56 69291 | 14 11| 26 16993 | 51 47 | 16
TWO.PPCliveness 74 263756 8 13118 303 2083768| -87 10 | -19 13881 | -5 | 3436| -91
TWO.contention 37 97622 7 11865 47 215686 | -54 10 | -30 10508 | 11 150 | -68
multi_main.multim 45 38694 5 14700 34 33423 | 13 6 | -16 1578 | 89 18 | 47
p62 LS LS VOl.ccp| 64 166074 | 23 | 49952 200 124430 | 25 23| 0 41246 | 17 84 | 58
p62_LS_ LS VO1.pél 99 452267 | 23 | 49952 831 158021 | 65 23| 0 41246 | 17 173 | 79
p62 LS LS V02.ccp| 54 146494 | 22 59487 105 117628 | 19 23| -4 42463 | 28 70 | 33
p62_LS_LS_ VO02.pél 97 167454 | 22 59487 174 117628 | 29 23| -4 42463 | 28 79 | 54
p62_LS_L VO0l.cc 64 176540 | 23 | 49684 210 132128 | 25 22 | 4 41091 | 17 103 | 50
p62_LS_L_VO1.p6li 99 | 1617162 23 | 49684 | 3511 183674 | 88 22| 4 41091 | 17 252 | 92
p62_LS_L_V02.ccp 54 148560 | 23 | 62140 106 91257 | 38 23| 0 37319 | 39 74 | 30
p62_LS_L_V02.p6li 89 183811 | 23| 62140 193 91257 | 50 23| 0 37319 | 39 76 | 60
p62_LS_S_VO0l.ccp 64 176540 | 23 | 49684 210 132128 | 25 22| 4 41091 | 17 103 | 50
p62_LS_S_VO1.p6li 99 | 1614473| 23| 49684 | 3601 183674 | 88 22| 4 41091 | 17 260 | 92
p62_LS_S_V02.ccp 54 148560 | 23 | 62140 106 91257 | 38 23| 0 37319 | 39 74 | 30
p62_LS_S_V02.p6li 89 183811 | 23| 62140 193 91257 | 50 231 0 37319 | 39 74 | 61
p62_L_L_VOl.ccp 52 164244 | 23 | 48961 189 117269 | 28 23| 0 41165 | 15 78 | 58
p62_L_L_VO01.p6liv 89 477543 | 23 | 48961 934 189172 | 60 23| 0 41165 | 15 159 | 82
p62_L_L_V02.ccp 53 144504 | 23 | 48971 172 119677 | 17 23| 0 41992 | 14 71 | 58
p62_L_L_V02.p6liv 96 242452 | 23| 48971 377 119677 | 50 23| 0 41992 | 14 90 | 76
p62_L_S_V01.ccp 75 168782 | 22 62479 121 123551 | 26 23| -4 42294 | 32 93 | 23
p62_L_S_V01.p6liv 118 | 192410 | 22 62479 231 137714 | 28 23| -4 42294 | 32 166 | 28
p62_L_S_V02.ccp 55 140767 | 22 57365 104 98699 | 29 221 0 40454 | 29 73 | 29
p62_L_S_V02.p6liv 96 140767 | 22 57365 106 98699 | 29 22 0 40454 | 29 74 | 30
p62_ ND_LS VOl.ccp 83 396642 | 24 | 63506 830 299289 | 24 241 0 46550 | 26 559 | 32
p62_ ND_LS_VO1l.p6l| 128 | 5583160 24 | 63506 | 21039 1747044| 68 241 0 46550 | 26 | 4544| 78
p62_.ND_LS V02.ccp 103 | 191386 | 22 63321 331 156783 | 18 23| -4 44262 | 30 175 | 47
p62_ ND_LS_V02.p6l| 192 | 1564426| 22 63321 | 3611 445241 | 71 23| -4 44262 | 30 669 | 81
p62_ND_L_VO01l.ccp 75 356794 | 25| 65964 781 380121 | -6 24 | 4 45076 | 31 577 | 26
p62_ND_L_V02.ccp 161 | 5614430 23| 60383 | timeout 1352990| 75 23| 0 47981 | 20 | 3050| 85
p62_ND_L_V02.p6li 200 | 5573568 23 | 60383 | timeout || 3009524| 46 23| 0 47981 | 20 | 4965| 77
p62_ND_S_V02.ccp 84 150630 | 23 | 46744 188 133586 | 11 24 | -4 41048 | 12 142 | 24
p62_ND_S_V02.p6li | 177 | 645917 | 23 | 46744 | 1231 164486 | 74 24 | -4 41048 | 12 200 | 83
p62_S_S_V01.ccp 43 147063 | 23 | 62209 101 97360 | 33 23| 0 39901 | 35 62 | 38
p62_S_S_V01.p6liv 80 153012 | 23| 62209 106 97360 | 36 23| 0 39901 | 35 67 | 36
p62_S_S_V02.ccp 37 129492 | 23| 54800 94 90710 | 29 23| 0 39819 | 27 60 | 36
p62_S_S_V02.p6liv 74 129492 | 23| 54800 95 90710 | 29 23| 0 39819 | 27 61 | 35
p62_V_LS_V0l.ccp 108 | 283494 | 24 | 58415 587 210147 | 25 23| 4 45928 | 21 362 | 38
p62_V_LS_V01.p6li 153 | 4483034 24 | 58415 | timeout || 2126524| 52 23| 4 45928 | 21 | 6236| 71
p62_V_LS_V02.ccp 90 165200 | 23| 52073 221 128016 | 22 22| 4 41985 | 19 148 | 33
p62_V_LS_V02.p6li 178 | 1059895 23| 52073 | 1864 224255 | 78 22 | 4 41985 | 19 286 | 84
p62_V_S_V01.ccp 82 213245 | 23| 61795 245 142930 | 32 23| 0 43513 | 29 173 | 29
p62_V_S_V01.p6liv 127 | 964988 | 23| 61795 | 2168 442596 | 54 23| 0 43513 | 29 890 | 58
p62_V_S_V02.ccp 84 163439 | 22 54807 189 126542 | 22 23| -4 41969 | 23 120 | 36
p62_V_S_V02.p6liv 177 | 351553 | 22 54807 475 228621 | 34 23| -4 41969 | 23 241 | 49
packet.packet 65326 53790 3 9704 5122 68473 | -21 4 | -25 4742 | 51 | 5068| 1
single_main 108 14936 2 6352 13 9360 37 4 | -50 884 | 86 8 38
single_main.1 52 14936 2 6352 13 9360 37 4 | -50 884 | 86 7 46
three_processor.p 244 | 4621235 9 19750 | timeout 3062696| 33 7 | 22 4838 | 75 | 2959| 86
three_processor_bin| 140 | 8779857 7 20387 | timeout 560970 | 93 7 0 5140 | 74 522 | 97
two_processor.pro 264 | 903917 4 12311 676 88215 | 90 5 | -19 1810 | 85 72 | 89
two_processor_bin 141 | 252974 4 11610 150 64924 | 74 5 | -19 2623 | 77 42 | 72
Sum: 70748 50497236| 1022| 2518138 160514 | 20625941 1027 1809018 38307
Total Improvement: 59% 0% 28% 76%

Table 1: Comparison of IWLS95 Method and Hierarchy Heuristi

