Christoph Meinel, Christian Stangier:

Modular Partitioning and Dynamic Conjunction Scheduling in Image Computation

in Proceedings of the IEEE/ACM 11th International Workshop on Logic & Synthesis (IWLS 2002), ACM Press, New Orleans, Louisiana, USA,
pp. 391-396, 6, 2002.

Modular Partitioning and Dynamic Conjunction Scheduling in Image Computation

Christoph Meinel Christian Stangier
FB Informatik, University of Trier
Abstract 2 Preliminaries

Image computation is the core task in any formal verifica2.1 Partitioned Transition Relations
tion applications like reachable states computation or modﬁ%

checking. In OBDD-based image computation a partitioned e computation of the reachable states is a core task for opti-

. o S -Inization and verification of sequential systems. The essential
representation of the transition relation is used. The quali . : o
L : . o art of OBDD-based traversal techniques is the transition rela-
of the partitioning and the schedule in which the partitions al i

' . - ' [

processed is crucial for the efficiency of the image computa-

tion. In this paper we describe an approach to build a hierar- TR _TTs _

chical modular partitioned transition relation. Based on this (,y,¢) = H i(e,e) = wi,

partitioning we present a dynamic conjunction scheduling al- '

gorithm that improves the flexibility and computational powetvhich is the conjunction of the transition relations of all latches

of the image computation. The concept is proven by symboli¢: denotes the transition function of tité latch,z, y, e repre-
model checking experiments. sent present state, next state and input variables). mbiso-

lithic transition relation is represented as a single OBDD and
usually is much too large to allow computation of the reach-
able states. Sometimes a monolithic transition relation is even
too large for a representation with OBDDs. Therefore, more
sophisticated reachable states computation methods make use
The computation of the reachable states of a finite state mgf apartitionedtransition relation [3], i.e. a cluster of OBDDs
chine (FSM) is an important task for synthesis, logic optieach of them representing the transition relation of a group of
mization and formal verification. The increasing complexityatches. A transition relation partitioned over sets of latches

1 Introduction

of sequential systems like controllers or protocols requires ef, . .| P; can be described as follows:

ficient reachable states computation methods. If the reachable

states are computed by using Ordered Binary Decision Dia- TR(z, y, €) = HTRJ'(QC’ y,€) , Where
grams (OBDDs) [2], the system under consideration is repre- ;

sented in terms of a transition relation. Since the monolithic
representation of the circuit's transition relation usually leads TR, (2,9,) = H 5i(x,¢) = v;.
to unmanageable large OBDD-sizes, the transition relation has
to be partitioned [3, 5]. The quality of the partitioning is cru-
cial for the efficiency of the reachable states computation. : . :
eeiency _ puta 2.2 Image Computation using AndExist
The partitioning problem consists of two parts: First, the
latches of the FSM have to be clustered. Second, the clustdilse reachable states computation consists of repeated image

1€EP;

have to be scheduled for the image computation. computationg/mg (TR, R) of a set of already reached states
Many approaches [8, 15, 10] perform an ordering of thdt:
latches before clustering. Instead we follow the paradigm of Img(TR, R) = 3, (TR(x, y,¢) - R)

grouping strongly related latches and perform clustering Onb(/ith the use of a partitioned transition relation the image com-
within those groups. In [14] an approach was presented thﬁlﬁtation can be iterated ovét; and the3 operation can be

derives a hierarchical partitioning from RTL information of lied during th duct tati | tification
the design. We show how to obtain a hierarchical modulaarIOIO led during the product computatigrarly quantification)

partition_ing Wit_hout usi_n_g gxte_rnal im_‘ormat_ion. The benefi_t]mg(TR’ R)=3,;(TR; - ... 3,2(TRy - 3,4 (TRy - R) ..),

of the hierarchical partitioning is that it provides a good basis

for dynamic conjunction scheduling. The dynamic schedulingherev’ are those variables ifx: U ¢) that do not appear in the

algorithm presented here is targeted to optimize the AndExifllowing TRy, (i < k < j).

operation, which is underlying the image computation. The so calledAndExist[3] or AndAbstractoperation per-
The rest of the paper is structured as follows: In the nefbrms the AND operation on two functions (here parti-

section we describe the concept of a partitioned transition réens) while simultaneously applying existential quantification

lation and the image computation using such a transition ré3,, f = (fs,=1 V fz,=0)) On a given set of variables, i.e. the

lation, also an overview of recent work on this area is givenariables that are not in the support of the remaining partitions.

The next two sections present our new technique for buildingnlike the conventional AND operation the AndExist opera-

a modular transition relation and the algorithm for dynamition only has a exponential upper bound for the size of the re-

conjunction scheduling. In Section 5 we give an experimentallting OBDD, but for many practical applications it prevents

proof of the concept. The last section draws conclusions. a blow-up of OBDD-size during the image computation.

Since the number of quantified variables depends on the dnstead, the partitioned transition relation should beilfllex
der in which the partitions are processed, finding an optim&nough to adapt to changing requirements.
order of the patrtitions for the AndExist operation is an im- The paradigm we follow to build a partitioned transition re-
portant problem. We refer to this problem as ttemjunction lation is to group semantically related latches. In [14] @sv
scheduling problem Geist and Beer [8] presented a heurisshown how a hierarchical partitioning supports an efficiemt
tic for scheduling of partitions each representing a sisghte age computation and allows dynamic conjunction scheduling
variable. The so calledVLS95-methofil5] computes a con- Here, we want to build a hierarchical partition of the traiosi
junction schedule by using a greedy scheme to minimize threlation by exploiting the structure of the matrix repretsem

number of variables involved in the AndEXxist operation. the latch to latch dependencies.
In the following we present our algorithm for modular
Related Work grouping of the latches. Than, we describe the algorithm for

building OBDD clusters in these groups and discuss the ef-

After the IWLS95 method has been the standard method féects.
partitioning for several years, recently new approacheg ha
been published: _ ~ . 3.1 The Grouping Algorithm

Moon, Hachtel and Somenzi [10] presented a heuristic that
minimizesactive lifetimeof the variables in the product to gain Our algorithm follows aseparate and grouptrategy. There-
a good conjunction schedule. The active lifetime is the nermbfore, we utilize datch dependency matrjkDM). An entry of
of conjunctions in which the variable is involved scheduid a the LDM gives the number of variables that latgrand latch
it is computed from a dependency matrix, which describes tHg have in common, i.e.
depender!cy betwee_n the different latches. A_ddition{;iﬁy, t LDM (I;,1;) = |supp(li) N supp(l;)].
authors give a blocking strategy for the clustering, which f) _
bids clustering across certain borders that have turnedeout” higher number denotes a high dependency and thus a strong
produce too large clusters. mteractlon of the latches. A low number reflects a weak rela-

Meinel and Stangier [12] presented a method to utilize RTLHON Of the latches. _ _
information from the design to group related variables. A de TN€ grouping algorithm proceeds in three phases, where in
pendency matrix is used in [13] to find groups of strongly rethe first two phaseseparatedmodules of latches are build,
lated latches. In [14] a hierarchical partitioning basedwac- While in the third phasegrouping inside the modules takes

tural information from the design and a strategy for dynamiPlace. The phases in detail: _ _
conjunction scheduling is presented. 1. Module definition phase: During this phase we create

Chauhan et.al. [6] presented a heuristic that creates a paf9MPletely independent modulés;. In this phase the mod-
tree resulting in a non-linear quantification schedule. Thl€S contain only a single latch, which serves as a reprasent

heuristic argument is to perform the cheapest (in OBDD)sizé'Ve for the module. A Iatc_h will be a represent_ative for a new
conjunctions first. This strategy also allows dynamic capju Medule, whenever there is no dependency with the represen-
tion scheduling. tatives of the other modules/; : LDM (I;, M;) = 0. This

Cabodi, Camurati and Quer [7] presented an improved ben@Peration is performed for all latches. The threshold fa th
fit heuristic, which allows adjustment of the partitioning&n dependency is O to keep a reasonably small number of mod-

reordering occurs. Also, they give an adaptive clusteripg gules. The latches are checked consecutively. The latclags th

proach, allowing dynamic conjunction scheduling and @ust do not form an own module go in th? _SEtOf the remaining
ing. latches. The module¥®; and the remaining latchd$ serve as

Gupta et.al. [9] introduced a hybrid method that combine® basis for the 2r!d phase. o
2. Module assignment phaseThe remaining latches at

OBDD and SAT techniques to reduce the complexity of the X i) ;

OBDD-operations. Another hybrid method by Moon et.al [11 re a53|gned to the modules using a best-fit strategy, iecta |

combines transition functions and relations. i 1S PUt into a moduleV/ contammg_ the latch;, which has
Except for [14] and [6], the basic idea of the pure OBDDthe highest common dependency with lalch

approaches still is ordering of bit-relations. This workllwi li = My : LDM(l;,l;) =maz, l; € M.

focus on the grouping aspect of latches that has been provenyt

minimum dependency is required, otherwise this latch is a
be a powerful concept.

representative for a new module. At the end of this phase all
latches are assigned to modules. The value of the minimum
O g dependency controls the number of additional modules.
3 Buﬂdmg a Modular Transition Rela- 3? In-moﬁule grouping phase: Now, we have medium to
tion strongly related latches inside the modules. To build gsoup
within the modules we have to apply a more complex heuristic
Before images can be computed the transition relation has tivan those before. The heuristic has to be able to groupdatch
be built. It is possible to rebuild the transition relatiop-d that are strongly related, but also has to avoid building one
namically for any image computation, but this is very castlylarge group containing all latches. Please keep in mind: All

latches in a single module have a certain dependency at least
to one other latch in the module.

We propose a grouping algorithm based on merging of
groups that utilizes group dependency matr{gsDM). An en-
try of the GDM denotes the number of shared variables from
thecommon suppof groupG; and group’s;. The common
support of a group is defined as the intersection of the suppor
of all members of the group:

GDM (G;, G;) = |supp(Gi) N supp(G5)].

Fi 1: Result of the Modular Clustering.
The algorithm works as follows for a modulé : 'gure estitotthe Modular Lustering

1. Initialize the groups, such that each group contains-a siroot node Main) that represents the whole design one reaches
gle latchG:; = I;,{; € M and compute the initial GDM. the modules(M1, M2, etc.) of the design. These modules
. . hardly interact and can be seen as almost independent FSMs.
2. Compute the maximum dependency in the GDNitached to the main node we find relations that hardly inter-
mazdep = max; ;(GDM(Gi, Gj)). act with any of the modules, but do not form an own module.
3. Pairwise merge group§; and (;; whose dependency Those relations may be seen as global state variables.
equalsmaxdep Each module has a small number of children the so called
groups(G1, G2, etc.). Relations within a group strongly inter-
4. Update the GDM, the support of a merged group igct and should stay as close as possible, in the best case with
the intersection of the support of the former groupssne cluster. Attached to each module we find those relations
supp(G) = supp(Gy) N supp(Gy). that do not interact strong enough to any of the groups to-be at
tached to one of them. Keeping those loosely coupled relsitio
separate in the module gives us more freedom in the choice of
the conjunction schedule.

Step 2 of this phase guarantees that strongly related ktche Summarized, the modular grouping approach results in a hi-
are grouped. Performing an intersection of the support ef trerarchical partitioning consisting of a small number ofasep
groups that are merged (Step 4) and limiting the number ¢fite modules each consisting of a reasonable number of group
runs avoids construction of groups with latches that arteel Whose relations strongly interact. The depth of the hiénars
only very loosely. always limited to three layers, because the grouping algori

The latches that could not be grouped after termination @fly allows the creation of one main node, one module layer
the algorithm are considered being the modules own latchesand one group layer. The algorithm is not recursive.

The runtime of this algorithm is cubic in the number of For computation of the image based on this hierarchical
latches, but it is negligible in comparison to other openasi partitioning the algorithm fohierarchical image computation
during construction of the transition relation (OBDD-AND, presented in [14] is used.
variable reordering, etc.).

In our implementation we set the minimal required depen-
dency for the 2nd phase to 3 variables. In phase 3 we set tle Dynamic Conjunction Scheduling

threshold for maxdep to 5 and limited the number of runs to
10% of the number of latches. After the transition relation has been built, the conjuoti

scheduling problem has to be solved. The hierarchical parti
32 Clusteri tioning does not imply a schedule for the conjunctions of the
) ustering clusters, i.e. the order in which to apply the AndExist. Meag

After the relations have been grouped, the clusters of the p# basic idea of how to conjunct members of a single group, but

titioned transition relation can be computed. A clusterha t there is no hint about how to schedule modules.

transition relation is solely built from latches of one gpouf The following algorithm based on the heuristic in [14] ex-

the OBDD-size of a cluster exceeds a certain threshold an geloits the concept of compact clusters to gain a schedule for

ditional cluster for this group is created. The OBDD-size i¢he conjunctions that not only tries to optimize single AR

a rather artificial indicator for the separation of clustésat ~Operations, but s able to improve the entire image compmirtat

it is used in all partitioning approaches to avoid size exploprocess, as the following discussion will show.

sion of the transition relation. Fortunately, the groupayy

prqgch drasticall_y limits the influ_ence of this_ t_hresholdtba 4.1 The Scheduling Algorithm

efficiency of the image computation by providing more mean-

ingful borders for the clusters. The algorithm is called recursively for all modules stagtin
Figure 1 shows a schematic of the result of clustering th&ith the main module. When entering a new module a de-

hierarchical partitioned transition relation. Startimgrh the cision is made whether to start the conjunction operatidtis w

5. Repeat 2-4 untinaxdepis below a certain threshold or
the number of allowed runs is exceeded.

the submodules (children) of this module or its own cluster. AndExistRecur(f,g,quanvars){
The decision is made depending on the maximum level of g 2 ﬁgﬁikatggens'”?gg()a;%itaﬁon .
variable to be qu_antlfled out (for the subquules this vaase h 3) if(!quanvars)’remm deAndif’ o;
to be computed in advance). The group with the smaller valug 4) if(g == ONE) return BddExist(f, quanvars);
is computed first. Notice that for any chosen cluster these va | 5) top = topmost variable in fand g;
ues will change as the sets of variables to be quantified out % mﬁg(;mp"art'g ‘;Ligr“’arf?to T
change, too. The group with the_smallest_ value is chos_en first 8) if(top.q E;quEf retu?;]qB_dd Xﬁgz g’);
So, BFS- and DFS-style recursion may interleave during the
recursion, but not within a module. Within a module the chil- | 9) if(top_g > top){ /* no quantify */
dren resp. the modules own clusters are ordered by the samjel?) = AndExistRecur(i=T, g—T, quanvars);
. . 11) e = AndExistRecur(f—E, g—E, quanvars);

argument and Chose_n by increasing V"_ﬂues- _ 12) return makeBDDnode(index of top, t,€);

After each AndExist step the quantify variables have to be| 13) }else{ /* quantify */
recomputed. Whenever there is a change in the variable or+ 14) t= AndExistRecur(f—T, g—T, quanvars—T);

der of the OBDD, the ranking of the modules and clusters is| 12 €= AndExistRecur(fi=E, g—E, quanvars—T);

. L . . 16) result = BddOr(t, e);
changing too, thus resulting in a completely dynamic cogjun | 17 Deref(t); Deref(e):
tion schedule. 18) return result;

}
}

4.2 Discussion of the Algorithm

The efficiency of the dynamic conjunction scheduling algo- Figure 2: Sketch of the AndExist Algorithm.

rithm described in the previous section relies on ¢henpact
clusteringproduced by the hierarchical partitioning. Compact
clustering means that there are fewer support variablesaanqound than the problem of having the OR operation inside the
higher number of quantify variables in each cluster. As zizsidr

. recursion. We try to reach shortcuts (3, 4, 8) in the compu-
effect we can expect that variables of a compact cluster Wlﬂﬁtion earlier, to keep the lifetime of temporary nodes sror
stay close in the variable order due to their high interactio ’

:) : . For this reason we will even accept a slightly more complex
even during dynamic variable reordering.

To understand the effect of compact clustering on the Ané?R operation.

Exist operation let us take a closer look at the algorithne (se In a compact clustering as shown (simplified) in Figure 3a
Figure 2). The AndExist operation performs the quantificawe have fewer variables in a clustér;) of the transition rela-
tion of variables 4, f = (fz,=1 V f»,=0))) While performing tion than in a regular clustering as shown in Figure 3b. If the
a recursive AND. Thus, it follows the general scheme of anglusters are ordered by choosing the cluster with the highes
recursive OBDD algorithm like ITE: maximum level of a quantify variable first, we can expect ear-
I(Ii%r shortcuts in the AndExist operation. As the clustergeha
fewer variables, the AND operation (3, 8) terminates earlie

(e.g. AND(f, 1) = f) leaving the bottom part aR untouched.

We think that the problem of temporary nodes is more pro-

— First, terminal cases and the computed table are chec
(lines 1, 2).

— If the actual variabletép) is not to be quantified, the re-
cursion is called recursively with the successors of the

current nodes (10, 11) and a node is created from the re- ﬂ
sultst, e of the recursion. & A
— If no more variables are to be quantified out, the recursion A AA
switches to the regular AND (3, 8).
a) b)

— If the actual variable is to be quantified out, the recursion
continues with the successorsoandg (14, 15) as well,
but afterwards, an OR operation on the restltsof the Figure 3: Schematic of Compact Clustering (a) vs. Regular
recursion is executed (16). Clustering (b).

Let us recall: The OR operation is called within the recugsiv

step of the AndExist! This actually is the reason why AndExis We can conclude that the dynamic conjunction scheduling
is not a polynomial operation. To make things even worse thdoes not only try to improve single AndExist operations (e.g
resultst ande of the recursive step are obsolete later and arey performing the cheapest operations in terms of OBDD-size
dereferenced (17), i.e. if not part of another OBDD they bl first), instead the whole series of AndExist operations bl
deleted. This means the AndEXxist operation produces — in cooptimized. As the output of the AndExist operation is (excep
trast to any other OBDD operation — temporary nodes. Theder the last cluster) always an input to the next AndExistrepe
temporary nodes are the main reason for a possible blow-upation, this heuristic optimizes the complete image contparia
OBDD-size during image computation. process.

5 Experiments In some — especially larger — cases the Groupmod method dras-
tically improves OBDD-size and runtime (up to 87%). The

We implemented our algorithms in the VIS-package [4] (verGroupmod method performs worse only on seven small and

sion 1.3) using the underlying CUDD-package [16] (vermid-sized benchmarks.

sion 2.3.0). VIS is a popular verification and synthesis pgek Although the Groupmod method introduces more clusters

in academic research. It inherits state of the art techside (23%) than the MLP method, the overall number of OBDD-

OBDD manipulation, image and reachable states computatiagades for the transition relation is 12% smaller. This is adjo

as well as formal verification techniques. indicator for the improved quality of the computed partiting
Another indicator is the overall peak node size that impdove
5.1 Benchmarks almost as good as the runtime (38%).

For our experiments we used Verilog designs from the Texasgg .
benchmark suite [1] and from the VIS distribution. This pub- Conclusion
licly available benchmark suite contains real life desifrosm o o
industry and academics including: MSI Cache Coherence Pr§/é Presented an approach for partitioning the transitiéar re
tocol, PCI Local BUS, PI BUS Protocol, MESI Cache Coherlion that follows the idea of grouping strongly related fas.
ence Protocol, MPEG System Decoder, DLX and Powerp®Ne resulting partitioning is flexible enough to allow a dy-

60x Bus Interface. The benchmark suite also contains propdl2Mic conjunction scheduling. The dynamic scheduling then
ties given in CTL formulae for verification. works towards a more efficient AndExist operation. We be-

Only those designs were considered, whose transition rggve that the modula_lr group partitiopin_g Is sO powen_‘ultthla
lation could be build respecting our system limitations. Wénlghtserve as a basis for more sophisticated dynamic sthedu

computed 25 different benchmarks for which one or two setfd algorithms than the one presented here_.) _

of properties have been checked (resulting in 41 experishent 1€ MLP method seems to work more efficiently with fewer
The runtime heavily depends on the chosen set of properti‘é@St?rs' A hybrid method combining MLP and (_Sroupmod de-
to be checked and is not proportional to the number of image"ding on the number of clusters and the quality of the CDM
computations. Therefore, it is reasonable to check mone th&°uld be even more powerful.

one set of properties. Some very small examples (CPU ¢ime

5s) are not shown. References

5.2 Experimental Setup [1] A. Aziz et. al., Texas-97 benchmarkdtp://www-cad.
EECS.Berkeley.EDU/Respep/Research/Vis/texas-97.

We left all parameters of VIS and CUDD unchanged. The most
important default values are: Partition cluster size = 56G0-
tition method for MDDs = frontier, Dynamic OBDD variable
reordering method = sifting, First reordering thresholdG94 [3] J. R. Burch, E. M. Clarke and D. E. Longymbolic Model
nodes. Before building the transition relation the OBDD was ~ checking with partitioned transition relationsroc. of Int.
minimized by an explicit call to variable reordering. The CP Conf. on VLSI, 1991.

time was limited to 6 CPU hours and memory usage was lim-

ited to 200MB. All experiments were performed on Linux Pen- [4] R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincelite
tiumlll 500Mhz workstations. F. Somenzi, A. Aziz, S. Cheng, S. A. Edwards, S. P. Khatri, Y.

Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R.
Shiple, G. Swamy and T. VillayIS: A System for Verification
5.3 Results and Synthesjdroc. of Computer Aided Verification, 1996.

[2] R. E. Bryant,Graph-Based Algorithms for Boolean Function
Manipulation IEEE Transactions on Computers, C-35, 1986.

We compare our method_ (Groupmod) to the _MLP method of[5 0. Coudert, C. Berthet and J. C. Madperification of Syn-

[10]. For results on runtime and space requirements see Ta- * chronous Machines using Symbolic Executieroc. of Work-

ble 1.lcmp is the sum of forward and backward image compu- shop on Automatic Verification Methods for Finite State Ma-

tations performed during the analyskiarts gives the number chines, LNCS 407, Springer, 1989.

of partitions of the transition relation. The OBDD-size bét

transition relation cluster and the peak number of live sode [6]

is given by TRn resp. Peakn. The CPU time is measured

in seconds and given d8me. The columns denoted with

describe the improvement in percént [7] G. Cabodi, P. Camurati and S. QuBlynamic Scheduling and
Table 1 gives a detailed comparison of the results for the Clustering in Symbolic Image ComputatiBroc. of Design and

MLP method and the Groupmod method with dynamic con- Testin Europe, 2002.

junction scheduling. The Groupmod method wins in 34 of the

41 cases, resulting in an overall cputime improvement of 39% [8

P. Chauhan, E. M. Clarke, S. Jha, J. Kukula, T. Shiple, ¢ithv/
and D. WangNon-linear Quantification Scheduling in Image
ComputationProc. of Int. Conf. on CAD, 2001.

] D. Geist and I. BeerEfficient Model Checking by Automated
Ordering of Transition Relation Partitiondroc. of Computer
10 < improvemenk 100; —100 < impairment< 0. Aided Verification, 1994.

I MLP I GROUPMOD |
lcmp]| Peakn [Parts [TRn | Time || Peakn | % [Parts [TRn | % [Time | %]
ONE.PPCliveness 27 22522 4 2560 8 19246 14 6 1809 29 7 17
ONE.contention 18 22468 4 2541 8 19246 14 6 1809 29 6 23
ONE.pixley_cpu 89 22522 4 2560 10 26790 -15 6 1809 29 12 -20
PClabnorm.PCI 200 114493 9 16560 206 114041 0 11 17787 -6 237 -12
PCinorm.PCI 118 85804 8 14989 112 69291 19 10 16749 -9 62 45
TWO.PPCliveness 37 103691 7 8415 45 272317 | -61 11 7393 12 237 -80
TWO.contention 34 117457 6 9128 40 139081 | -14 10 7909 13 85 -52
TWO.pixley_cpu 81 109767 8 11370 64 465323 | -75 11 7393 35 403 -83
coherence 79 16350 2 2526 5 12196 25 5 1512 40 5 15
elevator 30 25398 3 3411 10 16495 35 7 1528 55 6 42
ethernet.define.213 236 2599643 8 4852 4349 275055 89 11 2989 38 572 87
gcd 26 215222 3 7941 48 215222 0 3 5707 28 44 9
minMax30 6 101042 3 8073 15 101042 0 4 4521 44 13 19
multi_main.multi 44 33423 3 5598 64 33423 0 10 1842 67 19 71
p62_LS_LS_VO02.ccp 53 130716 19 26351 130 61976 53 23 26699 0 63 52
p62_LS_LS_V02.pél 75 130716 19 26351 133 65395 50 23 26699 0 71 47
p62_LS_L V02.ccp 53 127627 18 33499 122 61810 52 23 25727 23 60 51
p62_LS_L_V02.p6li 70 127677 18 33495 124 63839 50 23 25727 23 65 47
p62_LS_S_V02.ccp 53 127627 18 33499 122 61810 52 23 25727 23 62 49
p62_LS_S_V02.p6li 70 127677 18 33495 124 63839 50 23 25727 23 66 47
p62_L_L VO02.ccp 52 148560 19 25128 176 79094 47 23 27616 -8 63 64
p62_L_L_VO02.p6liv 74 145689 19 26081 147 83610 43 23 27616 -5 92 37
p62_L_S_V02.ccp 54 120656 19 30562 115 60657 50 23 25522 16 56 52
p62_L_S_V02.p6liv 75 120656 19 30562 116 60657 50 23 25522 16 57 51
pP62_ND_LS_VO02.ccp 102 226684 19 29424 407 134258 41 24 27155 8 234 42
p62_ND_LS_V02.p6l 144 687049 19 30483 1093 400977 42 24 27155 11 808 26
pP62_ND_L_V02.ccp 138 2509642 21 31457 | 10640 || 1490002 | 41 24 28029 11 3240 70
p62_ND_L_VO02.p6li 152 611021 21 31457 1434 555394 9 24 28029 11 1041 27
pP62_ND_S_V02.ccp 83 199660 19 32197 329 96385 52 23 26308 18 130 60
p62_ND_S_V02.p6li 126 186164 20 33989 412 209625 | -10 23 26308 23 329 20
p62_S_S_V02.ccp 36 121454 18 26007 121 54447 55 23 27068 -3 43 65
p62_S_S_V02.p6liv 55 122998 18 25939 121 54447 56 23 27068 -3 63 48
p62_V_LS_V02.ccp 89 140414 19 28637 210 107902 23 24 29339 -1 147 30
p62_V_LS_V02.p6li 131 178936 19 28637 301 510964 | -64 24 29339 -1 1051 | -70
p62_V_S_V02.ccp 83 220119 20 26807 223 78180 64 23 25504 5 82 63
p62_V_S_V02.p6liv 126 220119 20 26807 239 144977 34 23 25504 5 222 7
packet 65325 56282 3 6139 11755 168874 | -66 4 8131 -23 | 10540 | 10
single_main.single 81 18672 2 4301 22 9360 50 6 1831 57 7 67
single_main.singlel 34 18672 2 4301 22 9360 50 6 1831 57 7 68
two_processor 223 110358 3 5625 86 179562 | -37 7 1928 66 170 -48
two_processor_bin 129 192179 3 6983 118 65156 66 6 2307 67 35 70
Total: 10717826 | 494 | 778728 | 33824 || 6711325 641 | 686166 20509
Improvement: 38% -23% 12% 39%

Table 1: Comparison of MLP Method and Group Hierarchy Hetigris

[9] A. Gupta, Z. Yang, P. N. Ashar, L. Zhang and S. Malik, [13] Ch. Meinel and C. StangieA New Partitioning Scheme for
Partition-Based Decision Heuristics for Image Computatio
Using SAT and BDDO<roc. of Int. Conf. on CAD, 2001.

[10] I. Moon, G. D. Hachtel and F. SomenzBprder-Block Trian- [14]
gular Form and Conjunction Schedule in Image Computation
Proc. of Formal Methods in CAD, LNCS 1954, 2000.

[15]

[11] 1. Moon, J. Kukula, K. Ravi and F. SomenZg Split or to Con-
join: The Question in Image ComputatidProc. of Design Au-
tomation Conf., 2000.

[12] Ch. Meinel and C. Stangiegpeeding Up Image Computation [16]
by using RTL InformationProc. of Formal Methods in CAD,
LNCS 1954, 2000.

Improvement of Image Compuatiddroc. of ASP Design Au-
tomation Conf., 2001.

Ch. Meinel and C. StangieHierarchical Image Computation
with Dynamic Conjunction Schedulipgroc. of IEEE Int. Conf.
on Computer Design, 2001.

R. K. Ranjan, A. Aziz, R. K. Brayton, C. Pixley and B. Rde,
Efficient BDD Algorithms for Synthesizing and Verifyingitén
State MachinesProc. of Int. Workshop on Logic Synthesis),
1995.

F. SomenziCUDD: CU Decision Diagram Package
ftp:/ivisi.colorado.edu/pub/ .

