
V

Unive

me

ABSTRA
This paper 
visBDD, inte
related to O
visBDD the
algorithm  ca
while all invo
levels of abs
students as a
into the pow
verification a
underlying m
being depend

1. INTRO
Visualization
behavior and
program duri
to be rather u
well as for un
the developm
In this paper
intended for 
Diagrams (OB
introduced as
Bryant in 198
data structur
integrated (V
can be mappe
for performin
computer, OB
efficiently to 
on OBDDs a
circuits, the 
checking see 
Usually, the 
does not care
program pack
push-button-t
happening to
many cases o
higher level 
caused by i
structure and
behavior and
structure are 

published in

Proceedings

New Orlean
 of the IEEE/ACM Int. Workshop on Logic Syntheses (IWLS2002)

s, Louisiana, pp. 385 - 390
isBDD – A Web-based Visualization Framework 
for OBDD Algorithms

C. Meinel
rsität Trier, Germany

inel@uni-trier.de

H. Sack
Universität Trier, Germany

sack@uni-trier.de

V. Schillings
Universität Trier, Germany

schillin@ti.uni-trier.de

CT
presents a web-based visualization framework 

nded for learning and understanding basic algorithms 
rdered Binary Decision Diagrams (OBDDs). With 
 key algorithm for OBDD-synthesis, the ITE-
n be explored in depth and step-by-step by the user, 
lved data structures can be made visible at different 

traction. The framework is intended as well as for 
lso for professionals, who want to gain more insight 
erful OBDD data structure that is used in many 
nd synthesis tools, for a better understanding of the 
echanisms and the problem complexity, without 

ent on reading textbooks.

DUCTION
 of algorithms is concerned with illustrating the 
 the fundamental mechanisms and operations of the 
ng runtime. In general, displays as this have proven 
seful not only in education, but also for research as 
derstanding in different areas that are dependent on 

ent and analysis of such algorithms. 
 we present a visualization framework - visBDD, 
analyzing algorithms for Ordered Binary Decision 
DDs). Dating back to the late 1950s [1,2] and being 

 a canonical representation for Boolean functions by 
6 [3], OBDDs are established as the state-of-the-art 

e in computer aided design of very large scale 
LSI) circuits. Almost every step in this design cycle 
d to the task of manipulating Boolean functions and 
g these tasks efficiently in an automated way with a 
DDs are very well suited, because they are compact, 
manipulate, and canonical.  For a detailed overview 
nd their application in verification of combinatorial 
analysis of sequential systems, or symbolic model 
[4]. 
research engineer in VLSI synthesis or verification 
 much, which data structure serves as the core of the 
ages he is using. Often these tools are used in a one-
echnology way, without any knowledge of what is 
 the data structure in the background, because in 
nly effects are taking place that are analyzed on a 
of abstraction. But, sometimes these effects are 

ntermediate computations on the underlying data 
 thus, deeper knowledge about the algorithmic 

 the cause and effects regarding this particular data 
mandatory.  

Esp. for OBDD based tools, the computation of a simple Boolean 
operation might cause an exponential blow-up of the involved 
structures and the size of the result is extremely dependent on the 
chosen ordering of the input variables. For this reason, the 
engineer has to dig deep down into the OBDD basic algorithms to 
fully understand complexity issues related to algorithmic effects. 
The engineer has to read textbooks, trying to grasp the necessary 
concepts and ideas, and has to apply them to his own example. 
There is no question that if he masters all required steps, he is sort 
of an expert on that topic. But, the process is difficult and time 
consuming. Well suited visualizations of algorithms, connected 
with the possibility to process own examples can save a lot of 
time, keeping understanding of concepts much simpler. Of course, 
such a framework might not only be used in research and 
development, but also for all other educational purposes.
Today, there exist a lot of possibilities for the representation of 
learning materials based on computers. Visualization of  learning 
content is rather important for the success in learning. Various 
studies [5] claim that esp. animations can increase the learning 
performance in comparison with pure textual representation of the 
learning content. In particular this applies to the teaching of 
algorithms and data structures.
Although, the textual description in words is probably the most 
exact way to define a subject, the process of apprehension is most 
difficult. In particular, this fact applies to OBDDs and the related 
algorithms.  Many textbooks on OBDD technology use graphics 
to illustrate the algorithmic behavior. But, the realization of the 
whole dynamic process of an algorithm still remains rather 
difficult.
At the University of Toronto, Ronald Baecker developed a video 
for the illustration of a sorting algorithm [6]. This video was one 
of the first algorithm visualizations, but extremely expensive and 
complex in its production. In the 80s, two other important systems 
for visualization were developed: BALSA [7] and TANGO [8]. 
They  were designed to illustrate data structures of a given 
algorithm. With later versions, like XTANGO [9] and Polka [10], 
it was possible to create concurrent animations for rendering 
object oriented algorithms. 
But, these implementations suffered from being not platform 
independent, what is of the upmost importance for today’s 
WWW-community. By using Java technology [11] it is possible 
to create animations for almost all computer systems and to make 
them accessible for everybody via the World Wide Web (WWW). 
We decided not to use existing animation tools, because of the 
required system independence and the high level of specialization 
of the OBDD algorithms.
In contrast to other OBDD illustration tools, visBDD does not 
simply generate pictures of OBDD structures. The main objective 



of visBDD lies on the demonstration and explanation of the entire 
process of OBDD synthesis, while the user is able to navigate 
through different levels of abstraction. visBDD is a web-based 
application, designed in Java, and is freely accessible [12]. 
The paper is structured as follows. Section 2 recapitulates the 
most important facts about OBDDs and introduces the concepts of 
the main OBDD-algorithms. In Section 3, visBDD – our 
visualization tool for OBDD algorithms – is described in detail. 
Section 4 gives a short review about other competitive 
visualization tools for OBDDs and their shortcomings. Section 5 
concludes the paper with an outlook on future work.  

2. ORDERED BINARY DECISION 
DIAGRAMS (OBDDS)
All tasks in computer aided design of VLSI circuits are related to 
the manipulation of Boolean functions.

Let X={x0,…,xn-1} be a set of Boolean variables and let π:X→
{0,1,2,…,|X|=n-1} be a bijective mapping of the variable indices. 
An Ordered Binary Decision Diagram (OBDD) is a rooted, 
directed, acyclic graph with the following properties: There are 
two distinct terminal nodes labeled with the Boolean constants 0 
and 1. All non terminal nodes (sinks) are labeled with a Boolean 
variable xi, i∈{0,…,n-1} and have two outgoing edges labeled 
with 0 and 1, respectively. The order in which the variables occur 
in the diagram is consistent with the variable order given by π, i.e. 
if there is an edge leading from a node labeled with xi to a node 
labeled with xj, then π(xi)<π(xj) must hold. On all paths from the 
root to a sink in the OBDD all variables must occur at most once.
To compute the function value of a function f given in terms of an 
OBDD for a given variable assignment (a0,…,an-1), ai∈{0,1} one 
is following a path starting in the root, switching at each node to 
the edge given by the according variable assignment xi=ai. The 
label of the reached sink determines the value of the function on 
that specific input.
For being a canonical representation of Boolean functions, the 
OBDD has to fulfill the following additional properties: 

• The OBDD does not contain any isomorphic subgraphs, 
and

• The OBDD does not contain any redundant nodes, i.e. 
nodes, where both edges are pointing to the same 
successor node.

In each node v labeled with the variable xi of an OBDD G the 
Shannon-expansion of the function fv w.r.t. the variable xi is 
computed:

fv|xi=1 = fv(x1,…,xi-1,1,xi+1,…,xn-1) is denoting the positive cofactor
of fv, which corresponds to the function represented by the 1-
successor node of v.  fv|xi=0 = fv(x1,…,xi-1,0,xi+1,…,xn-1) is denoting 
the negative cofactor of fv, respectively, which corresponds to the 
function represented by the 0-successor node of v.
For the construction of an OBDD from a given circuit description, 
the symbolic simulation of the circuit is computed starting at the 
circuit’s primary inputs, traversing the circuit gate by gate in 
direction to its primary outputs. The OBDD for each gate is 

computed by the application of the Boolean operator represented 
by the gate to the OBDDs of the gates’ predecessors. For 
efficiency reasons, in symbolic simulation with OBDDs, all 
Boolean functions are mapped to a single general operation, 
which is able to express all Boolean operations, the so called If-
Then-Else-operator (ITE) [14]. ITE is a three parameter function, 
computing if x, then y, else z,

The ITE operation refers exactly to the operation that is performed 
in an OBDD node. To compute the ITE operation for three input 
OBDDs, ITE is evaluated recursively w.r.t. the top variable xi of 
the involved OBDDs, i.e. the variable that is first according to the 
given variable order π.

The recursion stops, if the first argument is constant, if the second 
and the third argument are both constant, or if the second and the 
third argument are equal. 

An outline of the ITE-algorithm in pseudocode is given in Fig. 1. 
Note that we make use of a cache for storing already computed 
results that is denoted as computed table. In fact, the maintenance 
of the computed table is rather important, because the cache is 
responsible for cutting down the runtime of the algorithm from 
exponential to polynomial time. The size of the resulting OBDD 
crucially depends on the chosen variable order π. For a simple 
function as e.g. the addition of two n-bit numbers, the size of the 
resulting OBDD ranges from linear O(n) to exponential O(2n) in 

fv = xi fv |xi=1 + xi fv |xi=0

ITE(f,g,h) = (xi, ITE(f|xi=1, g|xi=1, h|xi=1), ITE(f|xi=0, g|xi=0, h|xi=0))

ITE(x,y,z) = x⋅y + x⋅z

Figure1: Outline of OBDD ITE-Algorithm in Pseudocode

Input:  f,g,h
Output: res = ITE(f,g,h)

ITE(f,g,h) {
if (res = terminal_case(f,g,h) {

return(res);
}
if (res = in_computed_table(f,g,h)){

return(res);
} else {

x = top_variable(f,g,h);
new_left = ITE(fx=1,gx=1,hx=1);
new_right = ITE(fx=0,gx=0,hx=0);
if (new_right == new_left){
res = new_left;

} else {
res=create_node(x,new_left,new_right);

}
insert_in_computed_table(f,g,h,res);

}
return(res);

}



the number of variables, depending on the chosen variable order. 
Thus, an in-depth insight in the basic algorithms and properties of 
OBDDs is mandatory for using this data structure, or also for 
using tools that are based on OBDDs in the most efficient way. 
Here, the benefits of a well suited visualization tool are obvious. 
By displaying all OBDDs that are required for a single synthesis 
step and performing the ITE algorithm step by step, while the user 
is able to adjust the variable order and to examine the effects that 
are taking place meanwhile for temporary OBDDs, a better 
understanding of these fundamental issues becomes much easier.

3. VisBDD – A VISUALIZATION TOOL 
FOR OBDD ALGORITHMS

Within the scope of the visBDD project, it is aspired to represent 
the very important OBDD-ITE algorithm in a appropriate 
graphical way. With the ITE algorithm it is possible to calculate 
the resulting OBDD for the application of an arbitrary Boolean 
operator * to two input OBDDs that are representing given 
Boolean functions.
To facilitate the most convenient way for the user to supply a 
Boolean function for the OBDD computation, we decided to make 
use of Boolean formulas. The formula entered by the user is 
partitioned into its basic operations and the result is calculated 
with the help of the ITE-algorithm. The whole computation 
procedure is dynamically visualized. The user of visBDD has the 
possibility to see the basic source code of the algorithm. Within 
the source code, he is able to navigate in all directions, i.e. 
forward and backward as well as up and down in the recursion. 
All parameters and data structures  are visualized in a 
corresponding manner. Further, it is very important for the user to 
know, in which part of the computation the current step is located. 
This is realized with a derivation tree of the entered formula. The 
recursion graph of the ITE-algorithm is equivalent to the result of 
the computation and is constructed step by step. For all 
computation steps, the new evolving part of the graph is displayed 
without changing the general overall layout of the graph.  Most 
visualization tools do not support these features. This is the main 
reason, why we decided to start the implementation of our own 
visualization framework. The requirement of acting on the user’s 
own initiative respective of self-determined exploration of the 
algorithm is rather important for the implementation in practice. It 
should be in the hands of the user, to decide to continue with the 
next or the previous step. Also, he should have the possibility  to 
step over a complete recursion to avoid to many details. These 
requirements force us to manage the visualization process in the 
following way: The whole computation is performed in advance. 
During the computation, all facts that are important for the 
visualization have to be memorized. 
During the learning process the activation of different senses of 
the learner is rather important. Hereby, the usage of the visual and 
the auditory sense have been proven to be the most important. 
Due to this fact, we also decided to supply audio comments to the 
computation steps.

3.1 The computation process

To start the computation, the user has to enter a Boolean  formula 
and a fixed variable order for the OBDD.
In a first step, a scanner probes for variables and operators, and 
afterwards, a syntax analyzer constructs the derivation tree (see 
Fig 2).

By using the derivation tree it is simple to construct the 
corresponding OBDD with the ITE-operator by traversing the 
derivation tree in a depth-first-search (dfs) manner. Each Boolean 
operator is translated into an ITE-operator call.  E.g. x1 · x2 can be 
computed by ITE(x1,x2,0). The OBDD for a Variable x can be 
determined as ITE(x,1,0).
In the given example visBDD creates OBDDs for each existing 
variable first. Then, the ITE-algorithm is executed consecutively 
for each operator in the derivation tree until the root node is 
reached.
For the computation and the visualization of the OBDD the 
following base classes are required:

• node representation,

• drawing layered graphs,

• parsing formulas,

• running OBDD algorithms,

• drawing trees,

• user interaction.
Next, we give a short description of the base classes, before we 
show, how to use the program.

3.2 The Node Class

The Class Node is used to store all OBDD nodes in an 
appropriate   data structure. Each node is labeled with a reference 
to an input variable and contains two pointers to the 1-successor 

x1 x2 x3 x4

x5 x6

.

. .

+

Figure 2: The derivation tree for the formula 
x1·x2 => x3·x4 + x5·x6

=>



and the 0-successor, respectively. Most OBDD algorithms use 
graph traversal methods. For the application of these methods a 
flag is required to indicate if the node already has been visited or 
not. To distinguish leaf nodes and branching nodes, leaf nodes are 
labeled  with a negative index. 
The class Node contains various methods for graph manipulation, 
as, e.g. methods for graph traversal and computation of 
dimensions. Also a textual representation of an OBDD is 
implemented in the class Node (see Fig. 3).  

 
The textual output of the binary graph structure can be used for 
initializing a unique table that serves as a storage container for 
nodes or the maintenance of a log file. 
Also methods for drawing layered graphs are provided within the 
class Node.  Fig. 4 shows an arbritrary OBDD graph structure.  

For readability, graphs of OBDDs meet the following 
characteristics: 

1. There exists just one root node with the identifier min{π}. 

2. All nodes with the same identifier are located in the same 
level. 

3. The levels are sorted according to the variable order. 
4. Horizontally, the nodes are uniformly distributed. 
5. Vertically, the levels are uniformly distributed. 
6. There exist just two leaf nodes that are on fixed positions. 
7. An edge is not allowed to be tangent to other nodes, but its 

terminal nodes. 
Characteristics 1 to 6 are rather simple to implement by using the 
given variable order and the available graph traversal methods. 
Characteristic 7 can be solved using a working list algorithm as 
shown in Fig. 5. 

The algorithm takes two coordinates X,Y and a list CT with known 
collision points as input parameters. Then, it is tested, if on the 
edge between the points X and Y are collisions. If a collision  is 
found, a bypass point Z is calculated. Then, the algorithm checks 
for collisions in (X,Z) and (Z,Y). The computation of a collision 
free edge is finished, if the goalList is empty. 
A very important feature of the drawing methods is the possibility  
to draw the graph up to a predefined node without facing layout 
changes that conflict with easy readability. This feature can be 
utilized to construct the recursion graph step by step. The idea is 
to draw parts of the final graph only, while the entirely layouted 
graph is remaining invisible in the background. In each 
computation step, a drawing border is set. Therefore, the layout 
does never change, regardless, where the drawing border is set. 
 
 

Figure 5: Working List algorithm for collision detection  
 

Input:  Points X,Y and Collision Table CT 
Output: List startList, which denotes the         
        collision free connection 
List startList = {}; 
List goalList ={}; 
startList.push(X); 
goalList.push(Y); 
 
while (goalList.notEmpty()) { 
 X = startList.getLast(); 
 Y = goalList.getFirst(); 
  
 if (checkCollision(X,Y,CT)) { 
  Z = getByPass(); 
  goalList.push(Z); 
 } else { 
  startList.push(goalList.pop()); 
 } 
} 

Figure 4:  OBDD representation of x1· x2 + x3· x4  according 
to ππππ: x1 < x3 < x4 < x2 

Else Then 

If 

X
1 

X
2 

X
3 

ITE(X
1
,ITE(X

2
,...,...),ITE(X

3
,...,...)) 

Figure 3: ITE representation for binary graph structure 
 



3.3 The BDD Class 
 
In the BDD class all methods for OBDD manipulation are 
implemented. The unique table, the variable order, as well as 
additional variables and counters are initialized by its constructor.  
 

3.3.1 Creating and Saving OBDDs 
 
All OBDDs, including temporary and final nodes, are stored in an 
unique table that is implemented as an array. Each slot of the 
array contains a pointer to the root node of an OBDD.  For 
managing dynamic variable reordering, it is advantageous to 
maintain one unique table for each single variable, where only 
nodes labeled with this paritcular variable are stored. 
 

3.3.2 ITE Algorithm 
 
For all possible binary Boolean operations, the corresponding 
ITE-operator calls are well defined. If the parser locates an 
arbitrary Boolean operation * applied to the OBDDs F and G,  the 
corresponding ITE-operator call will be generated. E.g. the 
Boolean OR operation is defined as 
 

Node Or(Node f, Node g) { 
 return ite(f, ONE, g); 
} 

 
In visBDD, the algorithm for ITE is almost unchanged compared  
to the origanal algorithm shown in Figure 1. In addition, the 
method setHistory(...) saves all important details for the 
computation in a separate container. This includes pointers to all 
parameters, help texts, pointer to return values and final graphs, 
the drawing border, the source code line number, and a 
multifunctional action code that will be saved. Using this action 
code, we have the possibility to trigger special events, like e.g. 
audio comments. 
 

3.4 The Parser Class 
 
In order to translate the Boolean formula into an OBDD, a 
scanner and parser implementation is required. The package 
CUP/JLex [13] is freely available for Java and can be used for that 
purpose. After defining a small grammar for Boolean formulas, an 
interface was added for interaction with the OBDD classes. In the 
first step, each Variable xi is translated into an OBDD via 
getNode(i). According to the derivation tree, for each operator 
the parser calls the ITE-algorithm with the two OBDDs as 
operands to be combined. 
 

3.5 Using the Program 
 
visBDD is implemented as an Java applet and can be executed 
within any Web browser or simply as an Java 1.2 Jar file. The 
main window of visBDD is shown in Fig. 6. 
  
visBDD includes a graphical user interface, which consists of a 
menu, a button bar, a code navigation bar, the source pane, and 
various visualization output panes. 

 
The code navigation bar, as shown in Fig. 7, provides the 
following functions: 

• Information about the current step, 

• jump to the beginning of the computation, 

• step back / forward in the computation, 

• step over the recursion, display the result only, 

• go to the final step of the computation, 

• give information about the overall computation, 

• play an audio comment. 
 
The input of the formula and the variable ordering can be given in 
the main window of visBDD or with a separate input dialog box. 
In the input dialog, the user can choose one of several provided 
example formulas or he can enter a formula of his own choice. An 
online help on different possibilities for entering formulas is also 
provided. The formula input dialog is shown in Fig. 8. 

Figure 7: The code navigation bar 
 

Figure 6: Main window of visBDD 
 



 
After a formula is entered, visBDD starts the OBDD computation 
(Fig. 9). In the following screenshots the computation of the 
formula x1 � x2 � ( x3 · x4)  with visBDD is shown. 
 

Now, the user can step through the source code line by line and 
start his analysis. The current code line is highlighted with a black 
bar. As mentioned before, ITE is a three-paramter function. Thus, 
the three input-OBDDs of ITE are displayed on the right next to 
the source code pane. The navigation with the code navigation bar 
enables the user to gain insight in the dynamic behavior of the 
algorithm in a rather natural way. The navigation is quite similar 
to a source code debugger. But, in contrast to a debugger, visBDD 
supplies also detailed graphical illustrations and additional 
information on data structures. As a very important feature 
visBDD allows the user to define his own schedule on how deep 
he wants to step into the recursive algorithm.  If the current source 

line is a recursive call of ITE, it is also possible to step over the 
recursion and to see the result directly.  
During the visualization process, the recursion graph is displayed 
in the lower left window step by step (see Fig. 10). In this 
window, the user can switch between the view of the ITE 
recursion graph view and the result of an ITE call. 

 
Inside this graph, current top variables are marked with colors. 
For positive and negative cofactor computation different colors 
are used (green and red) as shown in Fig. 11. A derivation tree is 
also shown in the lower right window. The actual part of the 
computation is marked in the tree. With this information the user 
is always able to realize in which part of the computation he is 
currently located. 
 

Figure 8: The input dialog for formulas and variable 
ordering 

 

Figure 9: The start of a computation 
 

Figure 10: Step by Step visualization with different markup 
colors. 

 

Figure 10: The end of  a negative cofactor computation. The 
result parameter is marked and added to the result graph. 

 



For each visualization pane, additional textual information can be 
displayed. In the case that  a visualization output pane is getting 
too small, it can be enlarged by clicking on its magnification icon 
in the upper right corner. 
By performing the entire OBDD computation in advance we have 
the possibility to navigate in any direction, while the graphical 
layout of the displayed OBDDs does not change in general (see 
Fig. 11). Thus, it is much easier for the user to understand and to 
follow up the computation. If the graphical layout would be 
permanently adapted for fitting best into the given window size, 
the OBDD graph would look rather nice, but for the user it would 
be difficult to relate two consecutive computation steps. 
 

 
 
In addition, the OBDD computation can be triggered to run 
autonomously. The user has the possibility to stop the animation 
at any time and to continue the computation stepwise again. 
VisBDD is the first “easy to use” visualization tool for OBDD 
algorithms.  
 

4. OTHER VISUALIZATION TOOLS FOR 
OBDDS 
 
The most important reason, why visBDD has been developed, was 
the need to visualize the process that takes place during OBDD 
synthesis algorithm execution. Other existing graphical tools for 
OBDD illustration are almost only focusing on the representation 
of already computed OBDDs, neglecting the fact, what happened 
during OBDD computation time. 
Dot and neato [16] are well known drawing tools for directed 
and undirected graphs. Being a general purpose graph drawing 
toolset, these programs of course can be used to draw OBDDs. In 
fact, the CUDD OBDD program package [17], which is the most 
popular open source high capacity OBDD package, uses dot as 

an output filter to illustrate resultant OBDDs. But, dot is only a 
static graph layout generator and in particular not capable to 
perform an entire algorithm visualization.  
At the university of Freiburg (Germany) a visualization tool for 
OBDDs was developed (ROBDD) [18]. Being a native Java 
application the platform independence of the package is 
guaranteed. Besides the exploration of the ITE-algorithm, also the 
effect of variable reordering algorithms can be analyzed with 
ROBDD. But, compared to visBDD, the possibility to explore and 
to analyze the single steps of the ITE-algorithm is missing. 
Additionally, also the required degrees of freedom for the user to 
navigate through the algorithm are not fulfilled. 
Höreth developed a BDD manipulation package (TUDD) [19] at 
the University of Darmstadt (Germany) that is capable of 
managing various types of binary decision diagrams. In addition, 
he provided the possibility to illustrate the optimization process of 
the BDDs by displaying snapshot of BDDs during variable 
reordering time. But, this illustration is only static and the user 
has no posibility to interact. 
At the university of Trier (Germany) a BDD portal-web-site is 
supported: www.bdd-portal.org [15]. Besides providing a huge 
archive on all research topics related to OBDDs and derivatives   
of OBDDs, the portal also offers an experimentation testbed for 
performing OBDD benchmark testing on an independent 
platform. Additionally, an illustration and visualization tool, the 
BDD-Calculator is provided, where samples of OBDD 
computations and OBDD optimization can be analyzed. Boolean 
formulas directly entered by the user can as well be processed as  
benchmark circuits taken from a library or supplied by the user. 
The BDD-Calculator serves only as an illustration tool, displaying 
resultant OBDDs with the help of dot and giving statistical 
information about the results of the conducted experiments.  
Of course we are aware of the fact that we have only given an 
incomplete sample of all available graphical OBDD illustration 
frameworks. But, these are some of the best known examples of 
graphical representation tools for  OBDDs. In contrast to all of 
them, visBDD enables the user to learn about the features and to 
understand the properties of the OBDD synthesis algorithm. By 
experiencing the effects of changing variable orders or other 
parameters, the user is able to gain a deeper insight into OBDD 
technology and its characteristics. 
 

5. CONCLUSION AND FUTURE WORK 
 
We have presented a framework for the visualization of OBDD 
algorithms. Currently, only the ITE-algorithm that is used for 
OBDD synthesis is implemented. But, the generic approach 
chosen for our implementation offers the possibility of an easy 
integration of additional OBDD-algorithms, as e.g. the 
constrain-operator or the restrict-operator [19, 20]. Also 
a visualization of optimization algorithms for OBDDs, as e.g. 
sifting [21] is possible. 

VisBDD is already used by students for lectures and lab courses 
on OBDDs. But, it is also intended to be an accessory application 
in the toolbox of the professional engineer.  
VisBDD is accessible via the WWW [12] and is integrated as a 
supplementary tool into the BDD-portal-website www.bdd-

Figure 11: The computation is complete. The result graph 
grew step by step without changing the layout (compare to 

Fig. 10). 

http://www.bdd-portal.org/


portal.org [15], where also other OBDD tools and links to most of 
the already mentioned OBDD-illustration-tools are provided. 
 

6. REFERENCES 
[1] C. Y. Lee: Representation of switching circuits by 

binary decision-programs, The Bell Systems Technical 
Journal 38, 1959, pp. 985-999. 

[2] S. B. Akers: Binary Decision Diagrams, IEEE Trans. 
on Computers 27, 1978, pp. 509-516. 

[3] R. E. Bryant: Graph Based Algorithms for Boolean 
Function Manipulation, IEEE Trans. on Computers 35, 
1986, pp. 677-695. 

[4] Ch. Meinel, T. Theobald: Algorithms and Data 
Structures in VLSI Design:  OBDD - Foundations and 
Applications, Springer, Heidelberg, 1998. 

[5] D. Lewalter: Lernen mit Bildern und Animationen 
(Learning with Pictures and Animations) 
Waxmann, Münster 1997 (in german) 

[6] R. Baecker, D. Sherman: Sorting out Sorting, 
University of Toronto, 1981. 

[7] M.H. Brown, R. Sedgewick: A System for Algorithm 
Animation, Computer Graphics July 1984, pp. 177-
186. 

[8] J.T. Stasko: Tango: A Framework and System for 
Algorithm Animation, IEEE Computer 23, September 
1990, pp. 27-39. 

[9] J.T. Stasko: Animation algorithm with XTANGO, 
SIGACT News 23, Spring 1992, pp.67-71. 

[10] POLKA: 
http://www.cc.gatech.edu/gvu/softviz/parviz/polka.html 

[11] JAVA: http://java.sun.com 
[12] visBDD is available at:  

http://www.bbd-portal.org/visBDD 
[13]  JLEX and CUP: 

http://www.cs.princeton.edu/~appel/modern/java/JLex/ 
        http://www.cs.princeton.edu/~appel/modern/java/CUP/ 

[14] K.S. Brace, R.L. Rudell, R.E. Bryant: Efficient 
Implementation of a BDD package, in Proc. of the 27th 

ACM/IEEE Design Automation Conference, 1990, pp. 
40-45. 

[15] The BDD Portal website: http://www.bdd-portal.org/ 
[16] E.R. Ganser, S.C. North: An open graph visualization 

system and its application to software engeneering,  
Software – Practice and Experience, 30(11), 2000, pp. 
1203-1233. 

[17] F. Somenzi: Efficient manipulation of decision 
diagrams, Int. Journal on Software Tools for 
Technology Transfer (STTT),3(2), 2001, pp. 171-181. 
CUDD-Package is available at: 
http://vlsi.colorado.edu/pub/ 

[18] J. Römmler, R. Drechsler: Implementierung und 
Visualisierung eines BDD-Packages in Java 
(implementation and visualization of a BDD package 
with java), in german, paper and package available at: 
http://ira.informatik.uni-freiburg.de/.index.de.html 

[19] S. Höreth: A word-level graph manipulation package. 
Int. Journal on Software Tools for Technology 
Transfer (STTT),3(2), 2001, pp. 182-192. 
TUDD package available at:.http://www.rs.e-
technik.th-darmstadt.de/~sth/download.html 

[20] C. Meinel, A. Wagner: WWW.BDD-PORTAL.ORG 
Proc. IWLS'2000, Dana Point (USA), 2000. 
The BDD-Portal Website: 
http://www.bdd-portal.org/ 

[21] O. Coudert, C. Berthet, J.C. Madre: Verification of 
synchronous sequential machines based on symbolic 
execution, Workshop on Automatic Verification 
Methods for Finite State Systems. LNCS 407, 1989, 
pp. 365-373. 

[22] O. Coudert, C. Berthet, J.C. Madre: Verification of 
sequential machines using Boolean functional vectors, 
IMEC-IFIP Workshop Applied Formal Methods for 
Correct VLSI Design, 1989, pp. 111-128. 

[23] R. Rudell: Dynamic Variable Ordering for Ordered 
Binary Decision Diagrams, in Proc. IEEE Int. 
Conference on Computer Aided Design (Santa Clara, 
CA), 1993, pp. 42-47.

 

http://www.bdd-portal.org/
http://www.rs.e-technik.th-darmstadt.de/~sth/download.html
http://www.rs.e-technik.th-darmstadt.de/~sth/download.html
http://ira.informatik.uni-freiburg.de/.index.de.html
http://vlsi.colorado.edu/pub/
http://www.bdd-portal.org/
http://www.cs.princeton.edu/~appel/modern/java/JLex/
http://www.cs.princeton.edu/~appel/modern/java/JLex/
http://www.bbd-portal.org/visBDD
http://java.sun.com/
http://www.cc.gatech.edu/gvu/softviz/parviz/polka.html
http://www.bdd-portal.org/

	INTRODUCTION
	ORDERED BINARY DECISION DIAGRAMS (OBDDS)
	VisBDD – A VISUALIZATION TOOL FOR OBDD ALGORITHMS
	The computation process
	The Node Class
	The BDD Class
	Creating and Saving OBDDs
	ITE Algorithm

	The Parser Class
	Using the Program

	OTHER VISUALIZATION TOOLS FOR OBDDS
	CONCLUSION AND FUTURE WORK
	REFERENCES

