
A Flexible Middleware Platform with Piped
Workflow

Wanjun Huang, Uwe Roth, and Christoph Meinel

Department of Computer Science, University of Trier
D-54286 Trier, Germany

{huang,roth,meinel}@ti.uni-trier.de

Abstract. Middleware emerges as an excellent solution for the compli-
cated distributed computing application. But as the appearance of new
devices and new applications, the inflexibility of traditional middleware
system becomes more serious and urgent. In this paper we propose a
new flexible middleware platform which adopts the technologies of piped
workflow and computational modules to provide a modular and exten-
sible platform for future applications. The piped workflow provides a
very flexible mechanism to organize all computational modules working
together. During the running time, all computational modules commu-
nicate only with data channel of the piped workflow through which they
can keep extremely independent, and the flexible flow control strategy
makes the application programmer convenient to arrange all functional
components for variable customer requirements.

1 Introduction

The emergence of middleware has solved a serial of problems arose by appli-
cations widely distributed on network, and evolves the distributed computing
model from client-server into three tiers architecture. As the middle tier compo-
nent between the low level operation system and the top application software,
middleware helps programmer easily and quickly build distributed business ap-
plication without considering some common but complicated problems, such
as heterogeneity of operation system, complexity of communication, concurrent
interoperability, system stability, transfer security and so on. Almost all tradi-
tional middleware solutions adopt the mechanism of block box and have gained
big success in providing remote procedure access. However, as appearance of
new devices and new applications, the inflexibility and limitations of traditional
middleware become more serious and absorb many researchers’ interests and con-
cerns. When network just comes into our life, how to easily build a distributed
application is the first task. But now, as network become more pervasive, and as
portable handheld devices become more popular, the more important problems
become how to make the middleware more extensible, reusable and adaptive for
unknown future applications and how to build middleware itself more easily. In
order to provide more convenience for the application writer, the middleware
has to undertake more functionalities and responsibility, which make it hard to

R. Meersman and Z. Tari (Eds.): OTM Workshops 2003, LNCS 2889, pp. 950–959, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

published as: W. Huang, U. Roth, Christoph Meinel: W. Huang, U. Roth, Christoph Meinel;
Proceedings of International Workshop on the move to meaningful Internet systems (WRSM 2003);
WRSM 2003 Sicily (Italy), 2003, pp. 950-959; isbn: 3-540-20494-6.

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

A Flexible Middleware Platform with Piped Workflow 951

complete the implementation of a fat middleware server. Additionally, modular-
ity and extensibility are also another two big unsolved problems. The traditional
middleware are composed of fixed components with fixed policies that can’t meet
the diversity needs of varying applications environment. Although some solutions
[4], [5], [8] have been proposed to dynamically customize the middleware compo-
nents to adapt the variety of client environments, these varieties can be predicted
and have been considered during the design of original architecture. For every
unknown or unpredictable application, some original source codes have to been
modified to allow the new processing components working well along with old
ones. For example, consider an e-business application running on a distributed
environment. Initially the transactions processing are some common remote data
access and remote procedure invocation, so the traditional middleware solution
is capable to deal with them. Subsequently, the middleware server is required to
provide multimedia services, so stream transfer protocol, MPEG encode/decode
and quality of service have to been added into inner key components. Eventually,
company’s business services want to be expanded to mobile commerce, so some
filter components are also needed for mobile computing. If all these changes will
inevitably arise to the modification of source code or even the structure of sys-
tem, then each update of middleware will bring big price of time consuming and
hard work. So it’s necessary to explore and research more flexible middleware
architecture to improve the efficiency of system implementation and make the
key components of middleware more independent to adapt for the future update.

Component oriented software development, such as Java Bean and ActiveX
Control, support the construction of sophisticated system by assembling a col-
lection of components software with the help of visual tool or programmatic
interfaces. However, they have to integrate in the level of source code and sup-
port little for dependences management, which are important for component
to be freely loaded into or unloaded from inner workflow to work fluently in
distributed system. Here we propose a new flexible middleware platform, which
adopt a piped workflow and computational module to achieve the integration of
independence and the flexibility for future extension. In the following, firstly we
will introduce the architecture of new middleware platform and explain some im-
portant components. Subsequently, the computational module and piped work-
flow will be described in details. And then we discuss the related work recently
proposed by other researcher. At last conclusion will be made to summarize its
features and outline our future work.

2 Architecture

To testify the new ideal, we have designed and implemented middleware plat-
form - Smart Data Server V2.0 (SDS 2), which has adopted the technologies of
computa-tional modules and piped workflow. All components can fall into three
catalogues: infrastructure, computational modules and application services. The
infrastructure is laid on the bottom level that contains piped workflow and some
core services. Computational modules live only inside of piped workflow and are

952 W. Huang, U. Roth, and C. Meinel

Fig. 1. Piped workflow middleware architecture

the primary components to process client request. The relation diagram of all
these components is depicted as figure 1.

2.1 Core Services

The Core Services provides some fundamental services that will be used in the
whole middleware platform. Not only in the workflow manager and computa-
tional modules, these services can also be used directly in the application ser-
vices. SDS 2 Core Services include Logger, Timer and Database etc which pro-
vide consistent services using the technology of thread instead of Application
Programming Interface (API). Logger Service is used to record error, warning,
debug and running state information which are convenient for programmer to
debug the system and for administrator to check the middleware server. Timer
service can activate some task at one specific time or periodically that is very
useful for the some special application, such as checking email etc. Listen service
is also an important part of Core Services, and its responsibility are to listen
socket request and establish socket connection with client that will be transferred
to workflow manager to activate a workflow processing routine.

A Flexible Middleware Platform with Piped Workflow 953

2.2 Workflow Manager and Modules

Workflow Manager provides the service for piped workflow to organize all rel-
evant modules working together. Here the implementations of computational
modules contain TransportReceiver, SOAPUnmarshal, RequestBroker, SOAP-
Marshal and Trans-portSender. In our implementation, we also finish another
two modules, namely IPTPUnmarshal and IPTPMarshal, to transfer the re-
quest and response messages using self-defining protocol. - Information Package
Transfer Protocol[1]. So, two transfer protocols are available at the same time
according different flow solutions.

2.3 Application Service and Client Tools

Application service is an application repository where store the current services
provided for client. These services can be accessed directly via Java reflection
technology. So there is no requirement for user to declare the interface of de-
ployed services, but the price for this flexibility is the limitation of usage of
Java Reflection. The client tool depends on the transfer protocol. One of our
adopted protocols is Simple Object Access Protocol (SOAP). It’s an interna-
tional standard protocol, so any client package developed by companies or open
organizations can be used as our client tools, such as Apache SOAP client pack-
age, Microsoft SOAP toolkit client package etc.

3 Computational Module

Component technology has showed its power in the development of sophisticated
software system, such as Java Bean and ActiveX Control. In the middleware
system, component should not only keep its characteristics of inner integration
and independence, but also hold a high ability to be flexibly controlled and
integrated into the existed system. At present component technology has already
been applied into most of current middleware systems or products, but different
components are always mixed into each other in some extent when they work
together. Here the proposed components structure calls computational modules
that can avoid these confused problems. As described in figure 2, computational
module exhibits its outer behaviours in the form of following four items:

– Input Interface that represents what computational module need for internal
processing.

– Output Interface that shows the processing result of module.
– Properties that describe initial setting for module.
– Requirements that list the basic conditions of module that are used to verify

inputted data.

Module exhibits its IO behaviors through input and output interfaces and hides
all the inner implementation detail as a black box for application writer. To
reify the properties, module contain a serial of basic methods, such as methods

954 W. Huang, U. Roth, and C. Meinel

for initialization and release, to ensure it can be load and unload in any time.
Requirements are set to control whether inputted data are qualified. This step
is benefit to optimize processing, and also very crucial for workflow manager to
decide which is the next module after current one. The construction of compu-
tational module is based on the technology of thread, which make it able to run
independently. During the reification of input and output interface, all modules
have to implement a behavior interface, which inherit from a common IO in-
terface to generate the common IO behaviors. Workflow manager can access all
IO behaviors of every module via the way of looking up member methods of its
behavior interface. Input interface tells workflow manager what it needs, and
output interface tells what it will produce. All the methods of input interface
will be executed by piped workflow to get the required data from data channel
before the computational module runs, and it will also produce its results into
data channel after finishing of running. So speaking strictly, all modules keep
no contact with each other and they just communicate with data channel of
workflow manager. This independent property of computational module brings
much flexibility to add a new one into the system.

Fig. 2. Structure of computational module

During the procedure of implementation, programmer can develop many
modules according the actual requirements. But not every module has to be
engaged in the processing of one request, and it depends on the workflow solu-
tions and client request to decide which module will be used for one processing.
In future more modules can also be freely added here to adapt the middleware
for new application, such as MEPG encode and decode modules for multimedia
application etc.

4 Piped Workflow

In traditional middleware systems inner workflow is always integrated closely
with processing components which result in the inextensibility for future exten-
sion. To achieve more flexibility for future components and unknown require-
ment, we propose a piped workflow to adapt this variation. The piped workflow
consists of Workflow Nodes, a Data Channel and a Flow Control.

A Flexible Middleware Platform with Piped Workflow 955

4.1 Workflow Nodes

There are three kinds of workflow nodes: Program-Nodes, Flow-Nodes and End-
Nodes which are all inherited from a same parent node. Program-Node is a
special node used in workflow program. It is not only tied with a start module
where the flow control starts, but also used to control other modules and specify
sub-routines. Flow-Node is the core node inside of workflow. It is tied with
most computational modules, which take charge of the primary work of request
processing. End-Node is tied with last processing module. In fact, all these three
kinds of nodes will not do any real work for request processing, and they are
just used to control the workflow whose primary task is to decide which module
is the next one. The actual works are done by computational modules that are
associated with workflow nodes through the implementation of pipe interfaces,
as depicted in figure 3. Using the corresponding relation between computational
modules and workflow nodes, piped workflow mechanism can flexibly control
the computational modules through the control of workflow nodes. When a new
module is added, what the administrator needs to do is to bind the new module
with a specific workflow node in the configuration file.

4.2 Data Channel

The traditional middleware components can not keep absolutely independent
because they have to directly communicate and exchange data each other. In
piped workflow a special media - data channel is provided to exchange data
among modules. Here there are two ways to realize its functionality of data
exchange. One is data pool, and another is pipe, as described in figure 4.

Data Pool. Data pool is similar with the conception of bus in area of Inte-
grated Circuit (IC). It is a common media where the communications between

Fig. 3. Relation between workflow nodes and computational modules

956 W. Huang, U. Roth, and C. Meinel

Fig. 4. Data channel

different components are avail-able. Data pool provides services for all relevant
modules during one processing procedure. It will be generated when a processing
of one request starts and destroyed when the processing of request finishes. The
implementation of data pool contains a public temporary storage and communi-
cation ports between data pool and modules. Each module has to define which
data it needs from data pool and which data will be produced to data pool.
These functionalities are realized through the implementation of an IO behavior
interface extended from a common interface. In each I/O-behavior interface the
set- and get-methods are defined to represent the input and output behaviors
respectively. Under the management of workflow manager these variable data
are exchanged between the modules and data pool through Java reflection tech-
nology. Each set-method of the module will be checked for its associated input
data after the module is initialized and each get-method will also be checked
to get result after execution of the module. If later the module is replaced by
another different module, the interface behavior of new module should not be
changed. This strategy ensures that other modules still can communicate with
such an old module whose entity has been changed.

Pipe. Data pool act as the role of software buses where multi-modules can take
the same output of another module as their common source data. It is very
convenient for data communication, but can not offer any dependencies infor-
mation between adjacent modules. So pipe is proposed to link relevant modules
and reveal the dependences of them. Through the way of pipe control messages
can be transferred to manage the operation and dependency of each module.
Pipe consists of several independent sub-pipes that serve only for two adjacent
modules. Each sub-pipe contains a pair of ObjectIO that includes ObjectIn and
ObjectOut. ObjectIn is used for previous module to transfer data from module
to pipe, and ObjectOut is employed for latter module to transfer data from pipe
to module. In one pair of ObjectIO, ObjectIn and ObjectOut share the same
temporary memory, so the dependency messages can be transferred from the
first module to last one via a serial of sub-pipes. Additionally, different type of
computational module contains different composition of ObjectIO. For example,
a modules implementing PipeIntemedia Interface contains both ObjectIn and
ObjectOut. But the computational module implementing PipeStart Interface
or PipeEnd Interface only contains ObjectOut or ObjectIn respectively. Using
such a pipe mechanism, the dependencies of different modules are represented
and control messages can be transferred automatically and orderly.

A Flexible Middleware Platform with Piped Workflow 957

4.3 Flow Control

The flow control is a control strategy for all nodes of the workflow program.
It decides which node will be processed after the current one. Here two factors
result in the flexibility of flow control. One is the structure of computational
module and data pool that can arrange the node freely according requirements.
Another factor is the dynamical control strategy. It means the result of the flow
control is not a fixed link of all nodes and will vary dynamically depending on
the flow solution and the execution state of each node.

To manage the workflow nodes, different flow solutions should be configured
in the configuration file in advance. Just as figure 5, two flow solutions are illus-
trated where one solution comprises nodes linked by red arrowhead and another
one is represented through nodes linked by grey arrowhead. In a valid solution
there should be only one module set to start-node from which the processing
work start and at least one module directly head to end-node. For a selected
flow solution, such as one indicated by red arrowhead, it may also have different
routes during the running time. The real arrowheads indicate the normal default
route, and dashed arrowheads indicate other possible routes. When a module is
running, it will first check the requirements according input-ted data, and then
return an execution state with which workflow manager can decide next route.
For example, in the red arrowhead solution of figure 5, the node ”A” will go
to node ”B” if it returns a normal execution state code ”1”, and it will go to
node ”D” if the returned execution state code is ”2”. Because computational
module runs as an independent thread, acquirement of execution state does not
mean the end of module execution. The execution state is just to indicate the
processing response of current module for next module according the inputted
data and requirement of current module.

5 Related Work

Component oriented software development has become the popular accepted ten-
dency for reusable and extensible distributed application. But how to represent
the dependencies of different components and how to organize these components

Fig. 5. Paradigm of flow chart

958 W. Huang, U. Roth, and C. Meinel

still remain many problems. In [6], authors proposed two distinct kinds of depen-
dences to manage the dependences of components in distributed system. One is
prerequisite that are the requirements for loading an inert component into the
running system. Another is dynamic dependency that is used to manage the
loaded components in a running system. To reify the dynamic dependencies,
Kon et al. design a Component Configurator that is responsible for storing the
runtime dependencies between a specific component and application components
and other system. Each component C has a set of hooks to which other com-
ponents can attach. These hooked components are the components on which C
depends. There might be some other components (called clients) that depend
on C. Through the communication and event contact between each component
with hooked components and its client, dynamic reconfiguration is enabled for
components that are already running. But Component Configurator just define
the dependences of component, it has no consideration of the communication
between different components. So the component has also to define the same
specific behavior interfaces with that of alternative components, just like tradi-
tional way. This limitation also restricts the flexibility degree of dynamic recon-
figuration. G.S.Blair et al. [3], [4] proposed a configurable and open middleware
platform based on the concept of reflection. In their reflective middleware, they
introduced open binding and component framework to support the construc-
tion of meta-space. Component framework consists of primitive components,
which include different kinds of basic and indivisible functional unit, and com-
posite components that represent the configuration of primitive components and
composite components. Inside of open binding the communication of different
components is realized through the implementation of local binding that is pity
to have not been clarified the implementation details. The rather similar idea
can be found in [10], Shrivastava present a workflow based model for distributed
applications. In their model, workflow schema is used to represent the structure
of tasks in a distributed application with respect to task composition and inter-
task dependencies. Task controller is used to guide the workflow execution, just
like our workflow nodes. But they have not explained clearly and in detailed the
conception of computational module and data channel.

6 Conclusion and Future Work

Middleware masks the problem of building distributed application among hetero-
geneous environment. But the complexity of distributed network and new coming
requirement make the construction of middleware more difficult that bring an
urgent requirement for high reusability, modularity and extensibility. In this pa-
per we present technologies of piped workflow and computational modules to
provide an extensible, configurable and flexible mechanism for the construction
of middleware architecture. The computational module exhibits explicitly the
properties, requirements and its IO behaviors. Under the management of piped
workflow communication between different modules are available and can keep
absolutely independent in the level of source code. Additionally, piped workflow

A Flexible Middleware Platform with Piped Workflow 959

provides an extreme flexible mechanism to schedule all the modules working
together according a variable flow control strategy. But in our system flexibil-
ity is still not enough. It just provides the ability to arrange modules freely in
the server side, and client has no ability to inspect and modify the components
structure of middleware server. So how to improve our middleware to gain more
ability of reflection is our next research aim. Security is always a hot topic for
the field of distributed computing application. Especially when we investigate
to provide some inspection and adaptation abilities for client environment, the
secure transport, authentication and privilege management have become more
important and indispensable to manage middleware platform to meet the need
of some crucial and sensitive distributed applications. Additionally, we want to
provide some specific services to extend our middleware platform for some spe-
cific application area, such as multimedia. But there are still many problems for
multimedia supporting, such as stream transfer, quality of service, synchroniza-
tion and so on.

References

1. U.Roth, E.G.Haffner, T.Engel, Ch.Meinel: The Smart Data Server - A New Kind
of Middle Tier. Proceesing of the IASTED International Conference on Internet
and Multimedia Systems and Applications, 1999, pp. 362–365.

2. Joo C. Seco and Lus Caires: A Basic Model of Typed Components, Proc. European
Confer-ence on Object-Oriented Programming, Cannes, France 2000.

3. Nikos Parlavantzas, Geoff Coulson, and Gordon Blair: Applying Component
Frameworks to Develop Flexible Middleware. Workshop on Reflective Middleware,
April 7–8, 2000, New York, USA.

4. G. S.Blair, G. Coulson, P. Robin, and M. Papathomas: An Architecture for Next
Generation Middleware. In Proceedings of Middleware’98, pages 191–206. Springer-
Verlag, Sept. 1998.

5. Fabio Kon, Manuel Roman, Ping Liu, Jina Mao, Tomonori Yamane, Luiz Claudio
Magalhaes, and Roy H. Campbell: Monitoring, Security, and Dynamic Configura-
tion with the dy-namic TAO Reflevtive ORB. IFIP/ACM International Confer-
ence on Distributed Systems Platforms and Open Distributed Processing (Middle-
ware’2000). New York. April 3–7, 2000.

6. Fabio Kon and Roy H. Campbell: Dependence Management in Component-Based
Distributed Systems, IEEE Concurrency, 2000. 8(1): p. 26–36.

7. D.C. Schmidt and C. Cleeland: Applying Patterns to Develop Extensible ORB
Middleware, IEEE Comm. Magazine, IEEE CS Press. Los Alamitos, Calif., vol.
37, no. 4, 1999, pp. 54–63.

8. Mark Astley, Daniel C. Sturman and Gul A.Agha: Customizable middleware for
modular distributed software. Communications of the ACM, v.44 n.5, p. 99–107,
May 2001.

9. Mark Astley, Gul Agha: Modular Construction and Composition of Distributed
Software Architectures. PDSE 1998: 2–12.

10. S.K. Shrivastava and S.M. Wheater: Architectural Support for Dynamic Reconfig-
uration of Large Scale Distributed Applications. The 4th International Conference
on Configurable Distributed Systems (CDS’98), Annapolis, Maryland, USA, May
4–6 1998.

	Introduction
	Architecture
	Core Services
	Workflow Manager and Modules
	Application Service and Client Tools

	Computational Module
	Piped Workflow
	Workflow Nodes
	Data Channel
	Flow Control

	Related Work
	Conclusion and Future Work

