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produces a lot of new variables. This property usually lifts
Abstract the amount of time needed to evaluate the resulting formula
considerably. The second method, i.e. the application of the
Theoretical and practical investigations have shown that distributivity laws does not produce new variables but in its
some forms of reasoning such as belief revision, non-worst case it is exponential time and the size of the formula
monotonic reasoning, reasoning about knowledge, andcan grow up exponentially. On the other hand, transform-
STRIPS-like planning can be formulated by quantified ing any prenex QBF into its equivalent in prenex-NNF can
Boolean formulas (QBFs) and can be solved as instances ofbe done efficiently without producing new variables. This
guantified satisfiability problem (QSAT). Almost all existing fact led us to look for a method and a suitable data structure
QSAT solvers only accept QBFs represented in prenex-CNFin which we could represent prenex-NNF formulas directly
Formulating problems into QBFs usually does not yield and perform the evaluation step directly and efficiently.

prenex-CNF. Therefore, they are required to transform the  zpp (Zero-Suppressed Binary Decision Diagram) is a
obtained formula into prenex-CNF before launching itto a yariant of BDD (Binary decision diagram). While BDDs
QSAT solver. This task usually cannot be done efficiently. are more suited for representing Boolean functions, ZDDs
In this paper we show how Zero-Suppressed Binary De- gre better suited for storing and implementing sets of subset.
cision Diagram (abbreviated by ZBDD or ZDD) can be Thjs data structure has been used successfully in a number
used to represent QBFs given in prenex-NNF and evaluateof research works [7, 11, 2]. We found this data structure
them efficiently. Transforming any QBF into its equivalent g|so suitable for representing and evaluating QBFs (given in
in prenex-NNF usually can be done efficiently. prenex-CNF or prenex-NNF). In our research, we first im-
Keywords: Quantified Boolean Formula (QBF), Zero- plemented a QSAT solver based on ZDDs and an adopted
Suppressed Binary Decision Diagram (ZDD), Satisfiability, version of the DPLL algorithm for solving QBFs given in
QSAT, Negation Normal Form (NNF). standard prenex-CNF format. It was comparable and in
many cases much faster than the existing methods [13]. Af-
terwards, we invented a method in order to accept prenex-
1 Introduction NNF formulas, represent them directly in a ZDD and eval-
uate them efficiently.

Quantified Boolean formula (QBF) is a language that ~ The capability of ZDDs in storing formulas efficiently
extends propositional logic in such a way that many ad- €nabled us to store the given prenex-NNF formula com-
vanced forms of reasoning could be formulated and evalu-Pactly and led us to implement the search algorithm in such
ated easily [9, 10] . For this purpose, the problem must first @ wWay that we could store and reuse the results of all previ-
be translated into a QBF. For example Rintannen [21] hasously solved subformulas with a few overheads. This idea
shown how conditional planning problems can be translated@long with some other techniques enabled our implemen-
into QBFs. The next step is solving the obtained formula. tation to solve some standard QBF benchmark problems
Almost all existing QBF evaluators (also known as QSAT faster than the best existing QSAT solvers [6, 22, 16, 14,
solvers) accept QBFs represented in prenex-CNF. Thereforel2]. The search engine of our implementation is an adopted
one needs to transform the obtained formula into its equiv- Version of the DPLL (Davis-Putnam-Logemann-Loveland)
alent prenex-CNF. This transformation may be done in two @lgorithm. The program has been implemented in C using
ways: the structure preserving transformation [20] or the the CUDD (Colorado University Decision Diagram) [23]
application of distributivity laws. The time and space com- package.
plexity of the 'structure preserving normal form transforma-  There are Boolean functions in NNF where thejjuiv-
tion” method is polynomial in the size of the formula, but it alentsin CNF are exponential in the numbeof variables.



We show how these functions can be represented directly in2.2 BDDs and ZDDs
a linear sized ZDD. This lets our algorithm to be exponen-

tIaIIy faster than the eXiSting methods, at least for a subclass Here we give a very short background for BDDs and

of QBF formulas. ZDDs. Several years ago, Binary Decision Diagrams
o . (BDDs) [5, 24, 3, 17] and their variants [4] entered the
2 Preliminaries scene of the computer science. Since that time, they have

been used successfully in a number of industrial tools. In

We suppose the reader has a good background on conmany applications, specially in problems involving sparse

cepts like: Boolean formulas, quantified Boolean formulas sets of subsets, the size of the BDD grows very fast, and

as well as their most important normal forms CNF, NNF causes inefficient processing. This problem can be solved
and prenex forms. Also we suppose the reader is alreadyby a variant of BDD, called ZDD [18, 1]. These diagrams
familiar with the basic DPLL [8] algorithm. are similar to BDDs with one of the underlying principles

modified. While BDDs are better suited for the representa-

2.1 The Semantic Tree Approach for the QSAT tion of functions, ZDDs are better suited the representation

problem (DPLL for QBF) of covers (set of subsets). A CNF formula can be seen as a
_ _ o _ set of sets and be represented in a ZDD
This method is very similar to the DPLL algorithm. It As an example [19], in Figure 2, the left diagram dis-

recursively splits the problem of deciding a QBF of the form pjlays the ZDD representing = {{a,b},{a,c},{c}}, and
Qe @ into two subproblem®[z = 1] and®[z = 0] and the  the right diagram displayB = (a A b A =¢) V (a A =b A

following rules: ¢) V (ma A —b A ¢), which is the characteristic function
e 3z ®is valid iff ®[z = 1] or [z = 0] is valid. of S. In a ZDD (or BDD) we represent an internal node
_ o ) ) by P(x,Ty,T'1) wherez is the label of the node, arid,
e Vz ®isvalid iff @[z = 1] and [z = 0] is valid. I'; are SubZDDs rooted in it "Then-child’ and 'Else-child’

In fact, this method searches the solution in a tree of vari- respectively. The size of a ZDD, denoted byT'|, is the
able assignments. Figure 1 [15] displays the semantic treehnumber of its internal nodes.
for:

& = Jy VaIyoFys(C1 A Co A C3 A Cy), where :

Ci=(mVaV-y),Co=(y2V-y3),C3 = (y2 Vy3),
andCy = (y1 V —z V —y9).

Y1 ¥
xr @
Figure 2. BDD versus ZDD.
Figure 1. A sematic tree proof. 3 Our Algorithm

Lets name our QSAT solver: NZQSAT (a QSAT solver
based on ZDDs for QBFs in prenex-NNF). There are three
major points which are specific to NZQSAT:

We can follow the tree and realize thatis invalid. A
very interesting point can easily be seen in the tree. Itis the
duplication problem in semantic tree method, namely, the

same subproblem can appear two or more times during the 1. Embedding memorization to overcome mentioned du-

search procedure. In a big QBF this situation can happen in plication problem (to avoid solving the same subprob-
different levels frequently. lem repeatedly).

Our algorithm (which we will present later) is an adapta-
tion of above algorithms. The superiority of our algorithm 2. Using ZDDs to represent matrix of the QBF. (We
is its possibility to detect and avoid examining such dupli- adopted this idea form [7, 11, 2] then established spe-
cations separately. cific rules suitable for QBF and NNF formalism).



3. Accepting Prenex-NNF in addition to Prenex-CNF for- Since ZDD is a canonical representation of a function, the
mulas. We will show how this possibility can be con- equality of two functions can be decided linearly, in many

siderably useful.

3.1 Embedding Memorization to QDPLL

We embedded memorization to the mentioned QDPLL

implementations only with one pointer comparison.
3.2 Representing a Boolean formula by a ZDD

In this paper, we are more concerned with NNF form,

algorithm to overcome the duplication problem. Figure 3 but since NZQSAT accepts prenex-CNF as well, we will
displays the pseudocode for MQDPLL, which stands for our @lSO give a short explanation for this normal form too. For

'DPLL with memorization’ procedure.

Boolean MQDPLL( F , Q)

F: The DS holding matrix of the QBF;
Q: Quantifiers of the QBF variables;
{

1 if ( F is Primitive or AlreadySolved )
return Solution;

2 S=Simplify F by repeated Unit-Reso.,
removal of subsumed clauses and
possible MonolLiteral-Reductions;

3 if ( S is Primitive or AlreadySolved )
{Add F along with the Solution to

SolvedTable; return Solution; }

4 FO,Fl=choose x then Split S over it;

Solution=DPLL(F0);

6 if (FO==F1) or

(Solution==TRUE and Ex-Lit(x)) or
(Solution==FALSE and Un-Lit(x) )
{Add F along with the Solution to
SolvedTable; return Solution; }
7 Solution=DPLL(F1);
8 Add F along with the Solution to
SolvedTable;
return Solution;

(&)

more detailed explanation refer to [13]. A ZDD may be
used to represent a set of subsets. Since each propositional
CNF formula¢ can be represented as a set of subsets of
literals [¢] we can represent a CNF formula by means of a
ZDD. In ZDDs, each path from the root to the 1-terminal
corresponds to one clause of the set. In a path, if we pass
throughz; = 1 (toward its 'Then-child’), then; exists in

the clause, but if we pass through = 0 (toward its 'Else-
child’) or we don’t pass through;, thenz; does not exist

in the clause. To represent the sets of clauses, i.e., a set of
subsets of literals, we assign two successive ZDD indices
to each variable, one index for positive and the other for its
complemented form [7]. For a CNF formula like:

f=(@Vv-bVv-c)N(aV-cVd AbB)A@VDVec)

initially we make ZDDs representing the first two clauses.
Then we use zddUnion to combine them. The result of this
operation, as shown in Figure 4, is the ZDD holding:

[f3} = [.fl] A [.f2] = {{a7_'b7 _'C}v {av_'cv d}}

Next, we make the ZDD representation of the third clause
and combine it with the result of the previous step. We do
the same operations for all clauses to obtain the ZDD repre-

Figure 3. MQDPLL: Our 'DPLL with memoriza-
tion’ procedure.

MQDPLL is different from DPLL or semantic tree
search in some aspects. Firstly, it benefits from a mem-
orization strategy (dynamic programming - tabulation) to
store and reuse the results of already solved subproblems
(lines 1, 3, 6, 8 in the above pseudocode). Secondly, the sit-
uation where the two subfunctiorfs and f; are equal can
be detected and the subproblem would be solved only once
(line 6).

Storing all previously solved subproblems and detect-
ing the equality of two subproblems (functions)are usually
very expensive. We managed to overcome these difficulties
thanks to ZDDs. This data structure let us store the QBF
matrix very efficiently and allowed us to store every sub-
function created in the splitting step or obtained after the

senting the whole function.

f,=(ay-bv c) h,=(avcvd)

Figure 4. ZDD representations of two clauses
and their conjunction.

In the case of NNF formulas we can not follow the above

simplification operations, with no or very few overheads . procedure, because the formula is in a much higher free



form. We remind that, in NNF formulas, 'negations’ may into prenex NNF can be done efficiently. There are some
only appear in front of variables and only and v oper- small size Boolean functions where their equivalents in
ations are allowed. For exampfe= (z A —y) V (-z A CNF have exponential size in the number of variables. Here
(x Vy))isinNNF, butg = ~(z A —y) V (mz A (z Vy))is we show that the representation of a formula in NNF by a
not in NNF. Initially, according to the number of variables, ZDD is beneficial compared to the restriction to CNF for-
we make individual ZDDs for each of the literals (positive mulas. Since the prenex-CNF and prenex-NNF differ only
or complemented ) which may probably appear in the for- in their propositional part, we focus our attention on these
mula. After that we parse the formula, which can be done in parts.

different ways. The result would be something like a parse

tree holding literals in leaf nodes as well asand \V oper- Theorem 1 1. There are Boolean functions
ators in internal nodes. The parse tree shows how the ZDDs . {0,1})" — {0,1} in NNF with linear size,
represen_tlng Ilterals_or set of clauses of su_bformulas must size(f) — 1, whose logically equivalent minimal
be combln_ed to obtaln_the_ZI_DD representation of the thle CNF representation f' are of exponential size,
formula. Since a function is interpreted as a representation size(f') = 2%
of a set of clauses, the operataris emulated by zddUnion

and zddProduct emulates. Figure 5 shows how this idea 2. f can be represented by ZDDs of linear sizeand

works for the small NNF formulaf = (a vV (—b A ¢)) A —a. there exists a synthesis algorithm for their ZDDs such
We can see another interesting point in Figure 5. It is an that each ZDD occurring during the synthesis process
implicit conversion property which comes inherently with of f would never be larger than.

the procedure. In other words, from the ZDD representing

fi = (aV (=b A c)) we can easily give the CNF equiva-  prqof, ConS|derf (LA A oAV (g Ao A

lent of f;. The ZDD representation of the set of clauses of Iok) V ooV (Ink—1)11 A - - A L) to be a Boolean for-

a NNF formulaf is denoted by ). mula in dlsjunction normal form (disjunction of conjunc-

tions of literals — therefore NNF), we will suppogeto

be defined over. Boolean variables, holding: terms and

each term includé literals. Also we will suppose that any

e e variable appears only once (positive or complemented) in
the formula. Therefore, the sizgze(f) of function f, is

lo=a ly=—a l;=—b la=€

! ’ ! equal ton = m - k. Below, Lemma 1 gives the function
EXiEER RN RN Lo ] f’ = fin CNF. If each term off consists of exactly 2 lit-
f=(aV-bAc)A -2 ( erals, namelys = 2, thensize(f’) = 2% - Z. On the other
feavibAS) =(av-b)h (@ye)Al-a) hand from Lemma 2 we get a ZDD representatiotf df
=(avab)A (ave) with |Tis| = n.

The proof of Lemma 2 describes a synthesis algorithm in
which all the ZDDs occurring during the syntheS|qu}
would never be larger than

Lemmal Letf : {0,1}™ — {0,1} be a Boolean function

in disjunction normal form (DNF). Suppose thathasn
variables, where each variable — positive or complemented
— appears exactly one time in the functippand that f
consists ofn terms each witlk literals, i.e.size(f) = m-k.
Then the logically equivalent minimal CNF-representation
Figure 5. Making the ZDD representing a sim- f{0,1}™ — {0,1} of f hask™ clauses where each
ple NNF formula. clause includes literals. Therefore the size gf is k™ -m.

Lemma 2 Let f be a Boolean function with conditions of
3.3 Accepting NNF formulas can be Exponen- Lemma 1. Letthe variable orderof the ZDD be the same
tially Beneficial as the order in which literals appear ify then the size of the
ZDD representingf, as well as all ZDDs occurring during
As mentioned earlier, transforming a QBF into prenex- the synthesis of the ZDD representifigvill never be larger
CNF cannotbe done efficiently, but transforming any QBF thann.



Proof of Lemma 1.

Proof. Proof by induction on the numbet of clauses.

em = 1: Thenf = (I1 Ala A ... Alg). Inthis
casef’ = (I1) A (I2) A ... A (Ix) would be the CNF
equivalent off. In this case the size gf is k, where
we havek clauses with exactly one literal.

em—m+1l:Letf=gV (l(m+1)1 VANVAN l(m+1)k),
Whereg = (111 VAR /\llk) V...V (lml VAN /\lmk)-
By induction hypothesis there exists a functigre ¢
in CNF wheresize(g') = k™m andg’ hask™ clauses
where each clause includes literals. Considering
fi=4qg Vv (l(m+1)1 VAN l(m+1)k), to obtain f’
from f1, we must distributél(,,, ;1)1 A .. A lmg1)k)
overg’. By the distribution the number of clauses is in-
creased by the factdr, i.e. ¢’ includesk™*! clauses
(all literalsl(,,41);, 1 < j < k, are pairwise disjoint).
The size of each clause iff is increased by one ad-
ditional literal and would ben + 1. Since each literal
appears uniquely irf, none of the clauses ifi’ can

be removed by subsumption, also no literal can be re-

moved from any clause. Therefore the sizefofis
EmHL (m+1).

Proof of Lemma 2.

Proof.Lett = (I, Ala A ... Aly) beaterm, wherg # [,

fori,j € {1,...,k} andi # j. The ZDDTI'f; representing
t is of the form of the ZDD forf;g9 in Figure 6. The size of
'y is k. For each literal; there is a node iii',; labeled by

Figure 6. The ZDD representation of the func-
tion f123456 = (ll Ala A l3) \Y (l4 Als A l@), the
term frs9 = (I7 Als Alg), and the function
f = f123456 V frso.

3.4 Benefits of using ZDDs along our MQDPLL-
Algorithm

Considering ZDDs as the data structure holding the for-
mula, affects the search algorithm and its complexity con-
siderably. Operations like detecting the unit clauses, detect-
ing mono variables, performing the unit/mono resolution

l; whose then-arc points to the 1-terminal and whose else-and detecting the SAT/UNSAT conditions depend strongly

arc points to the node labeled by. We suppose thaf;
appears beforé; in the variable order and they are adja-

on the data structure holding the formula. We established a
number of rules concerning these operations. The rules can

cent. The else-arc of the last node points to the O-terminal.be concluded from the basic properties known for QBFs,

Now if I't; is the ZDD representation of the first’ < m
terms, and’(; is the representation of the next term, then
the disjunction ofl',; andI';; can be obtained as follows:
we point each then-arc dfj,; leading to the 1-terminal to
the root node of";, then consider the root node bf,; to

be the root node of the disjunction. The size of the ZDD-
representation of the disjunction is given [y, + |T'(z|.
Figure 6 illustrates this idea. L]

Here we need to mention that an arbitrary QBFean
also be transformed into a QB¥ in prenex CNF by the
structure preserving normal form transformation (tkdeis
satisfiable if and only if®’ is satisfiable). The time and

some lemmas presented in [6] and the properties of repre-
senting Boolean function in a ZDD. Performing these oper-

ations with other data structures is often much slower. The
reader may refer to [13] for detailed information.

4 Conclusion

In this paper, we presented NZQSAT, an algorithm for
evaluation of quantified Boolean formulas presented in
prenex-NNF. First we showed how memorization can be
embedded to the DPLL algorithm in order to let it prone
the search space, then we showed how ZDDs can be used

space complexity of the transformation is at most quadraticto represent a Boolean formula efficiently. Accepting NNF
in |®| but it produces a lot of new variables. Therefore the formulas along ZDDs can be exponentially beneficial, we

evaluation of the obtained formula could be increased no-

ticeably.

proved this claim by introducing and proving the corre-
sponding theorem and lemmas.
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