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Abstract

Theoretical and practical investigations have shown that
some forms of reasoning such as belief revision, non-
monotonic reasoning, reasoning about knowledge, and
STRIPS-like planning can be formulated by quantified
Boolean formulas (QBFs) and can be solved as instances of
quantified satisfiability problem (QSAT). Almost all existing
QSAT solvers only accept QBFs represented in prenex-CNF.
Formulating problems into QBFs usually does not yield
prenex-CNF. Therefore, they are required to transform the
obtained formula into prenex-CNF before launching it to a
QSAT solver. This task usually cannot be done efficiently.

In this paper we show how Zero-Suppressed Binary De-
cision Diagram (abbreviated by ZBDD or ZDD) can be
used to represent QBFs given in prenex-NNF and evaluate
them efficiently. Transforming any QBF into its equivalent
in prenex-NNF usually can be done efficiently.

Keywords: Quantified Boolean Formula (QBF), Zero-
Suppressed Binary Decision Diagram (ZDD), Satisfiability,
QSAT, Negation Normal Form (NNF).

1 Introduction

Quantified Boolean formula (QBF) is a language that
extends propositional logic in such a way that many ad-
vanced forms of reasoning could be formulated and evalu-
ated easily [9, 10] . For this purpose, the problem must first
be translated into a QBF. For example Rintannen [21] has
shown how conditional planning problems can be translated
into QBFs. The next step is solving the obtained formula.
Almost all existing QBF evaluators (also known as QSAT
solvers) accept QBFs represented in prenex-CNF. Therefore
one needs to transform the obtained formula into its equiv-
alent prenex-CNF. This transformation may be done in two
ways: the structure preserving transformation [20] or the
application of distributivity laws. The time and space com-
plexity of the ’structure preserving normal form transforma-
tion’ method is polynomial in the size of the formula, but it

produces a lot of new variables. This property usually lifts
the amount of time needed to evaluate the resulting formula
considerably. The second method, i.e. the application of the
distributivity laws does not produce new variables but in its
worst case it is exponential time and the size of the formula
can grow up exponentially. On the other hand, transform-
ing any prenex QBF into its equivalent in prenex-NNF can
be done efficiently without producing new variables. This
fact led us to look for a method and a suitable data structure
in which we could represent prenex-NNF formulas directly
and perform the evaluation step directly and efficiently.

ZDD (Zero-Suppressed Binary Decision Diagram) is a
variant of BDD (Binary decision diagram). While BDDs
are more suited for representing Boolean functions, ZDDs
are better suited for storing and implementing sets of subset.
This data structure has been used successfully in a number
of research works [7, 11, 2]. We found this data structure
also suitable for representing and evaluating QBFs (given in
prenex-CNF or prenex-NNF). In our research, we first im-
plemented a QSAT solver based on ZDDs and an adopted
version of the DPLL algorithm for solving QBFs given in
standard prenex-CNF format. It was comparable and in
many cases much faster than the existing methods [13]. Af-
terwards, we invented a method in order to accept prenex-
NNF formulas, represent them directly in a ZDD and eval-
uate them efficiently.

The capability of ZDDs in storing formulas efficiently
enabled us to store the given prenex-NNF formula com-
pactly and led us to implement the search algorithm in such
a way that we could store and reuse the results of all previ-
ously solved subformulas with a few overheads. This idea
along with some other techniques enabled our implemen-
tation to solve some standard QBF benchmark problems
faster than the best existing QSAT solvers [6, 22, 16, 14,
12]. The search engine of our implementation is an adopted
version of the DPLL (Davis-Putnam-Logemann-Loveland)
algorithm. The program has been implemented in C using
the CUDD (Colorado University Decision Diagram) [23]
package.

There are Boolean functions in NNF where theirequiv-
alentsin CNF are exponential in the numbern of variables.



We show how these functions can be represented directly in
a linear sized ZDD. This lets our algorithm to be exponen-
tially faster than the existing methods, at least for a subclass
of QBF formulas.

2 Preliminaries

We suppose the reader has a good background on con-
cepts like: Boolean formulas, quantified Boolean formulas
as well as their most important normal forms CNF, NNF
and prenex forms. Also we suppose the reader is already
familiar with the basic DPLL [8] algorithm.

2.1 The Semantic Tree Approach for the QSAT
problem (DPLL for QBF)

This method is very similar to the DPLL algorithm. It
recursively splits the problem of deciding a QBF of the form
Qx Φ into two subproblemsΦ[x = 1] andΦ[x = 0] and the
following rules:

• ∃xΦ is valid iff Φ[x = 1] or Φ[x = 0] is valid.

• ∀xΦ is valid iff Φ[x = 1] andΦ[x = 0] is valid.

In fact, this method searches the solution in a tree of vari-
able assignments. Figure 1 [15] displays the semantic tree
for:

Φ = ∃y1∀x∃y2∃y3(C1 ∧ C2 ∧ C3 ∧ C4),where :

C1 = (¬y1 ∨ x ∨ ¬y2), C2 = (y2 ∨ ¬y3), C3 = (y2 ∨ y3),
andC4 = (y1 ∨ ¬x ∨ ¬y2).

Figure 1. A sematic tree proof.

We can follow the tree and realize thatΦ is invalid. A
very interesting point can easily be seen in the tree. It is the
duplication problem in semantic tree method, namely, the
same subproblem can appear two or more times during the
search procedure. In a big QBF this situation can happen in
different levels frequently.

Our algorithm (which we will present later) is an adapta-
tion of above algorithms. The superiority of our algorithm
is its possibility to detect and avoid examining such dupli-
cations separately.

2.2 BDDs and ZDDs

Here we give a very short background for BDDs and
ZDDs. Several years ago, Binary Decision Diagrams
(BDDs) [5, 24, 3, 17] and their variants [4] entered the
scene of the computer science. Since that time, they have
been used successfully in a number of industrial tools. In
many applications, specially in problems involving sparse
sets of subsets, the size of the BDD grows very fast, and
causes inefficient processing. This problem can be solved
by a variant of BDD, called ZDD [18, 1]. These diagrams
are similar to BDDs with one of the underlying principles
modified. While BDDs are better suited for the representa-
tion of functions, ZDDs are better suited the representation
of covers (set of subsets). A CNF formula can be seen as a
set of sets and be represented in a ZDD

As an example [19], in Figure 2, the left diagram dis-
plays the ZDD representingS = {{a, b}, {a, c}, {c}}, and
the right diagram displaysF = (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧
c) ∨ (¬a ∧ ¬b ∧ c), which is the characteristic function
of S. In a ZDD (or BDD) we represent an internal node
by P (x, Γ0,Γ1) wherex is the label of the node, andΓ1,
Γ0 are SubZDDs rooted in it ’Then-child’ and ’Else-child’
respectively. The size of a ZDDΓ, denoted by|Γ|, is the
number of its internal nodes.

Figure 2. BDD versus ZDD.

3 Our Algorithm

Lets name our QSAT solver: NZQSAT (a QSAT solver
based on ZDDs for QBFs in prenex-NNF). There are three
major points which are specific to NZQSAT:

1. Embedding memorization to overcome mentioned du-
plication problem (to avoid solving the same subprob-
lem repeatedly).

2. Using ZDDs to represent matrix of the QBF. (We
adopted this idea form [7, 11, 2] then established spe-
cific rules suitable for QBF and NNF formalism).



3. Accepting Prenex-NNF in addition to Prenex-CNF for-
mulas. We will show how this possibility can be con-
siderably useful.

3.1 Embedding Memorization to QDPLL

We embedded memorization to the mentioned QDPLL
algorithm to overcome the duplication problem. Figure 3
displays the pseudocode for MQDPLL, which stands for our
’DPLL with memorization’ procedure.

Boolean MQDPLL( F , Q )
F: The DS holding matrix of the QBF;
Q: Quantifiers of the QBF variables;

{
1 if ( F is Primitive or AlreadySolved )

return Solution;
2 S=Simplify F by repeated Unit-Reso.,

removal of subsumed clauses and
possible MonoLiteral-Reductions;

3 if ( S is Primitive or AlreadySolved )
{Add F along with the Solution to

SolvedTable; return Solution; }
4 F0,F1=choose x then Split S over it;
5 Solution=DPLL(F0);
6 if (F0==F1) or

(Solution==TRUE and Ex-Lit(x)) or
(Solution==FALSE and Un-Lit(x) )

{Add F along with the Solution to
SolvedTable; return Solution; }

7 Solution=DPLL(F1);
8 Add F along with the Solution to

SolvedTable;
return Solution;

}

Figure 3. MQDPLL: Our ’DPLL with memoriza-
tion’ procedure.

MQDPLL is different from DPLL or semantic tree
search in some aspects. Firstly, it benefits from a mem-
orization strategy (dynamic programming - tabulation) to
store and reuse the results of already solved subproblems
(lines 1, 3, 6, 8 in the above pseudocode). Secondly, the sit-
uation where the two subfunctionsf0 andf1 are equal can
be detected and the subproblem would be solved only once
(line 6).

Storing all previously solved subproblems and detect-
ing the equality of two subproblems (functions)are usually
very expensive. We managed to overcome these difficulties
thanks to ZDDs. This data structure let us store the QBF
matrix very efficiently and allowed us to store every sub-
function created in the splitting step or obtained after the
simplification operations, with no or very few overheads .

Since ZDD is a canonical representation of a function, the
equality of two functions can be decided linearly, in many
implementations only with one pointer comparison.

3.2 Representing a Boolean formula by a ZDD

In this paper, we are more concerned with NNF form,
but since NZQSAT accepts prenex-CNF as well, we will
also give a short explanation for this normal form too. For
more detailed explanation refer to [13]. A ZDD may be
used to represent a set of subsets. Since each propositional
CNF formulaφ can be represented as a set of subsets of
literals [φ] we can represent a CNF formula by means of a
ZDD. In ZDDs, each path from the root to the 1-terminal
corresponds to one clause of the set. In a path, if we pass
throughxi = 1 (toward its ’Then-child’), thenxi exists in
the clause, but if we pass throughxi = 0 (toward its ’Else-
child’) or we don’t pass throughxi, thenxi does not exist
in the clause. To represent the sets of clauses, i.e., a set of
subsets of literals, we assign two successive ZDD indices
to each variable, one index for positive and the other for its
complemented form [7]. For a CNF formula like:

f = (a ∨ ¬b ∨ ¬c) ∧ (a ∨ ¬c ∨ d) ∧ (b) ∧ (a ∨ b ∨ c)

initially we make ZDDs representing the first two clauses.
Then we use zddUnion to combine them. The result of this
operation, as shown in Figure 4, is the ZDD holding:

[f3] = [f1] ∧ [f2] = {{a,¬b,¬c}, {a,¬c, d}}
Next, we make the ZDD representation of the third clause
and combine it with the result of the previous step. We do
the same operations for all clauses to obtain the ZDD repre-
senting the whole function.

Figure 4. ZDD representations of two clauses
and their conjunction.

In the case of NNF formulas we can not follow the above
procedure, because the formula is in a much higher free



form. We remind that, in NNF formulas, ’negations’ may
only appear in front of variables and only∧ and ∨ oper-
ations are allowed. For examplef = (x ∧ ¬y) ∨ (¬z ∧
(x ∨ y)) is in NNF, butg = ¬(x ∧ ¬y) ∨ (¬z ∧ (x ∨ y)) is
not in NNF. Initially, according to the number of variables,
we make individual ZDDs for each of the literals (positive
or complemented ) which may probably appear in the for-
mula. After that we parse the formula, which can be done in
different ways. The result would be something like a parse
tree holding literals in leaf nodes as well as∧ and∨ oper-
ators in internal nodes. The parse tree shows how the ZDDs
representing literals or set of clauses of subformulas must
be combined to obtain the ZDD representation of the whole
formula. Since a function is interpreted as a representation
of a set of clauses, the operator∧ is emulated by zddUnion
and zddProduct emulates∨ . Figure 5 shows how this idea
works for the small NNF formula,f = (a∨ (¬b∧ c))∧¬a.
We can see another interesting point in Figure 5. It is an
implicit conversion property which comes inherently with
the procedure. In other words, from the ZDD representing
f1 = (a ∨ (¬b ∧ c)) we can easily give the CNF equiva-
lent of f1. The ZDD representation of the set of clauses of
a NNF formulaf is denoted byΓ[f ].

Figure 5. Making the ZDD representing a sim-
ple NNF formula.

3.3 Accepting NNF formulas can be Exponen-
tially Beneficial

As mentioned earlier, transforming a QBF into prenex-
CNF cannotbe done efficiently, but transforming any QBF

into prenex NNF can be done efficiently. There are some
small size Boolean functions where their equivalents in
CNF have exponential size in the number of variables. Here
we show that the representation of a formula in NNF by a
ZDD is beneficial compared to the restriction to CNF for-
mulas. Since the prenex-CNF and prenex-NNF differ only
in their propositional part, we focus our attention on these
parts.

Theorem 1 1. There are Boolean functions
f : {0, 1}n → {0, 1} in NNF with linear size,
size(f) = n, whose logically equivalent minimal
CNF representationf ′ are of exponential size,
size(f ′) = 2

n
2 · n

2 .

2. f can be represented by ZDDs of linear sizen and
there exists a synthesis algorithm for their ZDDs such
that each ZDD occurring during the synthesis process
of f would never be larger thann.

Proof.Considerf = (l1 ∧ l2 ∧ . . . ∧ lk) ∨ (lk+1 ∧ . . . ∧
l2k) ∨ . . . ∨ (lm(k−1)+1 ∧ . . . ∧ lmk) to be a Boolean for-
mula in disjunction normal form (disjunction of conjunc-
tions of literals — therefore NNF), we will supposef to
be defined overn Boolean variables, holdingm terms and
each term includek literals. Also we will suppose that any
variable appears only once (positive or complemented) in
the formula. Therefore, the sizesize(f) of function f , is
equal ton = m · k. Below, Lemma 1 gives the function
f ′ ≡ f in CNF. If each term off consists of exactly 2 lit-
erals, namelyk = 2, thensize(f ′) = 2

n
2 · n

2 . On the other
hand from Lemma 2 we get a ZDD representation off , Γ[f ]

with |Γ[f ]| = n.
The proof of Lemma 2 describes a synthesis algorithm in

which all the ZDDs occurring during the synthesis ofΓ[f ]

would never be larger thann.

Lemma 1 Let f : {0, 1}n → {0, 1} be a Boolean function
in disjunction normal form (DNF). Suppose thatf hasn
variables, where each variable — positive or complemented
— appears exactly one time in the functionf , and thatf
consists ofm terms each withk literals, i.e.size(f) = m·k.
Then the logically equivalent minimal CNF-representation
f ′ : {0, 1}n → {0, 1} of f has km clauses where each
clause includesm literals. Therefore the size off ′ iskm ·m.

Lemma 2 Let f be a Boolean function with conditions of
Lemma 1. Let the variable orderπ of the ZDD be the same
as the order in which literals appear inf , then the size of the
ZDD representingf , as well as all ZDDs occurring during
the synthesis of the ZDD representingf will never be larger
thann.



Proof of Lemma 1.

Proof.Proof by induction on the numberm of clauses.

• m = 1: Then f = (l1 ∧ l2 ∧ . . . ∧ lk). In this
casef ′ = (l1) ∧ (l2) ∧ . . . ∧ (lk) would be the CNF
equivalent off . In this case the size off ′ is k, where
we havek clauses with exactly one literal.

• m 7→ m+1: Let f = g ∨ (l(m+1)1 ∧ . . . ∧ l(m+1)k),
whereg = (l11 ∧ . . . ∧ l1k) ∨ . . . ∨ (lm1 ∧ . . . ∧ lmk).
By induction hypothesis there exists a functiong′ ≡ g
in CNF wheresize(g′) = kmm andg′ haskm clauses
where each clause includesm literals. Considering
f1 = g′ ∨ (l(m+1)1 ∧ . . . ∧ l(m+1)k), to obtainf ′

from f1, we must distribute(l(m+1)1 ∧ . . . ∧ l(m+1)k)
overg′. By the distribution the number of clauses is in-
creased by the factork, i.e. g′ includeskm+1 clauses
(all literals l(m+1)j , 1 ≤ j ≤ k, are pairwise disjoint).
The size of each clause inf ′ is increased by one ad-
ditional literal and would bem + 1. Since each literal
appears uniquely inf , none of the clauses inf ′ can
be removed by subsumption, also no literal can be re-
moved from any clause. Therefore the size off ′ is
km+1 · (m + 1).

Proof of Lemma 2.

Proof.Let t = (l1 ∧ l2 ∧ . . . ∧ lk) be a term, whereli 6= lj
for i, j ∈ {1, . . . , k} andi 6= j. The ZDDΓ[t] representing
t is of the form of the ZDD forf789 in Figure 6. The size of
Γ[t] is k. For each literalli there is a node inΓ[t] labeled by
li whose then-arc points to the 1-terminal and whose else-
arc points to the node labeled bylj . We suppose thatli
appears beforelj in the variable order and they are adja-
cent. The else-arc of the last node points to the 0-terminal.
Now if Γ[g] is the ZDD representation of the firstm′ < m
terms, andΓ[t] is the representation of the next term, then
the disjunction ofΓ[g] andΓ[t] can be obtained as follows:
we point each then-arc ofΓ[g] leading to the 1-terminal to
the root node ofΓ[t], then consider the root node ofΓ[g] to
be the root node of the disjunction. The size of the ZDD-
representation of the disjunction is given by|Γ[g]| + |Γ[f ]|.
Figure 6 illustrates this idea.

Here we need to mention that an arbitrary QBFΦ can
also be transformed into a QBFΦ′ in prenex CNF by the
structure preserving normal form transformation (thenΦ is
satisfiable if and only ifΦ′ is satisfiable). The time and
space complexity of the transformation is at most quadratic
in |Φ| but it produces a lot of new variables. Therefore the
evaluation of the obtained formula could be increased no-
ticeably.

Figure 6. The ZDD representation of the func-
tion f123456 = (l1 ∧ l2 ∧ l3) ∨ (l4 ∧ l5 ∧ l6), the
term f789 = (l7 ∧ l8 ∧ l9), and the function
f = f123456 ∨ f789.

3.4 Benefits of using ZDDs along our MQDPLL-
Algorithm

Considering ZDDs as the data structure holding the for-
mula, affects the search algorithm and its complexity con-
siderably. Operations like detecting the unit clauses, detect-
ing mono variables, performing the unit/mono resolution
and detecting the SAT/UNSAT conditions depend strongly
on the data structure holding the formula. We established a
number of rules concerning these operations. The rules can
be concluded from the basic properties known for QBFs,
some lemmas presented in [6] and the properties of repre-
senting Boolean function in a ZDD. Performing these oper-
ations with other data structures is often much slower. The
reader may refer to [13] for detailed information.

4 Conclusion

In this paper, we presented NZQSAT, an algorithm for
evaluation of quantified Boolean formulas presented in
prenex-NNF. First we showed how memorization can be
embedded to the DPLL algorithm in order to let it prone
the search space, then we showed how ZDDs can be used
to represent a Boolean formula efficiently. Accepting NNF
formulas along ZDDs can be exponentially beneficial, we
proved this claim by introducing and proving the corre-
sponding theorem and lemmas.
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