SecureSOA — Modelling Security Requirements for
Service-oriented Architectures

Michael Menzel, Christoph Meinel

Hasso-Plattner-Institute,
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

{michael .menzel, meinel}@hpi.uni-potsdam.de

Abstract

Service-oriented Architectures (SOA) facilitate the
provision and orchestration of business services to en-
able a faster adoption to changing business demands.
Web Services provide a technical foundation to real-
ize this paradigm and support a variety of different se-
curity mechanisms and approaches. Security require-
ments are codified in Web Service policies that control
the service’s behavior in terms of secure interactions
with other participants in an SOA. To facilitate and
simplify the generation of enforceable security policies,
we foster a model-driven approach based on the mod-
elling of security requirements in system design models.
This paper introduces our security design language Se-
cureSOA that enables the definition of these security
requirements. We present the abstract syntax and no-
tion of SecureSOA and describe a schema to integrate
SecureSOA in any system design language for service-
based systems. Moreover, we will demonstrate the inte-
gration of SecureSOA in Fundamental Modelling Con-
cept (FMC) Block Diagrams.

1 Introduction

IT-infrastructures have evolved into distributed and
loosely coupled service-based systems that are capable
to expose company’s assets and resources as business
services. To implement this paradigm, the Web Service
specification provide a technical foundation based on
XML-messaging. In addition, Web Services facilitate
the usage of different security patterns, mechanisms
and algorithms to secure the interaction between the
participants in an Service-oriented Architecture.

Security policies for SOA (e.g. WS-Policy and WS-

SecurityPolicy) are used to state these security require-
ments on a technical layer concerning the usage of
specifications such as WS-Security. These policies en-
able services to communicate requirements to its ser-
vice consumers, for example, to inform about required
identity information, trusted parties or required mech-
anisms to secure exchanged information.

To enable a simplified generation of security policies,
we foster a model-driven approach that integrates se-
curity intentions in SOA system models. SOA system
models provide an abstract view on different aspects
such as participants, information, and processes. The
integration of security intentions enables a modeller to
state basic requirements on a technically independent
level. For instance, confidentiality requirements or re-
quired identity information can be annotated.

Modelling security has been a research topic in re-
cent years. Jirjens introduced the UMLsec extension
[1] to express and verify security aspects within UML-
diagrams. However, to perform such a formal verifica-
tion, all security-related aspects such as cryptographic
data must be specified in the system model. This would
be a suitable approach for security experts, but it tend
to be difficult to understand without a strong security
background.

Other approaches [2, 3] proposed enhancements for
process models to express security requirements, but do
not describe a schema to integrate these requirements
in arbitrary modelling languages. Moreover, these ap-
proaches do not provide a meta-model that is capable
to represent interacting participants in a Service-based
system. To enable an automated generation of secu-
rity policies for SOA, the roles and relation of these
participants must be defined in the model as well.

In [4] Basin and Lodderstedt introduce SecureUML
that provides a security design language to describe

role-based access control and authorisation constraints.

In summary, related approaches have been focused
on the modelling of authorisation requirements or the
specification of security requirements in the scope of
business processes and do not support the generation
of security policies. To support our model-driven ap-
proach, we present in this paper:

e An adaption of the schema introduced by Basin et
al. [4] to define new security design languages for
service-based systems.

e The abstract syntax and notion of our security
modelling language SecureSOA used to express se-
curity intentions.

e The integration of SecureSOA in Fundamental
Modelling Concept (FMC) Block Diagrams to en-
able the annotation of security requirements in
system models.

Our security modelling language SecureSOA consti-
tutes the foundation of our model-driven approach. Se-
curity intentions modelled in a language based on Se-
cureSOA are translated to our meta-model for security
policies in SOA that has been introduced in [5]. Finally,
the security requirements defined in the meta-model
are used to generate enforceable WS-SecurityPolicies.

The structure of this paper is as follows. In Sec-
tion 2 we will introduces our concept to enhance design
modelling languages with security intentions. Section
3 presents the syntax of our security design language
SecureSOA to model these intentions. In the next sec-
tion, a SecureSOA dialect based on FMC is introduced.
Section 5 presents a use case that is modelled using
this security design language. Our model-driven ap-
proach for SOA is outlined in the next Section. Section
7 presents related work, while Section 8 concludes the

paper.

2 Modelling Security Intentions for
SOA

Various modelling languages and dialects have been
defined that can be used to model different aspects in
an SOA. For instance, the system structure can be visu-
alised in UML or FMC, while the processes executed by
this system can be modelled with BPMN. Each mod-
elling language provides a specific view on a particular
aspect of the system that can be used to annotate se-
curity intentions. To aggregate and enforce intentions
from different types of modelling lanugages, security
intentions must be defined consistently and indepen-
dent from any modelling language. In this sections we

discuss strategies to integrate security intentions into
modelling languages and outline the steps of our ap-
proach.

2.1 Enhancing modelling languages

To integrate security intentions in system design lan-
guages, an enhancement of these languages is required.
In general, three approaches can be distinguished to
implement such an enhancement:

1. Light-weight extensions — The easiest way to en-
hance a particular system design language is the
usage of extension points provided by the lan-
guages itself. For instance, UML provides stereo-
types and tags to extend UML modelling elements.
However, the visualisation of complicated security
requirements might get confusing. Moreover, not
all modelling languages define extension points to
enhance modelling elements.

2. Heavy-weight extensions — Another approach to
enhance modelling languages is based on the ex-
tension of its meta-model. For example, this ap-
proach is used by Rodriguez to define his security
extensions for BPMN and UML [2] process mod-
els. The fact that the definition and integration of
security requirements is done specifically for a par-
ticular system design modelling language based on
its meta-model is one major disadvantage of this
approach.

3. Defining a new language — To avoid the drawbacks
mentioned above, a new modelling language can
be defined. This modelling language integrates
security elements and contain specific redefined
elements of a system design modelling language.
SecureUML uses this approach to model security
requirements as an integral part of system mod-
els. Therefore, Basin and Lodderstedt described
a generic approach to create a new security de-
sign languages by integrating security modeling
languages into system design modelling languages
as described in [4].

2.2 Defining Modelling Design Languages

The advantage of the schema described by Basin and
Lodderstedt is its flexibility. A security modelling lan-
guage can be defined once with certain extension points
and can then be integrated into different design mod-
elling languages for service-based systems. The result-
ing language is called a modelling dialect. Moreover, a

formal semantic can be defined for the security mod-
elling language that enables the verification of the re-
quirements modelled in any dialect. We have adopted
this approach as shown in Figure 1.

Security Design Language
SecureSOA
e User Authentication i i Extension
o ldentity Provisioning Security Modelling Points
o Data Confidentiality Language
e Data Authenticity
e Trust
Dialect U Modeling
|| Language
i based on
« FMC System Design Security
e BPMN Modeling Language Intensions
L +FMC

Figure 1. Schema for Constructing Security
Design Languages

The schema consists of the following parts:

1. A security modelling language is used to express
security requirements for a specific purpose. We
have defined SecureSOA that enables a modelling
of security intentions for services-based systems.

2. The structure of a system is described using a sys-
tem design modelling languages. While different
types of modelling languages can be used, our ap-
proach is based on FMC Block diagrams that are
used to visualise system architectures.

3. Both languages are integrated by merging their
vocabulary using the extension points of the secu-
rity modelling language. The resulting language is
a called a dialect.

2.3 Merging Security and System Design
languages

In SecureSOA, extension points are formalised enti-
ties that relate to security intentions. These extension
points can be mapped to entities in any system design
model.

For example, we formalise participants in an SOA
such as services as objects that participate in an in-
teraction by exchanging information. FMC visualises
system architectures that are composed of agents com-
municating over a channel. Therefore, an object is an
extention point and can be mapped to an agent.

As stated by Lodderstedt in [6], there is no uni-
versal approach to perform an integration of arbitrary
security and design modelling languages. The inte-
gration technique depends on the structure of the se-

curity modelling language. In the scope of Secure-
SOA, we have identified three integration patterns that
are listed in Table 1. The definition of these pat-
terns is based on the classes and their relationships
in the meta-models of the security and the system de-
sign languages. We denote the set of classes in the
SecureSOA meta-model as s = {s1,...,8n,}, classes
in the meta-model of the security design language as
m = {my,...,mp,} and classes in the meta-model of
the dialect as d = {dy,...,dn, }

3 SecureSOA - a Security Design Lan-
guage for SOA

SecureSOA enables a modelling of security inten-
tions for service-based systems and is defined by a
MOF-based meta-model (abstract syntax). In addi-
tion, we will introduce the notion of these elements
(concrete Syntax) as UML profiles. Finally, the def-
inition of the formal semantics of SecureSOA will be
outlined in this Section.

3.1 SecureSOA Abstract Syntax

The SecureSOA meta-model [5] specifies the ele-
ments of this security language and consist of two parts.
The meta-model for SOA introduces the basic entities
in our model and their relationships to describe interac-
tions in a Service-oriented Architecture. Based on this
model, a model for security intentions and annotations
is provided as well.

3.1.1 A Meta-Model for SOA

2..* Participatein 1..*

Object Interaction
1 has T'_'USt y bound | 1"
1> Relationship to 0.*

Attribute > Information

Figure 2. The Security Base Model

As introduced in [7], one of the basic entities in our
model is an object that consists of a set of attributes,
participates in an interaction, and has trust relation-
ships, see Figure 2. In addition, each interaction also
involve the exchange of information. For instance in
the scope of Web Services, an object could be a Web
Service client or a Web Service itself. Therefore, we
subclassify objects into service, client and sts.

1) Subclass extension points

Sj

7

m;

The easiest way to perform the integration is to map a class m; in the design modelling
language to its corresponding extension point s; in SecureSOA that represents an abstraction
of this class. This dependency can be easily represented as an inheritance relationship in
the dialect between the classes s; and m;.

2) Enhance the dialect with new classes

si <

T

Si

1

m <

d

In this case, a class s; in SecureSOA can be mapped to a class m; in the design modelling
language as described by pattern 1. In addition, this class is inherited by a class s;; of
SecureSOA that models a specific aspect of service-based systems. However, it is unlikely
to find a class in a general purpose modelling language that corresponds to this specialised
class s;/, although the abstract parent class s; has been mapped. To associate the extension
point s;; with the design modelling language, it is necessary enhance the dialect with a new
class d; that inherits the class s and m;.

3) Define associations and OCL constraints

+OCL
Constraint

m —

Association

my

However, there might not be straight mapping for each extension point of SecureSOA, since
certain aspects might be modelled on a different level of abstraction in both languages.
In this case, a class s; has to be mapped to multiple classes m; and mj, in the other
language. To integrate these classes into the dialect, association have to be defined between
the corresponding classes. OCL constraints can be used to capture additional semantics of
these dependencies.

Table 1. Schemas for Creating the Modelling Dialect

To enable a detailed description of Web Service mes-
saging, we model transferred information as data trans-
fer objects as introduced by Fowler in [8]. In [5] we have
shown the usage of this structure to describe SOAP
messaging. A data transfer object has a target and an
issuer. This reflects that a data transfer object can be
send over several objects acting as intermediaries.

The classes defined in the scope of this SOA meta-
model are the extensions points of SecureSOA as de-
scribed in Section 2.2.

3.1.2 Modelling Security Intentions

Based on the SOA meta-model that has already been
described in previous work [5], we have specified an en-
hancement of this model to express security intentions
and annotations.

Security intentions are defined specifically for one se-
curity aspect in terms of service security and are related
to one or more security goal. We have defined the fol-
lowing set of security intentions: User Authentication,
Non-Repudiation, Identity Provisioning, Data Authen-
ticity, Data Confidentiality, and Trust. Data Confi-
dentiality, for instance, requires the security goal con-
fidentiality for a particular piece of information, while
identity provisioning states that the trustworthy iden-

tification and authentication of a user at a particular
object is required. However, SecureSOA is not limited
to this constraints and supports custom enhancements
by adding additional security intentions.

Security
Intensi
Object - n% Information
String: Security Profile
1 s é \ 1
1 Object Information 1
Intension Intension Intention Intension
Subject Subject
User Identity Data Data
Authentication Provitioning Confidentiality = Authenticity

String[]: Claim Types
Figure 3. Modelling Security Intentions

As shown in Figure 3, each security intention is re-
lated to a security profile. The fundamental idea is
to hide technical details at the modelling layer. The
modeller should not be bothered with details such as
security algorithms and mechanisms that are used to
enforce this intention. This set of information is prede-
fined in a security profile and is then referenced by the
security intention. Moreover, security intentions state
requirements for a specific subject that is either an ob-
ject or a data transfer object. Therefore, each security

intention has a intention subject. Object intentions re-
fer to an object, while information intentions refer to
an data transfer object.

While security intentions represent requirements, we
use security annotations to represent security-related
capabilities. For example, annotations could express
identity claims that are supported by an identity
provider. Annotations are defined similar to the se-
curity intention structure as shown in Figure 3.

3.2 SecureSOA Concrete Syntax

The concrete syntax specifies the visualisation of the
element that are defined by the abstract syntax. Since
the extension points of the SecureSOA meta-model
(e.g. objects or interactions) are mapped to classes
in the design modelling language, their notion is based
on this language. Therefore, we just have to define the
notion of security intentions and annotations.

In general, there are two possibilities to define a con-
crete syntax (notion) for these elements. The first op-
tion is to express them as a property of the subject
of the element. Another option to visualise security re-
quirements is the definition of artifacts for each element
that can be used to annotate the element’s subject. We
have chosen this approach to define the concrete syntax
of security intentions specified by SecureSOA.

Our notion for security inentions is based on a UML
concrete syntax using UML classes and stereotypes.
Each intention is visualised as an UML class that is
connected to the intention’s subject using an UML as-
sociation. The mapping between SecureSOA intentions
and UML stereotypes is listed in Table 2. The notion
for security annotations is specified correspondingly.

’ UML Stereotype \ Symbol ‘

<< User Authentication >> g
<< Non-Repudiation >>

<< Identity Provisioning >>
<< Data Authenticity >>
<< Data Confidentiality >>
<< Trust >>

(| E|=]|@

Table 2. SecureSOA Concrete Syntax

3.3 SecureSOA Formal Semantic

We can formalize our SecureSOA meta-model as
a relational model (based on sorts and relations) as
described by Lodderstedt [6]. This formalisation fa-
cilitates the verification of the transformation in our

model-driven approach and will be outlined briefly:
Classes and associations in the SecureSOA meta-model
are mapped to a set ¢; in a model m that contains an
entry for each instance of a specific class or associa-
tion. Each intention defines requirements concerning
the exchange of information in a system m’ that repre-
sents an secured instance of m. Therefore, the formal
semantic of each security intention can be specified by
defining an implication on the models m and m’. For
example, if the security intention data authenticity re-
lates to a data transfer object in the model m, then it
will imply that this data transfer object must contain
a signature in the model m.

4 A SecureSOA dialect based on FMC

SecureSOA offers the possibility to express security
intentions in various modelling languages. We have
chosen FMC Compositional Structure Diagrams (Block
Diagrams) as a system design modelling language, since
FMC offers a suitable foundation to describe an SOA
on a technical layer in terms of involved participants
and their communication channels.

4.1 Fundamental Modeling Concepts

Fundamental Modeling Concepts (FMC) provides
an approach to describe software systems. It can be
used to model the structure of a system, processes in a
system, and value domains of a system.

FMC Compositional Structure Diagrams (also
known as FMC Block Diagrams) depict the static
structure of a system and the relationships between
system components. This diagram type distinguishes
between active and passive components. Agents are
active system components that are capable to commu-
nicate via channels and to perform activities in the sys-
tem. Channels and storages are passive components
used to transmit or store information.

1.* .
Agent @ Storage j{> Location
l 2. Channel

performs
ReadAccess Acco
Operation . Reification Value
WriteAccess

Figure 4. FMC Meta-Model

The FMC meta-model [9] describes the abstract syn-
tax for all diagram types and is specified using FMC
entity relationship diagrams. We have translated the

FMC meta-model to a MOF-based meta-model. Fig-
ure 4 depicts the part of the meta-model that describes
FMC block diagrams. Agents are connected to a stor-
age or a channel that are locations and interact by per-
forming read or write operations.

4.2 Merging SecureSOA and FMC

To integrate SecureSOA in FMC, the vocabularies
of both languages have to be merged and the entities
in FMC have to be mapped to corresponding extension
points in SecureSOA. The meta-model of the dialect is
shown in Figure 5.

T T Al
6 Service STS Client
Object A A
Service STS Client
Agent Agent Agent
v J J)
Agent I Channel ——> Location
\|/performs bount to |
ReadAccess 1
Operation pecess
- Reification
WriteAccess |
comprises

Information <}—— Value

1
Int ti 4 4
nteraction Data Transfer
Object <}—— Value DTO

New elements
added to the dialect

FMC Meta-Model SecureSOA

Figure 5. SecureSOA-based FMC dialect

As aforementioned in Section 2.3, the easiest way
to perform the integration is to subclass elements of
SecureSOA. Object is subclassed by Agent, while In-
formation is subclassed by Value. However, there is no
class in FMC that can be mapped to Service, Client,
STS and Data Transfer Object. As described by our
integration pattern 2 in Section 2.3, these extension
points can be mapped by adding new elements (c.f.
grey coloured elements in Figure 5) to the dialect that
subclass related elements in FMC and SecureSOA.

Finally, the SecureSOA class Interaction has to be
mapped to FMC. Subclassing will not work as integra-
tion technique, since interaction is not just a channel in
FMC. It is composed of a channel in combination with
an operation that is performed on this channel. There-
fore, we defined associations and an OCL-Constraint
to perform the integration as defined by pattern 3 in
Section 2.3.

4.3 Defining the Concrete Syntax

The notion of the classes in the meta-model of the
dialect is provided by the concrete syntax of FMC and
SecureSOA. However, a notion must be defined for the
elements Service Agent, STS Agent and Client Agent
that have been added to the dialect. Since these ele-
ments inherit from FMC Agent, their notion is based
on the notion this class. To indicate the agent’s type
(Service, Client, or STS) we enhanced the concrete syn-
tax with a notion for stereotypes as defined by UML.

5 SecureSOA Modelling Example

This section illustrates the usage of SecureSOA to
model a web shop scenario as shown in Figure 6. This
SOA scenario has been modelled using the web-based
modelling tool Oryx [10]. We added our security design
language introduced in the previous section as a stencil
set to this tool.

The order scenario contains an order process, in
which a user is requesting goods using an online store
web application. This application invokes an composed
order service that uses two external services; a payment
and a shipping service. The payment service represents
an external service which handles the payment of the
order process. In order to do so, the service needs
payment information including a payment amount and
credit card information like card type, card holder, card
number, expiration date and a security code. The ship-
ping service initiates the shipping of the goods using
the recipients address. Note that each agent indicates
its type (Client, Service or STS) using stereotypes.

<<Claim Types>>
Credit Card
Data

<4
<< STS >>
Bank Identity
Provider

<< Identity Provisioning >>]

Security Profile: Standard
Required Claims: ~ Credit Card llumber

<< Service >>

Transfer
Service

Product e
Database rP/Banking Service Provider .~ *+,

Trusted Bank

<< Data Confidentiality>>

<< Client >>
Supershop

<<Claim Types>> << Service >>

Security Profile: Standard

Address Shop Service

Web Frontend

Online Shop ,."'

<< Service >>

E Speed
<< ST5 >> << Data Authertitcity>> [#1 shﬁupmg

Registration X Service
Offies Tentity Security Profile: Standard
Provider

..+*" Deliver Service Provider

Registration Office << Identity Provisioning >> 1

Security Profile: Standard
Required Claims: Address

Figure 6. SecureSOA Web Shop Example

Users in this example have an account at their
trusted bank and at the registration office, who act as

identity providers managing the user’s digital identity.
The user can be authenticated at the identity providers
to request a security token that can be used to access
a specific service.

In addition, SecureSOA is used to annotate security
intentions to various actors in this use case. The pay-
ment service has established a trust relationship with
the trusted bank, while the shipping service trusts in-
formation from the registration office. Therefore, the
money transfer service and the speed shipping service
are annotated with the security intention identity pro-
visioning, while the identity providers are annotated
with the identity information that they offer. To se-
cure the exchanged information, the intentions data
authenticity and data confidentiality are used as well
in this example.

6 Model-driven Security in SOA

SecureSOA enables the annotation of system design
models e.g. FMC block diagrams or BPMN models
with security intentions as shown in the previous Sec-
tion. This language provides the foundation for our
model-driven approach that enables SOA Architects
to state security intentions at the modelling layer and
facilitates a generation of enforceable security config-
urations [5]. As illustrated in Figure 7, our approach
consist of three layers.

Security
Requirements

Security

Modelling n Security
Modelling <» .
Layer Language Profile

H v

Security _—A Security
Constraints

Plattform
Independent

Security
Ontology

Web WS-Security
Policy

Service

Figure 7. Model-driven Security in SOA

We use a policy meta-model to abstract from con-
crete policy languages (e.g. WS-SecurityPolicy) as in-
troduced in [5]. A policy in this model consists of mul-
tiple security constraints that capture security require-
ments on a technical layer. Information at the mod-
elling layer are gathered and translated to this model.
To perform this transformation, expertise knowledge
might be required to determine an appropriate strat-
egy to secure services and resource, since multiple so-
lutions might exists to satisfy a security goal. For ex-

ample, confidentiality can be implemented by securing
a channel using SSL or by securing parts of transferred
messages. Based on the security pattern approach [11],
we have defined a formalised system of security con-
figuration patterns that are used to resolve security
constraints. Finally, these constraints are transformed
into enforceable security policies based on a predefined

mapping.

7 Related Work

The domain of model-driven security in the con-
text of and SOA and business processes is an emerg-
ing research area. Previous work done by Rodriguez
et al. [12], [2] discusses an approach to express secu-
rity requirements in the context of business processes.
Although they support several security requirements,
they neither describe a schema to integrate these re-
quirements in other modelling languages nor describe
a model-driven transformation.

Breu and Haffner proposed a methodology for secu-
rity engineering in service-oriented Architectures [13]
that is based on a model-driven approach. In partic-
ular, they outlined a transformation to authorisation
constraints. Although providing a generic framework,
they do not describe a mapping to WS-SecurityPolicy.

SecureUML [4] introduced by Basin et al. is a se-
curity modelling language to describe role-based access
control and authorisation constraints. To integrate this
language in different types of system design languages,
they proposed an integration schema that is the foun-
dation of the approach presented in this paper.

Jiirjens presented UMLSec [1] to express and verify
security relevant information within UML-diagrams.
However, the verification of security protocols and sys-
tem models requires to express all security aspects at
the modelling layer. This results in models that have
a certain degree of complexity and do not provide a
simple, high-level notion for security intention.

Wolter [3] fosters a model-driven approach to enable
a generation of XACML access control policies based
on enhanced business process models.

Jensen and Feja described a model-driven genera-
tion of Web Service security policies based on the mod-
elling of security requirements in business process mod-
els [14].

Using security patterns, Delessy described a
pattern-driven process for secure SOAs [15]. An auto-
mated translation to security policies is not described.

8 Conclusion and Future Work

System design modelling languages provide a suit-
able abstract perspective to specific security goals on
a more accessible level. In this paper, we presented
an approach to enhance arbitrary system design mod-
els with security intentions. Our approach is based
on an universal schema that has been introduced by
Lodderstedt and Basin in [4] to define security design
languages. In this paper, we introduced SecureSOA as
our security modelling language to express security in-
tentions related to service security and described the
concrete and abstract syntax of our language. More-
over, we discussed strategies to integrate our language
into any system design modelling language. As a proof
of concept, we defined a security design language by
integrating SecureSOA in Fundamental Modeling Con-
cepts Block Diagrams and added this language as a
stencil set to the modelling tool Oryx [10].

To illustrate the expression of security intentions in
FMC, we presented an order service scenario that is
used to state security intention such as trust relation-
ships, identity provisioning, and confidentiality. The
specification of security intentions is the basis for our
model-driven approach that addresses the difficulty to
generate security configurations for Web Service sys-
tems. Altogether, our proposed modelling enhance-
ment constitutes a suitable foundation to describe and
implement a model-driven transformation of abstract
security intentions to enforceable security configura-
tions in different application domains.

In the next step, we will use the formal semantic of
SecureSOA to verify the transformation process.

References

[1] Jan Juerjens. UMLsec: Extending UML for Secure
Systems Development. In UML ’02: Proceedings
of the 5th International Conference on The Unified
Modeling Language, pages 412-425, 2002.

[2] Alfonso Rodriguez, Eduardo Ferndndez-Medina,
and Mario Piattini. A bpmn extension for the
modeling of security requirements in business pro-
cesses. IEICE Transactions, 90-D(4):745-752,
2007.

[3] Christian Wolter and Andreas Schaad. Modeling
of task-based authorization constraints in bpmn.
In BPM, pages 64—79, 2007.

[4] David Basin, Jiirgen Doser, and Torsten Lodder-
stedt. Model driven security: from uml models

[15]

to access control infrastructures. ACM Transac-
tions on Software Engineering and Methodology,
15(1):39-91, January 2006.

Michael Menzel and Christoph Meinel. A security
meta-model for service-oriented architectures. In

Proc. SCC, 2009.

Torsten Lodderstedt. Model driven security:
from UML models to access control architectures.
PhD thesis, Albert-Ludwig University of Freiberg,
March 2004.

Christian Wolter, Michael Menzel, and Christoph
Meinel. Modelling security goals in business pro-
cesses. In Proc. GI Modellierung 2008, num-
ber ISBN 978-3-88579-221-5. GI LNI, Berlin, Ger-
many, 1008.

Martin Fowler. Patterns of Enterprise Application
Architecture. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2003.

Peter Tabeling, Rmy Apfelbacher, and Stefan
Wappler. Fmc metamodel - the fundamental mod-
eling concepts metamodel explained, September
2005.

Gero Decker, Hagen Overdick, and Mathias
Weske. Oryx - an open modeling platform for the
bpm community. In BPM, pages 382-385, 2008.

Joseph Yoder and Jeffrey Barcalow. Architec-
tural patterns for enabling application security. In
PLoP, 1997.

Alfonso Rodriguez, Eduardo Ferndndez-Medina,
and Mario Piattini. Towards a uml 2.0 extension
for the modeling of security requirements in busi-
ness processes. In TrustBus, pages 51-61, 2006.

Michael Hafner and Ruth Breu. Security
Engineering for Service-oriented Architectures.
Springer, October 2008.

Meiko Jensen and Sven Feja. A security model-
ing approach for web-service-based business pro-
cesses. Engineering of Computer-Based Systems,
IEEE International Conference on the, 0:340-347,
20009.

Nelly A. Delessy. A Pattern-driven Process for
secure Service-oriented Applications. PhD thesis,
Florida Atlantic University, Boca Raton, Florida,
May 2008.

