
A Flexible and Efficient Alert Correlation Platform
for Distributed IDS

Sebastian Roschke, Feng Cheng, Christoph Meinel
Hasso Plattner Institute (HPI), University of Potsdam

P.O.Box 900460, 14440, Potsdam, Germany
{sebastian.roschke, feng.cheng, meinel}@hpi.uni-potsdam.de

Abstract—Intrusion Detection Systems (IDS) have been widely
deployed in practice for detecting malicious behavior on network
communication and hosts. The problem of false-positive alerts is
a popular existing problem for most of IDS approaches. The
solution to address this problem is correlation and clustering of
alerts. To meet the practical requirements, this process needs
to be finished as soon as possible, which is a challenging task
as the amount of alerts produced in large scale deployments of
distributed IDS is significantly high. We identify the data storage
and processing algorithms to be the most important factors influ-
encing the performance of clustering and correlation. We propose
and implement the utilization of memory-supported algorithms
and a column-oriented database for correlation and clustering
in an extensible IDS correlation platform. The utilization of
the column-oriented database, an In-Memory Alert Storage, and
memory-based index tables leads to significant improvements on
the performance. Different types of correlation modules can be
integrated and compared on this platform. A plugin concept
for Receivers provides flexible integration of various sensors
and additional IDS management systems. The platform can be
distributed over multiple processing units to share memory and
processing power. A standardized interface is designed to provide
a unified view of result reports for end users. The efficiency of
the proposed platform is tested by practical experiments with
several alert storage approaches, different simple algorithms, as
well as local and distributed deployment.

Keywords-Memory-based Correlation, Memory-based Cluster-
ing, Memory-based Databases, IDS Management

I. INTRODUCTION

Intrusion Detection Systems (IDS) has been proposed for
years as an efficient security measure and is nowadays widely
deployed for securing critical IT-Infrastructures [27]. Lots
of commercial and open source IDS implementations have
emerged towards identifying malicious behaviors against pro-
tected hosts or network environments. An effective IDS should
be capable of detecting different types of attacks as well as all
the possible variants of a certain type of attack. An IDS should
detect not only known attacks but also unknown attacks. Fur-
thermore, the IDS itself needs to be robust against any evasion
techniques. To simultaneously provide multiple benefits from
various IDS sensors, an integrated IDS solution is required,
which mostly relies on unified data and communication (e.g.
IDMEF[2]).

The problem of false positive alerts is a well known problem
for many IDS approaches [27]. Suboptimal patterns or insuf-
ficient thresholds for pattern-based and anomaly-based IDS
approaches are the main reasons for a huge number of false-
positive alerts. By deploying the IDS sensors in a distributed

environment, the number of false positive alerts increases as
a single event may be detected and reported multiple times
by different involved sensors. The popular solution to address
this problem is correlation and clustering of alerts. To improve
the efficiency of clustering and correlation, several techniques
have been proposed [1]. As high security requirements of
networks need real-time reporting of attacks and malicious
behavior, the performance of these techniques is a critical
factor. In particular in large scale distributed IDS (DIDS),
providing high-performance correlation and clustering remains
to be a difficult challenge, due to a huge amount of alerts. The
performance of alert correlation can be improved by using ta-
ble indexes in main memory for hyper alerts [26], i.e., clusters
of alerts with the same properties. Furthermore, correlation in
real-time is often based on filtering and clustering of alerts
to hyper alerts [25], which reduces the number of processed
alerts significantly. The approach reaches a correlation rate on
the order of 100, 000 alerts per second based on the massive
reduction of alerts by clustering them. However, a general
approach that can handle a higher amount of alerts per second
without the need of alert reduction is considered to be useful.

In-Memory and column-based databases are usually used
for costly analytical processing of huge amounts of data
[15]. A column-based organization of the database improves
analytical operations, which often consist of comparison of
all values from a single or multiple columns. As described
in [17], database systems can benefit from the use of main
memory. In-memory and column-based databases are suitable
for future computing paradigms, such as multi-core systems,
which are supposed to have more CPUs and a huge amount
of main memory. By storing a database in the main memory,
analytical operations can be processed in parallel by several
CPUs with direct access to the main memory. There are
many implementations for column-based database systems,
such as MonetDB [18], [19], which is an open-source database
system for high-performance analytical operations, e.g., On-
line Analytical Processing (OLAP), Geographic Information
Systems (GIS), XML Query, text and multimedia retrieval.
MonetDB often achieves a significant speed improvement
for SQL over other open-source systems, e.g., MySQL[20]
or PostgreSQL[21]. The general benefits of in-memory and
column-based databases can be useful to correlation and
clustering of IDS alerts.

In large scale deployments of DIDS, huge number of
alerts are produced in a short time. To fulfill the challenging

2010 Fourth International Conference on Network and System Security

978-0-7695-4159-4/10 $26.00 © 2010 IEEE

DOI 10.1109/NSS.2010.26

24

2010 Fourth International Conference on Network and System Security

978-0-7695-4159-4/10 $26.00 © 2010 IEEE

DOI 10.1109/NSS.2010.26

24

Sebastian Roschke, Feng Cheng, Christoph Meinel: "A Flexible and Efficient Alert Correlation Platform for Distributed IDS"
in Proceedings of the 4th International Conference on Network and System Security (NSS 2010), IEEE Press, Melbourne, Australia, pp. 24-31, 9, 2010. ISBN: 978-0-7695-4159-4.

task of fast correlation and clustering, we identified the data
storage and processing algorithms to be the most important
among several other influential factors for the performance.
To improve those factors, we propose the utilization of im-
proved algorithms using a memory based index table and
the deployment of In-Memory or column-oriented databases
for correlation and clustering. A flexible correlation system
is needed, which synchronizes, unifies, and analyzes all the
security related events produced by the integrated sensors.
To meet these requirements, we implement an extensible IDS
correlation platform in this paper, which consists of several
Correlation Handlers, a unified Alert StorageController, a uni-
fied AlertUpdateController, and a RequestController for visual
presentation and network communication. The utilization of a
Column-oriented Database and an In-Memory Alert Storage
in connection with Improved Algorithms using Memory-based
Index Tables for correlation and clustering lead to significant
improvements of the performance. Different types of correla-
tion modules can be easily integrated and compared on this
platform. A new plugin concept for Receivers provides flexible
integration of various sensors and additional IDS management
systems. The platform can be distributed over several units to
share memory and processing power. The IDMEF standard
is used to represent and exchange the alert information. A
standardized interface is designed to provide a unified view of
result reports for users. The efficiency of the proposed platform
is evaluated by practical experiments for various alert storage
approaches and simple algorithms, within local or distributed
deployment of the platform.

The rest of the paper is organized as follows. Section II
introduces some related works in the field of clustering and
correlation as well as memory-based databases. In Section III,
the the performance problems of correlation are discussed and
advanced algorithms are proposed and analyzed. Section IV
presents the architecture and implementation of our correlation
platform. In Section V, the performance of the proposed
approach is compared and benefits as well as drawbacks are
discussed. Section VI lists some possible future works and
Section VII gives a short summary.

II. RELATED WORK

A. Alert Correlation

The alert correlation framework usually consists of sev-
eral components [1]: Normalization, Aggregation (Clustering),
Correlation, False Alert Reduction, Attack Strategy Analysis,
and Prioritization. Over the last years, alert correlation re-
search focused on new methods and technologies for these
components. IDMEF s[2] and CVE [3] are important efforts
in the field of Normalization. Approaches of aggregation are
mostly based on similarity of alerts [5], [6] or generalization
hierarchies [4]. The correlation algorithms [1] can be classified
as: Scenario-based correlation [7], Rule-based correlation [8],
Statistical correlation [9], and Temporal correlation [10]. False
alert reduction can be done by using such techniques as data
mining [11] or fuzzy techniques [12]. Attack strategy analysis
often depends on reasoning and prediction of attacks missed
by the IDS [13]. In terms of Prioritization, the alerts are

categorized based on their severity, e.g., using attack ranks
[14]. To solve problems of alert correlation, a variety of
disciplines are used, e.g., machine learning, data mining [11],
or fuzzy techniques [12]. Most of the efforts do not consider
the aspect of performance, which is needed in case of huge
amounts of alerts.

The work described in [25] considers the performance of
alert correlation by using memory-based table indexes for
hyper alerts. A hyper alert is a cluster of alerts with the
same properties, e.g., the same source address and target
address. The approach using index tables is introduced in
[26]. To perform correlation in real-time, the approach is
based on filtering and clustering of alerts to hyper alerts,
which reduces the number of processed alerts significantly.
However, this technique may lead to inexact results of the
correlation, as multiple alerts are generalized to a single hyper
alert. The approach reaches a correlation rate on the order
of 100, 000 alerts per second based on the massive reduction
of alerts by clustering in hyper alerts. As we use a more
general approach (by modifying the data storage and using
a distributed architecture), we claim that we can handle even
more alerts per second without the need of alert reduction.

B. In-Memory and Column-oriented Databases

Memory-based column databases are used for costly ana-
lytical processing of huge amounts of data [15]. The column-
based organization of the database improves the performance
of analytical operations, which often include a comparison
of all values from a single or multiple columns, e.g., the
calculation of statistical values or the grouping and clustering
of data. Furthermore, column-based databases show good
results in compression of the data [16]. As described in
[17], database systems can benefit from the use of main
memory. Especially future computing paradigms, such as
multi-core systems, can benefit from the utilization of In-
Memory Databases and Column-oriented Databases with a
huge amount of main memory. By storing a database into
the main memory, analytical operations can be processed
in parallel by several CPUs with direct access to the main
memory. Known problems could be persistence and recovery.
There are multiple implementations for column-based database
systems, such as MonetDB [18], [19], which is an open-source
database system for high-performance applications based on
analytical operations, e.g., data mining, Online Analytical
Processing (OLAP), Geographic Information Systems (GIS),
XML Query, text and multimedia retrieval. Due to the column-
based organization, MonetDB often achieves a significant
speed improvement for SQL over other open-source systems,
e.g., MySQL[20] or PostgreSQL[21].

III. CORRELATION AND ITS PERFORMANCE

The efficiency of the correlation depends on the quality of
the algorithm and its performance as well as the storage and
organization of original alerts. The quality is a measure of
the correctness of the algorithm and depicts how many of
the recognized correlations are correct, i.e., how many of the
correlations found represent existing relations between alerts.

2525

Sebastian Roschke, Feng Cheng, Christoph Meinel: "A Flexible and Efficient Alert Correlation Platform for Distributed IDS"
in Proceedings of the 4th International Conference on Network and System Security (NSS 2010), IEEE Press, Melbourne, Australia, pp. 24-31, 9, 2010. ISBN: 978-0-7695-4159-4.

Furthermore, it depicts how many of the existing relations
between alerts are found by the algorithm. The performance
of the correlation describes the amount of time needed to
correlate a number of alerts. Due to complex and large
scale networks, the amount of alerts increases significantly.
Therefore, the performance of correlation algorithms is a major
aspect of the efficiency of correlation.

A. Correlation Algorithms and Performance

The first considered algorithm is called Simple Clustering.
The algorithm takes a specific column as input and returns
the clusters regarding this column. An example application
for this algorithm is the retrieving of all different alerts
with IPi as target IP from the data source, i.e., i different
clusters with alerts. The second algorithm is called Aggre-
gated Clustering. The algorithm takes a specific column colA
and a specific value valB as input. It returns the clusters
regarding colA with all alerts that possess valB, which is
a value from another column. An example application for
this algorithm is the retrieving of all different alerts with IPi

as target IP from the data source, which have the source IP
IP0 = 123.123.123.123. The third algorithm is called Simple
Correlation. The algorithm takes two columns colA and colB
as well as one constraint const to calculate correlations. It
returns the correlations with the following simple semantic:
all alerts have the values valA = valB in the columns
colA and colB, and fulfill the constraint const. An example
could be all alert sets, with alerts A0 posessing the target
IP IPT = 123.123.123.123 and alerts A1 posessing the
source IP IPS = 123.123.123.123 fulfilling the constraint
const(a, b) = T (a) < T (b), where T (a) is the time-stamp
of the alert.

The performance of correlation depicts how many alerts can
be processed in a certain amount of time. The performance is
influenced by numerous factors:

• Quality of data (original alerts)
• Hardware Resources
• Storage and organization of data (used DB-technology

and schema)
• Algorithms
The quality of data describes how many duplicate alerts are

in the database, whether the alerts in the database are correct,
or if there is any wrong information in the database. A low
quality of the data leads to increasing processing time and
therefore affects the performance. The hardware (e.g. CPU,
memory, etc.) directly influences the processing time of the
correlation and is an important factor for its performance. The
database technology (e.g. row-based, column-based, memory-
based, etc) can influence the performance of the correlation
depending on the used algorithms. The database scheme can
influence the performance badly, if it is very complicated and
leads to complex database queries in the correlation algorithm.
The algorithm itself affects the performance of the correlation
process, as it defines the number of necessary database queries
or the usage of memory-internal data structures.

To improve the performance of the correlation, we decided
to focus on the factors: database technology and algorithms.

Known correlation approaches use row-oriented databases as
basic alert source. Such databases show low performance for
analyzing huge amounts of data. Therefore, we used column-
oriented and memory-based databases to improve the perfor-
mance of the correlation significantly. Additionally, known
correlation and clustering algorithms do not make full use
of the capabilities of the main memory. Therefore, these
algorithms only provide medium performance. We introduce
hash-index supported algorithms which heavily use the main
memory and show high performance.

B. Advanced Algorithms and Data Structure

To improve the performance of the previously described
algorithms, it makes sense to make extended use of main mem-
ory to store and process alerts. Two important modifications
are made to the algorithms. First, we load basic information for
all alerts into the memory. Second, all identified clusters are
saved as hash tables for further processing. To save memory,
we only store a subset of the alert data (called Correlation-
Data) in the main memory. All alerts can be retrieved from
the database on demand by using a message Id which needs
to be unique. The subset includes the values:

• messageId
• creationTime
• analyzerName
• sourceName
• sourceAddress
• targetName
• targetAddress
• classificationText
• reference
The subset consists of values from the IDMEF[2] Alert. The

messageId is an attribute of the Alert, which can be used to
identify it in the system. The creationTime holds the time the
Alert was created. The sourceName and sourceAddress hold
information on the source of the attack triggering the alert,
i.e., the name and IP address of the source. The targetName
and targetSource hold information on the victim of the attack
triggering that alert, i.e., the name and IP address of the source.
The classificationText holds the actual content of the Alert, i.e.,
the basic information to classify the Alert. The reference holds
references to external databases related to that attack, such as
CVE [3].

To store all alerts in the database, we use a simple database
scheme with two tables: one table storing the CorrelationData
and one table storing a reference to the full alert data. We
use that simple structure to improve the performance of the
correlation, as a complicated scheme would yield costly table
joins for analytical operations. The In-Memory alert storage is
organized in a configurable way. The simple list is the basic
structure with hash tables for correlation. To perform more
sophisticated and high-performance correlation, the platform
offers the approaches described in [26] for organizing the
main memory. In this way, the platform can provide optimal
data structures for performing correlation in batch mode (i.e.
correlation of a large fixed set of alerts) or in a streamed mode
(i.e. correlation of continuously incoming alerts).

2626

Sebastian Roschke, Feng Cheng, Christoph Meinel: "A Flexible and Efficient Alert Correlation Platform for Distributed IDS"
in Proceedings of the 4th International Conference on Network and System Security (NSS 2010), IEEE Press, Melbourne, Australia, pp. 24-31, 9, 2010. ISBN: 978-0-7695-4159-4.

Fig. 1. IDS Correlation Platform

IV. AN EXTENSIBLE CORRELATION PLATFORM

To test the performance of the above mentioned simple al-
gorithms and advanced algorithms as well as column-oriented
and in-memory databases for correlation, we propose a flexible
correlation platform.

A. Architecture

The architecture of the correlation platform is shown in
Figure 1. It consists of four major components: the Con-
troller, the RequestController, the AlertUpdateController, and
the AlertSourceController. The Controller is responsible for
starting the platform with all other controllers, loading the Cor-
relation Modules, and initializing the In-Memory Alert Storage
and the Index Tables. The AlertSourceController provides the
interface to the source storage, e.g., a row or column-oriented
database. By using Source Adapters as plugins, the Alert-
SourceController provides an easy and flexible mechanism to
connect different types of databases. The UpdateSourceCon-
troller provides the interface to a running IDS management
system. The plugin concept of Alert Receivers offers the
possibility to connect different management systems as well
as different IDS sensors directly [23]. The RequestController
provides the interface to the CorrelationFrontend, which is
responsible for presenting the correlation results to the user.
The Correlation Modules implement the different correlation
algorithms. Each module is working independently based on
a data source, which is either the database provided by the
AlertSourceController, or the In-Memory Alert Storage created
at startup. The In-Memory Alert Storage can also be disabled if
needed, as it is memory consuming. Furthermore, each module
can update and read the Index Tables to cluster and correlate
the alerts.

The platform basically supports two modes of operation:
run-time mode and non-runtime mode. In non-runtime mode,
the AlertUpdateController is disabled and the correlation is

done based on the data source, e.g., a row- or column-
based database. In runtime mode, the AlertUpdateController is
enabled and new alerts are processed by the system at runtime.
The initial correlation and clustering of the data source is
performed as well during the startup of the platform. The In-
Memory Alert Storage is updated regularly by adding incoming
alerts and dropping old alerts. This procedure is necessary as
the internal memory is always limited.

The AlertSourceController can easily integrate row-oriented
as well as column-oriented databases. The Source Adapters
can use different technologies to connect to databases, e.g.,
SQL or XQuery. Furthermore, the AlertSourceController pro-
vides a memory based storage called In-Memory Alert Storage.
This integrates the different technologies and enables the usage
of multiple approaches at once. The column-oriented database
and memory-based storage are useful for the analytical op-
erations, such as clustering and correlation. The row-based
approach can be useful for IDS management at runtime, as
fast inserting of alerts and persistence are major requirements.
Additionally, the AlertSourceController provides information
to the Correlation Modules that can be used to establish a
dedicated direct connection to the database, which is useful
for a distributed architecture.

B. IDS Correlation Platform for Distributed and Parallel
Computing

Considering multi-core systems, the proposed architecture
can easily be distributed as the major components are inde-
pendent. There are two major possibilities to distribute the ar-
chitecture over a multi-core system: sharing processing power
or sharing available memory. Figure 2 shows the architecture
of these two approaches.

By sharing processing power, the system can perform the
correlation very fast as each component has its own processor.
Thus, the system would have to use one single data source

2727

Sebastian Roschke, Feng Cheng, Christoph Meinel: "A Flexible and Efficient Alert Correlation Platform for Distributed IDS"
in Proceedings of the 4th International Conference on Network and System Security (NSS 2010), IEEE Press, Melbourne, Australia, pp. 24-31, 9, 2010. ISBN: 978-0-7695-4159-4.

Fig. 2. IDS Correlation Platform for Distributed and Parallel Computing

to do processing, which can limit the approach by available
memory space (e.g. in case of using a In-Memory approach).
The main controllers (i.e. AlertSourceController, AlertUpdate-
Controller, RequestController) can work on separated cores.
The plugins (i.e. Alert Receivers and Source Adapters) can
also be distributed to multiple cores for processing the alerts.
The Correlation Modules can easily be distributed to multiple
cores as they work independently on a single data source. This
approach can be useful in connection with column-oriented
databases, which can perform the analytical operations very
fast. Figure 2 shows the distribution of the modules CM1-
CMn to the ProcessingCores. The modules are working on a
single data source (i.e. an Alert Database).

By sharing available memory space, the In-Memory Alert
Storage can be distributed to the dedicated memory of the
processors, which increases the amount of available memory.
In this case, the Correlation Modules need to run on each
core processor as only a part of the data is accessible. The
processing based on the In-Memory Alert Storage is supposed
to be very fast. In this case, an aggregation of the correlation
results needs to be performed additionally. Figure 2 shows
the distribution of the In-Memory Alert Storage AS1-ASn to
the ProcessingCores. The modules CM1-CMn are working
on each ProcessingCore and an integration of the correlation
results is needed.

V. PERFORMANCE ANALYSIS AND DISCUSSION

To prove the applicability of our approach, we analyzed
the performance of the system and compared the introduced
approaches (i.e. In-Memory data storage and column-oriented
database) to the row-oriented database approach for clustering
and correlation.

A. Performance Analysis

We conducted practical experiments to perform a perfor-
mance analysis on the different approaches. The analysis has
been performed on a system with two Intel Core(TM)2 Duo
CPUs running on 1.4GHz with a cache size of 3, 072kB
each. The system possesses 2GB RAM and Solid-State-based
hard drive with a size of 128GB. The running operating

TABLE I
EXPERIMENTS OVERVIEW

system (OS) was a Gentoo Linux. The time and memory
consumption are measured by the Eclipse Test & Performance
Tools Platform Project (Eclipse TPTP) [24]. The following
additional software packages were used for the experiments:

• MySQL version 5.0.70
• MonetDB Release Aug2009-SP2
• Sun Java Development Kit (JDK) version 1.6.0.15
• Snort version 2.8.3
We used an alert data set collected by running a Snort[22]

IDS sensor connected to the backbone of the university
network. The sensor generated 1, 391, 520 real alerts in six
month of runtime. Based on this data set, we generated three
databases: one with 43, 485 alerts (called DB1), one with
695, 760 alerts (called DB2), and one with 1, 391, 520 alerts
(called DB3). DB1 and DB2 are a part of the basic data
set and have a chosen size (i.e. exactly 1/16 and 1/32 of the
original data set). We created these databases based on MySQL
and MonetDB to conduct the experiments. We measured the
inserts within the creation process, the clustering, and the
correlation based on the improved simple algorithms using a
row-oriented database (MySQL), a column-oriented database,
and the In-Memory Alert Storage. The index tables are used
in connection with the In-Memory Alert Storage to clearly
separate memory-oriented and database-oriented approaches.
Table I shows the conducted local experiments.

Table II shows the processing time per alert in milli seconds
(ms). A parallel plot visualization of the results is shown
in Figure 3. By comparing the results, we conclude that a
row-oriented database shows poor performance for clustering
and correlation. It handles between 2, 034 and 2, 784 alerts

2828

Sebastian Roschke, Feng Cheng, Christoph Meinel: "A Flexible and Efficient Alert Correlation Platform for Distributed IDS"
in Proceedings of the 4th International Conference on Network and System Security (NSS 2010), IEEE Press, Melbourne, Australia, pp. 24-31, 9, 2010. ISBN: 978-0-7695-4159-4.

TABLE II
EXPERIMENT RESULTS

per second for the simple clustering, and between 3, 018 and
5, 156 alerts per second for the simple correlation. However,
with approximately 16, 000 alerts per second, the creation
of the database is as fast as the creation of an In-Memory
Alert Storage, which can be important for an IDS man-
agement system that needs to insert many alerts in a short
time frequently. The column-oriented database shows better
performance for correlation and clustering. It handles between
4, 714 and 17, 177 alerts per second for the simple clustering,
and between 49, 018 and 102, 792 alerts per second for the
simple correlation. With approximately 63 alerts per second,
an important problem is the poor performance for database
creation, which makes it difficult to use as main alert database
for IDS management. The best performance is shown by
the In-Memory Alert Storage. It handles between 153, 188
and 779, 672 alerts per second for the simple clustering,
and between 261, 367 and 725, 600 alerts per second for the
simple correlation. By using index hash tables, the aggregated
clustering can handle between 153, 188 and 5, 288, 716 alerts
per second. A major issue is the memory consumption of this
approach. It uses 144 MB, 884 MB, and 1.6 GB of memory for
an In-Memory Alert Storage with the databases DB1, DB2,
and DB3.

As the In-Memory Alert Storage shows the best results,
we investigated the performance of the distributed correlation
platform using the In-Memory Alert Storage. The analysis
has been performed on a cluster of systems with two Intel
Pentium 4 CPUs running on 3.2GHz with a cache size of
1, 024kB each. The system possesses 2GB RAM and hard
drive (i.e. SATA, 7200rpm) with a size of 150GB. The
running operating system (OS) was an Ubuntu Linux. The
following additional software packages were used for this set
of experiments:

• MySQL version 5.0.67
• Sun Java Development Kit (JDK) version 1.6.0.0

The results of the experiments with a distributed correlation
platform are shown in Table II. The measured time considers
the whole data set DB3 with 1, 391, 520 alerts. A single
processing unit was working on a similar part of the data
set to perform clustering and correlation. i.e., each processing
unit has 173, 940 alerts in case of 8 processing units and

86, 970 alerts in case of 16 processing units. In this way, the
same amount of memory is consumed in each processing unit
and the correlation and clustering can be done much faster.
Additional time is necessary to distribute the alerts to the
processing units and to merge the results of the processors
together. The distribution time is represented by the value
Inserts in Table II. The merge of the results can be done
quite fast by including the result sets of each processing unit
with the same result identifier (e.g. clustered value) into a
new result set. The merging of the results is included in the
measurements shown in Table II. By using this cluster, we can
show that the clustering and correlation is up to 12 times faster.
The distributed platform can handle up to 2, 659, 574 alerts for
simple clustering and 9, 803, 922 alerts for simple correlation.
By using hash tables, we can handle up to 103, 092, 784 alerts
for aggregated clustering.

B. Discussion

As shown in the experiments (Table II), the proposed
platform can provide high performance correlation and clus-
tering of IDS alerts. Compared to the row-oriented database
approach used by many existing IDS management systems,
a column-oriented storage can improve the performance of
analytical operations, such as clustering and correlation. Us-
ing the distributed platform in connection with the column-
oriented database provides the advantages of a reliable data
storage and fast processing of the computations. The memory-
based approach improves the performance further and leads
to clustering and correlation in real-time. The distributed
platform decreases the memory usage of each processing
unit and shares the computation tasks fairly. It assigns tasks
dynamically and perform complicated calculations in a small
amount of time. The number of processing units is flexible
and can be adjusted according to the requirements. By using
hash tables to store the results of the correlation and clustering,
sophisticated algorithms can make use of former results and
perform extraordinary fast, even for a large number of alerts
that need to be processed (e.g. Aggregated Clustering in Table
II).

As shown in Table III, the proposed column-oriented
database approach is very slow for insert operations (approx-

2929

Sebastian Roschke, Feng Cheng, Christoph Meinel: "A Flexible and Efficient Alert Correlation Platform for Distributed IDS"
in Proceedings of the 4th International Conference on Network and System Security (NSS 2010), IEEE Press, Melbourne, Australia, pp. 24-31, 9, 2010. ISBN: 978-0-7695-4159-4.

Fig. 3. Experiment Results - Parallel Plot

TABLE III
EXPERIMENT RESULTS - INSERTS

imately 63 alerts per second), which renders it unfeasible for
general IDS management, as frequent inserts of alerts into
the database are a standard requirement. To overcome this
issue, the column-oriented database can be used for analytical
operations only while insert operations are performed on
a row-oriented database. Furthermore, the column-oriented
database seems to occupy more memory on hard disk than
the row-oriented database, e.g., the DB1 occupies 62, 460kB
using a row-oriented database (MySQL) and 132, 416kB using
a column-oriented database (MonetDB). The implementation
of the chosen column-oriented database seems to be unstable
at the moment. Unfortunately, it was impossible to create
DB3 based on MonetDB, as the creation always crashed and
left an inconsistent database. We are sure this issues can be
fixed in future releases of MonetDB. Although the memory-
based approach offers very good performance, it comes with

a very high memory consumption, i.e., 144 MB, 884 MB, and
1.6 GB of memory for an In-Memory Alert Storage with the
databases DB1, DB2, and DB3. Thus, the platform can only
handle a small number of alerts compared to the database
approaches, where a huge number of alerts can easily be
handled. The number of alerts can be decreased by defining the
time frame of alerts that need to be correlated, e.g., correlation
and clustering should only be performed on alert data that is
not older than two weeks. Another solution is the usage of the
In-Memory Alert Storage for recent alert data (e.g. not older
than n days) and to use a column-based database for old alert
data (e.g. older than n days). There should be a strict time-
frame configured to avoid Out-Of-Memory problems. Another
drawback is the missing persistence of the memory-based
storage, as a crash of the correlation platform would lead to
missing alerts. The persistence can be improved by storing the
alert data redundantly in a database.

VI. FUTURE WORK

The implemented correlation platform was tested with very
simple algorithms to show the benefits and reduce the huge
impact an algorithm has to the performance of correlation
and clustering. As an important next step, we will implement
and test sophisticated algorithms for correlation and clustering
on our the platform and further verify this approach. The
correlation techniques and query optimization methods de-
scribed in [26] will be used as correlation modules for the
platform. The distributed platform was tested on a cluster of
16 processing units. To gain more insight in the efficiency
on multi-core systems, we will conduct experiments on large
clusters. Based on the multi-core architecture, we will develop
and evaluate parallelized algorithms to perform clustering and
correlation on huge data sets. In addition to the existing data
sets, the system will be tested with large data sets generated
in a real network under attack. We expect to work with data
sets with more than 50 million alerts. Handling such data

3030

Sebastian Roschke, Feng Cheng, Christoph Meinel: "A Flexible and Efficient Alert Correlation Platform for Distributed IDS"
in Proceedings of the 4th International Conference on Network and System Security (NSS 2010), IEEE Press, Melbourne, Australia, pp. 24-31, 9, 2010. ISBN: 978-0-7695-4159-4.

sets does not only require a high-performance approach, but
also a sound architecture and implementation. Furthermore,
a detailed investigation of the query fingerprint of existing
correlation systems and algorithms is considered as one of
the next steps. An adjusted algorithm using database queries
that exploit the benefits of a column-oriented database is
supposed to provide promising results. Finally, the deployment
the correlation platform in a practical network to perform
correlation and clustering with real world data is planed, which
will improve the reliability of the system and proves the
applicability of the implemented platform.

VII. CONCLUSION

To fulfill the challenging task of fast correlation and clus-
tering, storage and processing algorithms of the data set are
identified as most important influential factors for the perfor-
mance. To improve those factors, we propose to use memory-
supported algorithms, a column-oriented database and an In-
Memory Alert Storage for correlation and clustering. To meet
the requirements of synchronizing, unifying, and analyzing
the high amount of security related events produced by the
integrated sensors, an extensible IDS correlation platform is
proposed in this paper. Different types of correlation modules
can easily be integrated and compared on this platform. The
contributions can be summarized as follows:

1) Design and implement memory-supported alert correla-
tion and clustering algorithms by using hash-based index
tables

2) Propose to apply advanced database techniques, i.e.,
column-oriented DB and In-Memory DB, for storing,
correlating, and clustering IDS alerts

3) Design and implement an extensible IDS alert correla-
tion platform

4) Conduct several experiments based on our proposed
platform for evaluating and comparing the performance
of different algorithms and storages

REFERENCES

[1] R. Sadoddin, A. Ghorbani: Alert Correlation Survey: Framework and
Techniques, In: Proceedings of the International Conference on Privacy,
Security and Trust (PST’06), ACM Press, Markham, Ontario, Canada,
pp. 1-10 (2006).

[2] Debar, H., Curry, D., Feinstein, B.: The Intrusion Detection Message
Exchange Format, Internet Draft, Technical Report, IETF Intrusion
Detection Exchange Format Working Group (July 2004).

[3] Mitre Corporation: Common vulnerabilities and exposures, CVE
Website: http://cve.mitre.org/, (Accessed March 2009).

[4] K. Julisch: Clustering intrusion detection alarms to support root cause
analysis, In: ACM Transactions on Information and System Security,
vol. 6, Issue 4, pp. 443-471 (2003).

[5] F. Cuppens: Managing alerts in a multi-intrusion detection environment,
In: Proceedings of the 17th Annual Computer Security Applications
Conference (ACSAC’01), IEEE Press, New-Orleans, USA, pp. 0022
(December 2001).

[6] A. Valdes and K. Skinner: Probabilistic alert correlation, In: Pro-
ceedings of the 4th International Symposium on Recent Advances in
Intrusion Detection (RAID’00), London, UK, Springer LNCS 2212,
pp.54-68 (2001).

[7] H. Debar and A. Wespi: Aggregation and correlation of intrusion-
detection alerts, In: Proceedings of the 4th International Symposium
on Recent Advances in Intrusion Detection (RAID’01), London, UK,
Springer LNCS 2212, pp. 85-103 (2001).

[8] P. Ning, Y. Cui, and D. Reeves: Constructing attack scenarios through
correlation of intrusion alerts, In: Proceedings of the 9th ACM
Conference on Computer and Communications Security (CCS’02) ACM
Press, Washington, DC, USA, pp. 245-254 (2002).

[9] X. Qin: A Probabilistic-Based Framework for INFOSEC Alert Corre-
lation, PhD thesis, Georgia Institute of Technology, 2005.

[10] W. L. Xinzhou Qin: Statistical causality analysis of infosec alert data,
In: Proceedings of the 6th International Symposium on Recent Advances
in Intrusion Detection (RAID’03), London, UK, Springer LNCS 2820,
pp. 73-93 (2003).

[11] S. Manganaris, M. Christensen, D. Zerkle, and K. Hermiz: A data mining
analysis of rtid alarms, In: Computer Networks, vol. 34, Issue 4, pp.
571-577 (2000).

[12] A. Siraj and R. B. Vaughn: A cognitive model for alert correlation
in a distributed environment, In: Proceedings of IEEE International
Conference on Intelligence and Security Informatics (ISI’05), IEEE
Press, Atlanta, GA, USA, pp. 218-230 (2005).

[13] P. Ning, D. Xu, C. G. Healey, and R. S. Amant: Building attack scenarios
through integration of complementary alert correlation method, In: Pro-
ceedings of the Network and Distributed System Security Symposium
(NDSS’04), The Internet Society, San Diego, California, USA, 2004.

[14] P. A. Porras, M. W. Fong, and A. Valdes: A mission-impact-based
approach to infosec alarm correlation, In: Proceedings of the 5th
International Symposium on Recent Advances in Intrusion Detection
(RAID’02), London, UK, Springer LNCS, pp. 95-114 (2002).

[15] H. Plattner: A Common Database Approach for OLTP and OLAP Using
an In-Memory Column Database, In: Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD’09), ACM
Press, Providence, Rhode Island, USA, pp. 1-2 (2009).

[16] D. J. Abadi, S. Madden, and M. Ferreira: Integrating Compression and
Execution in Column-Oriented Database Systems, In: Proceedings of
the ACM SIGMOD International Conference on Management of Data
(SIGMOD’06), ACM Press, Chicago, Illinois, USA, pp. 671-682 (2006).

[17] P. A. Boncz, S. Manegold, and M. L. Kersten: Database Architecture
Optimized for the New Bottleneck: Memory Access, In: Proceedings of
25th International Conference on Very Large Data Bases (VLDB’99),
Edinburgh, Scotland, UK, pp. 54-65 (1999).

[18] MonetDB: WEBSITE: http://monetdb.cwi.nl/ (accessed Nov 2009).
[19] P. Boncz: Monet: A Next-Generation DBMS Kernel for Query-Intensive

Applications, PhD Thesis, Universiteit van Amsterdam, Amsterdam, The
Netherlands, 2002.

[20] MySQL: WEBSITE: http://www.mysql.com/ (accessed Nov 2009).
[21] PostgreSQL: WEBSITE: http://www.postgresql.org/ (accessed Nov

2009).
[22] Snort IDS: WEBSITE: http://www.snort.org/ (accessed Nov 2009).
[23] Roschke, S., Cheng, F., Meinel, Ch.: An Extensible and Virtualization-

Compatible IDS Management Architecture, In: Proceedings of 5th Inter-
national Conference on Information Assurance and Security (IAS’09),
IEEE Press, vol. 2, Xi’an, China, pp. 130-134 (August 2009).

[24] Eclipse Test & Performance Tools Platform Project, WEBSITE:
http://www.eclipse.org/tptp/ (accessed Nov 2009).

[25] Tedesco, G. and Aickelin, U.: Real-Time Alert Correlation with Type
Graphs, In: Proceedings of the 4th international Conference on Infor-
mation Systems Security (ISS’09), Springer LNCS 5352, Hyderabad,
India, pp. 173-187 (2008).

[26] Ning, P. and Xu, D.: Adapting Query Optimization Techniques for
Efficient Intrusion Alert Correlation, Technical Report, North Carolina
State University at Raleigh, 2002.

[27] Northcutt, S., Novak, J.: Network Intrusion Detection: An Analyst’s
Handbook, New Riders Publishing, Thousand Oaks, CA, USA (2002).

3131

Sebastian Roschke, Feng Cheng, Christoph Meinel: "A Flexible and Efficient Alert Correlation Platform for Distributed IDS"
in Proceedings of the 4th International Conference on Network and System Security (NSS 2010), IEEE Press, Melbourne, Australia, pp. 24-31, 9, 2010. ISBN: 978-0-7695-4159-4.

