
Elastic Virtual Machine for Fine-grained Cloud
Resource Provisioning

Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel

Hasso Plattner Institute,
Potsdam University,
Potsdam, Germany

firstname.lastname@hpi.uni-potsdam.de

Abstract. Elasticity is one of the distinguishing characteristics asso-
ciated with Cloud computing emergence. It enables cloud resources to
auto-scale to cope with workload demand. Multi-instances horizontal
scaling is the common scalability architecture in Cloud; however, its cur-
rent implementation is coarse-grained, while it considers Virtual Machine
(VM) as a scaling unit, this implies additional scaling-out overhead and
limits it to specific applications. To overcome these limitations, we pro-
pose Elastic VM as a fine-grained vertical scaling architecture. Our re-
sults proved that Elastic VM architecture implies less consumption of re-
sources, mitigates Service Level Objectives (SLOs) violation, and avoids
scaling-up overhead. Furthermore, it scales broader range of applications
including databases.

Key words: virtualization, elasticity, auto-scaling, cloud computing

1 Introduction

The rapid growth of E-Business and the frequent changes in the sites contents
and the customers interest pose the need for rapid and dynamic scaling of re-
sources. Fortunately, Cloud computing Infrastructure as a Service (IaaS) model,
based on Virtualization technologies such as Xen [4]; VMWare [3]; and KVM [14],
enables agile and dynamic provisioning of resources. However, current scalability
implementation offered by IaaS providers, e.g. Amazon EC2 [5] and GoGrid [1],
has the following limitations: first, it uses VM as a scaling unit, which is course-
grained scaling that can cause unnecessary over-provisioning. Second, it implies
running additional load-balancer VM instance. Third, multi-instances scaling
architecture is limited to specific application and can’t scale-out applications
like databases which do not support clustering or synchronization; applications
which are not designed to be distributed (singleton applications); or applications
with expensive licenses.

Typically, web applications and services consist of three tiers: web tier, ap-
plication tier, and database tier. The incoming requests go through these tiers to

Dawoud, Wesam - ObCom 2011
c© Springer-Verlag Berlin Heidelberg 2011

2 Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel

get back with the results. According to the application characteristics, each tier
may cast an intensive demand to specific tier resources making it a bottleneck.
For example, Amza et al. implemented a benchmark that simulates the behavior
of online bookstore such as amazon.com, bulletin board websites, and auction
websites [6]. Analyzing these benchmarks shows that the CPU of database tier of
online bookstore is the bottleneck, while for auction sites and bulletin board, the
CPU of the web-tier is the bottleneck. Unfortunately, the dependency between
these tiers propagates degradation in performance of one tier to the whole appli-
cation, therefore, to cope with traffic load and eliminate bottlenecks of multi-tier
applications, the first step is to detect the bottleneck tier, and then to scale it
dynamically.

In this paper, we propose a fine-grained scaling architecture. That is Elastic
VM architecture. It implements the scalability characteristic into VM resources
level (e.g. Number of cores, CPU capacity (%), and Memory (MB)). The archi-
tecture can be implemented into any tier. If any of these tiers turned to be a
bottleneck, the Elastic VM scales vertically to cope with workload demand. To
compare our architecture with current multi-instances architecture, we imple-
mented both architectures locally, and considered the parameters that control
both Amazon Elastic Load Balancing and Amazon Auto Scaling models. For
workload simulation, we installed RuBBoS benchmark [6] which is a simple bul-
letin board benchmark implemented as two-tiers system.

In the next section, we explain in details the proposed Elastic VM scaling
architecture and compare it to the conventional multi-instances scaling architec-
tures. In section 2, we describe our experiment setup and analyze the results.
In section 4, we compare our research to related work. Finally, in section 5, we
conclude our work and point out our extended research.

2 Scalability Architectures

This section starts with an overview of the current scalability architecture in the
cloud infrastructure using multi-instances. This is followed by an overview of our
proposed Elastic VM scalability architecture. Afterwards, we compare both ar-
chitectures performance analytically. Finally, we discuss how the implementation
of each architecture influences its performance.

2.1 Multi-Instances Architecture

Implementation of scalability in the current (IaaS) providers, like Amazon and
GoGrid, is illustrated in figure 1(a). Users’ requests are directed to a load-
balancer (i.e. balancer) which forwards it to the available web servers (i.e., VM1
to VMn) according to a specific load balancing policy (e.g., Round Rubin).

To maintain a determined QoS, a controller monitors instances of the web-
tier, if the monitored performance metrics (e.g., CPU utilization) of current
group of instances exceeded a user specific threshold, controller will provision
more instances to maintain QoS. On the other hand, if the performance metrics

Elastic Virtual Machine for Fine-grained Cloud Resource Provisioning 3

exceed a user specified lower threshold, it will release some instances to reduce
cost.

2.2 Elastic VM Architecture

Elastic VM is a VM that runs a modified kernel that supports on-the-fly re-
sources scaling feature without interrupting the service or rebooting the system.
In addition, the hypervisor is extended with interfaces that enable modifying
VMs resources by programming languages.

Figure 1(b) illustrates implementation of Elastic VM into two-tier system
(i.e., web-tier and database tier). As in multi-instances architecture, a controller
monitors tiers performance and scale Elastic VM resource dynamically to cope
with workload demand.

Web tier Database tier

Web

users
None

ScalableScalable

Controller

(a) Multi-instances Scaling Architec-
ture

Web tier Database tier

Web

users

ScalableScalable

Controller

(b) Elastic VM Scaling Architecture

Fig. 1: Multi-instances vs. Elastic VM Scaling Architecture

2.3 Multi-Instances vs. Elastic VM Response Time

In this section we analyze the average response time of both Multi-instances and
Elastic VM using the queuing analytical model. The analyzed time is the waiting
time spent by the packet in the queue until being served added to the service
time. Each VM instance with one virtual CPU (vCPU) is modeled as a single-
server queue (M/M/1), while the Elastic VM with several vCPUs is modeled as
a single queue with multiple servers (M/M/c).

According to Kendall’s notation [16], M is a notation for Markovian (ex-
ponential) distribution, which means that both the inter-arrival time and ser-
vice time are exponentially distributed. The mathematical model that describes
M/M/c model is as the following:

System utilization ρ is calculated by:

ρ =
λ

c ∗ µ
(1)

4 Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel

The probability of having zero request in the system:

P0 =

[∑c−1

n=0

λn

n!
+

λc

c!(1 − λ/c)

]−1

(2)

Expected average queue length:

E(m) = P0
ρc+1

c.c!

1

(1 − ρ/c)
2 (3)

Expected average number of requests in the system:

E(n) = E(m) + ρ (4)

Expected average total time spent by a request in the system:

E(v) = E(n)/λ (5)

Expected average waiting time spent by a request in the queue:

E(w) = E(v) − 1/µ (6)

An example to compare the average response time of Multi-instances archi-
tecture with Elastic VM architecture is as follows:

First, consider a multi-instances architecture running 4 VMs instances in
parallel, each machine is modeled as a single queue served by one server (vCPU).
Assuming that each vCPU has the capacity to serve 100 req/sec and the total
traffic rate to the whole system is 320 req/sec distributed fairly by the load
balancer to be 80 req/sec for each VM instance. In this case the VM utilization
ρ = 80

100 = 80%, hence, the average response time = 0.05 and the waiting time
= 0.04 calculated by equations 5 and 6 in consequence where c=1, λ =80, and
µ =100.

Second, consider the same traffic directed to Elastic VM with 4 vCPUs (i.e.,
c=4), in this case, the system utilization is calculated as ρ = 320

4∗100 = 80%,
while the average response time = 0.017 and the average waiting time = 0.007
calculated by equations 5 and 6 where c=4, λ =320, and µ =100.

The above example, is repeated for different values of c while keeping systems
utilization equals 80%, the results are presented in table 1.

Table 1: An Elastic VM with different number of vCPUs (i.e., c) compared with
a Static VM with one vCPU (i.e., c=1)

c 1 2 3 4 5 6 7 8
λ 80 160 240 320 400 480 560 640
Average response time (seconds) 0.05 0.027 0.02 0.017 0.015 0.014 0.013 0.013
Average wait time (seconds) 0.04 0.018 0.01 0.007 0.006 0.004 0.003 0.003

Elastic Virtual Machine for Fine-grained Cloud Resource Provisioning 5

As shown in table 1, a single VM with multiple vCPUs, as in Elastic VM
implementation, performs better than multiple of VMs instances each with one
vCPU running in parallel, even though there is the same total number of vCPUs
in both systems. In section 3, we observe how this behavior could influence the
system performance in real environments.

2.4 Elastic VM vs. Multi-Instances Architecture Implementation

By analyzing the scaling architectures implementations characteristics of both
Elastic VM and Multi-Instances architecture, we can summarize pros and cons
of each architecture as in table 2:

Table 2: Comparison between Mutli-instances and Elastic VM architecture im-
plementation

Mutli-instances Elastic VM

It implies running load-balancer (i.e.,
additional consumption of resources)

No need for running additional ma-
chine as a Load-balancer

Scalability is limited to specific tiers It is applicable to any tier

It uses VM as a scaling unit (coarse-
grained scale)1

It is fine-grained scaling while it im-
plements scaling by the real units of
resources

Scaling-down can interrupt sessions-
based web connections

It supports sessions-based web connec-
tions

Booting time of VMs, to scale-out, in-
creases the overhead

It eliminates the overhead caused by
booting VMs

Scale-out overhead, cause SLO viola-
tion and decrease the throughput

Scale-up vertically maintains better
performance, less violation of SLO, and
higher throughput

Both software and hardware load-
balancer can be a single point of failure

Elastic VM itself could be a single
point of failure 2

It supports all small, medium, and big
business

Currently, Elastic VM scaling is lim-
ited to host machine capacity, which
limits Elastic VM to small and medium
business 3

1 One solution is to have smaller VM instances (e.g., Amazon micro-instance),
however, this solution could reduce the probability of over provisioning, but do
not eliminate it totally.

2 Compared to static machines, Elastic VM ability to scale-up make it more
resistance to failure that could be caused by overloading, this characteristic

6 Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel

makes it a recommended replacement to static load-balancer instances as an
example.

3 If a global policy is enabled to reallocate VMs according to host utilization,
it will be possible to move VMs with lower load into another hosts to make more
room for the overloaded Elastic VM to scale-up. Moreover, integrating both
Elastic VM and Multi-instances architecture together can come up with fine-
grained scaling architecture which is unlimited to one physical host.

One of the challenging issues in Elastic VM is that some applications could
be unaware of dynamic resources scaling, especially memory scaling, fortunately,
many researches are directed to optimizing applications parameters according
to available resources like [9], [8], [15], [19], and [18]. Such approaches can be
incorporated into our architecture to tune applications parameters for optimum
performance after each scaling.

3 Experimental Setup

For the sake of the practical comparison between multi-instances and our Elastic
VM scaling architectures, we implemented a similar architecture to Amazon
Elastic Load Balancing and Amazon Auto Scaling models considering the same
parameters that supposed to be defined by user. These parameters and the
corresponding values, which are used within our experimental setup, are listed
in table 3.

Table 3: Most significant parameters that control Amazon Scaling Model

Parameter description Value

Minimum number of running instances 1
Maximum number of running instances 4
Monitored metric CPU Utilization
Monitored metrics’ measurement period 5 seconds
Lower threshold of measured metric 80
Upper threshold of measured metric 90
Breach duration 60 seconds
Lower breach increment -1
Upper breach increment 1

Table 3 can be translated by our implementation as follows: The minimum
number of running instances at anytime is 1 VM instance, and the maximum is
4 instances. The measured metric is CPU utilization, which is measured every 5
seconds. Before any scaling-down, a check for the new utilization to be less than
80% should be done with the following simple equation:

CPUutil
next = CPUutil

current∗number of instances/(number of instances−1) (7)

Elastic Virtual Machine for Fine-grained Cloud Resource Provisioning 7

The scaling-out is triggered when VM instances utilization exceeds 90%. To
prevent oscillating which maybe caused by changing CPU utilization quickly, a
specific period of time (Breach duration) is left to give the system a chance to
reach a stable state after each scale. Finally, the last two parameters in table 3
determine the scaling step size.

In addition to above parameters, during our experiments, we discovered many
modifications that can improve the performance of current auto-scaling imple-
mentation within the cloud. First, the current implementation of the Multi-
instances auto-scaling in Amazon Ec2 considers only one breach duration value
for both scaling-out and scaling-down. In our implementation, it is split into
two values: breach-out duration for scaling-out, and breach-down duration for
scale-down. The small breach-out duration value enables a rapid scale-out. Rapid
scale-out is very import to cope with sudden surge of the traffic. On the other
hand, breach-down duration should always be larger than breach-up duration
to prevent uncertain scale-down, which could be more harmful to the system
performance.

The same aforementioned parameters described are applied to Elastic VM
scaling architecture but instead of changing VMs instances number, Elastic VM
is scaled by changing the number of vCPUs and the memory size.

Testbed Setup: Our experiment conducted on a testbed of two machines (Client
and Server) connected by 1 Gbps Ethernet. Server machine has Intel Quad Core
i7 Processor, 2.8 GHz and 8GB of Memory. It runs Xen 3.3 with kernel 2.6.26-
2-xen-686 as hypervisor. On the hypervisor, VMs with Linux Ubuntu 2.6.24-19
are hosted. Some of these hosted VMs run Apache 2.0 as a web server in prefork
mode. One of them has additional mod proxy extension installed to enable load
balancing. Furthermore, a single VM machine runs MySql to host benchmark
database.

Workload Generation: To evaluate our architecture, we installed RuBBoS bench-
mark [6]. RuBBoS is a bulletin board benchmark that implements the essential
bulletin board features of the Slashdot site [2]. The benchmark is implemented
as two tiers: front-end tier which is a web-server that enables PHP modules, and
a back-end tier which is a database stores users information, posts, and com-
ments. The user discussions are started as threads, each thread has a story at its
root and many comments for that story. There are two types of users in RuB-
BoS: Regular users who mainly browse, start threads, and submit comments.
Moderators who can review stories and rate comments in addition to the basic
features available to regular users.

The workload is generated by RuBBoS clients which is written in Java. Each
RuBBoS client emulates hundreds of HTTP clients. An HTTP client issues a se-
quence of requests with thinking time of 7 seconds, according to clause 5.3.1.2 of
the TPC-W v1.8 specification [17]. One of the important parameters in RuBBoS
benchmark client is the workload number of clients per node parameter. It de-
termines number of running threads that will be initiated in each RuBBoS bench-
mark client machine. Each thread emulates one user behavior, so for generating

8 Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel

variant workload, we set different value of workload number of clients per node
for each workload step.

Utilization window: During the experiments, we noticed small periods of low
CPU utilization appear among high CPU utilization values. The bad influence
of such values appears when the system exceeds breach-down period. In this
case, any uncertain low CPU utilization can instantly trigger a false scaling-
down. The false scale-down reduces the system capacity and ability to cope
with current workload. From our observation, this sudden low CPU utilization
values are unavoidable, while it could be one of the workload characteristics, as
we will seen in section 3.1. As a solution, we had a window of 10 values that
stores a sorted list of the last CPU utilization. The second highest value of this
window (i.e., 90th) is considered as the current CPU utilization. This maintains
rapid scale-out but add confidence to scale-down triggers. Each point of the
utilization window is measured by calculating the average CPU utilization for
5-seconds period of time.

3.1 Web-tier Scalability

The goal of the following experiments is to compare web-tier scalability using
Multi-instances with web-tier scalability using Elastic VM scalability architec-
ture. The comparison includes total throughput and SLO violation. For this ex-
periment we assume (20 ms maximum response time) as a SLO. It is measured
as the difference between the moment of packet arrival to network interface of
physical host until the moment of getting out with the result. Response time is
relatively small; this is because it excludes any delay caused by the network.

To experiment web-tier scalability without any influence from database-tier,
we ran RuBBoS benchmark [6] with browse only no search transitions traffic
pattern. This traffic pattern is selected because it casts high workload to web-
tier and a low workload to database-tier which prevents database-tier from being
a bottleneck at any stage of the experiment.

Web-tier Scalability implemented by Multi-instances: In this part of
the experiment, we implement the scalability into web-tier using Multi-instances
scalability architecture. To experiment this setup, we ran the step traffic seen in
figure 2(d). Each step shows the number of users (sessions) initiated by RuBBoS
client host. The number of sessions seen in figure 2(d) is scaled-down by 4 to fit
in the figure. Each instance of web-tier VMs is set up with one virtual CPU, and
1 GB of memory.

Load-balancer: The load-balancer is a VM instance set up with one virtual CPU
and 512MB of RAM. The load-balancer software is Apache web server with
mod proxy balancer module enabled. Apache load-balancer has a static config-
uration files that describe available web servers. During load-balancer running, it
checks periodically these servers availability. If one of these web servers is turned

Elastic Virtual Machine for Fine-grained Cloud Resource Provisioning 9

down, the load-balancer will spend time to discover and stop forwarding traffic
to it. Therefore, to improve the load-balancer response with the possible rapid
change of the available VMs, we designed an interface that allows the controller
to update the load-balancer configuration files dynamically with each change in
number of VMs.

At the start of this part of the experiment, a single VM web-server instance
was able to cope with workload of 200 sessions. But, at second 300, as in figure
2(d), when the sessions number jump from 200 to 400, the CPU utilization of
the instance was very high. Accordingly, the controller provisioned more VMs
instance rapidly to cope with traffic surge. At second #444, the CPU 90th uti-
lization was 50% which allows the controller to scale-down to 3 VMs. At second
#516, the CPU utlization still low, and the scale-down breach time period is
passed (i.e. 60 seconds). This allows the contoller to scale down to 2 VMs. Along
the remaining experiment run, the controller continue to scale-out rapidly and
scale-down slowly to cope with traffic’s variation.

Utilization window: With the help of utilization window, the uncertain low values
of the CPU utilization (e.g., CPU utilization at seconds 444, 936, and 1884) are
filtered by utilization window. This saves the system from the oscillating and
adds more stability to scaling-down process.

0

20

40

60

80

100

120

0 600 1200 1800 2400 3000 3600

Web server (CPU utilization %)
Web server (90th CPU utilization %)
DB server (CPU utilization %)

(a) CPU Utilization (%)

0

20

40

60

80

100

120

0 600 1200 1800 2400 3000 3600

Response time(ms)

(b) Response time (ms)

0

1

2

3

4

5

0 600 1200 1800 2400 3000 3600

Web server (VM instances number)

(c) Number of VM instances

0

50

100

150

200

250

300

350

400

0 600 1200 1800 2400 3000 3600

Throughput (req/s)

Sessions *4

(d) Workload & Throughput

Fig. 2: Multi-instances Architecture implemented into web-tier

10 Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel

Analyzing response time curve at figure 2(b) shows a high number of viola-
tions to SLO, it reaches 23.4% of the total experiment run time. SLO violations
are caused by the booting time overhead of the VMs instances which delays its
ability to cope quickly with the traffic surge. Also, figure 3(d) shows a decrease
in the throughput of the ramp-up step traffic compared with the ramp-down
step traffic. For example at step 400 sessions, the throughput for ramp-up step
is 44 req/sec, while it is supposed to be 64 req/sec. This is also because of the
VMs booting time overhead.

Web-tier Scalability implemented by Elastic VM: In this part of the
experiment, we implement web-tier scalability using Elastic VM. To test this
setup scalability, we ran the same step traffic described in the first part of this
experiment.

0

20

40

60

80

100

120

0 600 1200 1800 2400 3000 3600

Web server (90th CPU utilization %)

DB server (CPU utilization %)

(a) CPU Utilization (%)

0

20

40

60

80

100

120

0 600 1200 1800 2400 3000 3600

Response time (ms)

(b) Response time (ms)

0

1

2

3

4

5

0 600 1200 1800 2400 3000 3600

Web server (vCPUs number)

(c) Number of vCPUs

0

50

100

150

200

250

300

350

400

0 600 1200 1800 2400 3000 3600

Throughput (req/s)

Sessions *4

(d) Workload & Throughput

Fig. 3: Elastic VM implemented into web-tier

Observing response time at figure 3(b) shows that proposed Elastic VM ar-
chitecture was able to mitigate SLO violation, (i.e., 12.5%) of experiment run
time. It is half the SLO violations in case of Multi-instances architecture. Also,
figure 3(d) shows that average throughput (req/sec) for each ramp-up step al-
most equals average throughput of the equivalent ramp-down step. In other
words, symmetry of throughput curve in figure 3(d) means that the scaling-up
with Elastic VM does not degrade the throughput.

Elastic Virtual Machine for Fine-grained Cloud Resource Provisioning 11

To compare the two architectures performance, we assume that the Elastic
VM is the reference, and calculate the degradation in performance in the case
of Multi-instances architecture. The results are illustrated in table 4.

Table 4: Throughput degradation in Multi-instances architecture

Sessions Number Elastic-VM
throughput
(req/sec)

Multi-instances
throughput
(req/sec)

Multi-instances
throughput
degradation (%)

200 32 32 0
400 64 44 31
600 92 77 16
800 125 113 10
1000 155 141 9
1200 184 160 13
1400 212 176 17
1200 187 165 12
1000 157 150 4
800 124 123 1
600 95 94 1
400 64 64 0
200 32 32 0

By analyzing results in table 4, we come to the following observations: First,
Elastic VM throughput is always better than Multi-instances architecture in case
of ramp-up traffic (left side of figure 2(d)), because it copes faster with traffic
surge. Second, for high level values of traffic (i.e., 1000, 1200, and 1400), Elastic
VM throughput is also better than Multi-instances, this observation confirms the
theoretical analysis in section 2.3 where an Elastic VM with 4 vCPUs implies
less response time compared with 4 VMs instances running in parallel, this also
enables Elastic VM to serve more requests and maintain higher throughput.

3.2 Elastic VM as a Scalable DB Server

In this part of experiment, we will study Elastic VM scalability as a database
server. To make database tier the bottleneck, we tuned RuBBoS benchmark
with traffic pattern that implied more search requests to put more workload on
the database, therefore, the requests type was as the following: StoriesOfThe-
Day (12%), ViewStory(14%), SearchInStories (25%), and the remaining was dis-
tributed as same as the default user traffic pattern designed by RuBBoS bench-
mark.

Figure 4(a) shows that web server was never the bottleneck of any of work-
load sessions, while database server CPU utilization touch a high value of CPU
utilization many times, the controller reacts by increasing number of vCPUs
rapidly to cope with traffic surge, and then slowly decrease them to a suitable

12 Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel

value. In figure 4(d) we notice some violation to SLO accompany the workload
increase, however, the violations did not exceed 5.2% of the experiment run time.

0

20

40

60

80

100

120

0 600 1200 1800 2400

DB server (90th CPU utilization %)

Web server (CPU utilization %)

(a) CPU Utilization (%)

0

20

40

60

80

100

120

0 600 1200 1800 2400

Response time(ms)

(b) Response time (ms)

0

1

2

3

4

5

0 600 1200 1800 2400

DB server (vCPUs number)

(c) Number of vCPUs

0

50

100

150

200

250

300

0 600 1200 1800 2400

Throughput (req/s)

Sessions *4

(d) Workload & Throughput

Fig. 4: Elastic VM implemented into database tier

To express the benefit of Elastic VM scalability in database-tier, we compare
above result with non-scalable database tier. We initiated the same workload
into the same setup but replaced Elastic VM with a static VM (i.e., two virtual
CPUs). The number of the vCPUs is calculated by getting the average of the
number of running vCPUs in the previous experiment after excluding intervals
of high number of vCPUs which are caused by rapid scaling-up behavior of the
controller. The average is 1.9 which can be rounded to 2 vCPUs.

Figure 5(b) shows many violations to SLO caused by the high utilization of
database CPU for the traffic sessions higher than 800 as shown in figure 5(a).
SLO violation time is 28% of the experiment run time, which is five times the
SLO violation in case of Elastic VM as a database. The throughput also degrades
for the traffic sessions 800 and 1000 by values 12% and 16% compared with the
throughput of Elastic VM for the same traffic session number. In spite of the
fact that the improvement in Elastic VM was on account of the price (number
of vCPUs), but we should remind that we are manipulating the worst case (high
traffic surge). Usually, real traffic contains periods of time (e.g., Midnight time)
that implies low-workload. For these periods of time, Elastic VM reduces the
resources consumption to the minimum.

Elastic Virtual Machine for Fine-grained Cloud Resource Provisioning 13

0

20

40

60

80

100

120

0 600 1200 1800 2400

DB server (90th CPU utilization %)

Web server (CPU utilization %)

(a) CPU Utilization (%)

0

20

40

60

80

100

120

0 600 1200 1800 2400

Response time(ms)

(b) Response time (ms)

0

1

2

3

4

5

0 600 1200 1800 2400

DB server (vCPUs number)

(c) Number of vCPUs

0

50

100

150

200

250

300

0 600 1200 1800 2400

Throughput (req/s)

Sessions*4

(d) Workload & Throughput

Fig. 5: Static VM implemented into database tier

4 Related Work

On the topic of detecting bottleneck tier, and provisioning adequate resources
dynamically to mitigate SLO violation, the work of [11] implemented a proto-
type using Multi-instances scaling architecture, and developed a heuristic and
active profiling of the CPU of virtual machines. The approach considers scaling
database layer horizontally but do not discuss associated challenges that could
affect the approach feasibility and performance specifically in database tier (e.g.,
data replication and synchronization). Moreover, the work presents scale-up al-
gorithm with no scale-down.

To predict next workload and provision enough resources to cope with work-
load surge, the work in [13] implements two feedback controllers integrated with
Kalman filter. The first controller, the Basic Controller (BC), predicts sepa-
rately the necessary CPU allocation for each tier. The second controller, the
Process Noise Covariance Controller (PNCC), extends BC by considering the
coupling between multi-tier components. The experiment results express how
PNCC cope better to the workload changes and therefore maintain better re-
sponse time. However, the system is sensitive to the workload distribution, for
example, it can not track the variables with noise that is not essentially normally
distributed.

Many researchers presented analytical models to describe different tiers be-
havior, for example, [7] presents multi-tier model based on a network of queues,
while each queue represents a different tier. The model is able to predict the

14 Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel

mean response time for a specific workload. Scalability of this model is realized
by dispatching new instances at each tier except the database tier which is not
replicable in this model. The dispatching is initiated by a dispatcher at each tier.
The dispatcher does not only provision or release VM instances but also balance
the load.

By regression analysis of CPU utilization and service time to predict the
bottlenecks, authors of [10] demonstrated an approach for performance modeling
of two-tier applications (web and database). Despite the lack of dynamic scaling,
this approach helps understanding application behavior for optimum capacity
planning.

Using queuing theory models along with optimization techniques, [12] pre-
sented off-line techniques to predict system behavior and automatically generate
optimal system configurations. The result is a rule set that can be inspected
by human system administrators and used directly with a rule-based system
management engines. In previous work [9], we implemented an online heuristic
controller to tune apache controller for variant workload and dynamic resources
provisioning, where the experiment results showed improvement in the system
performance, reduction of SLO (e.g., response time) violation, and maintenance
of a high throughput.

Amazon EC2 Spot Instances [5] is a way to provide VMs with a lower price.
It is developed to serve customers who are in need for high computational power
but for none online systems (e.g., Image and video processing, conversion and
rendering; Scientific research data processing; and Financial modeling and analy-
sis). Amazon EC2 Spot Instances was one of the motivating ideas to our research.
Nowadays, Amazon static Large EC2 instance costs $0.34 per hour, while static
Extra Large EC2 instance costs $0.68 per hour. Implementing Elastic VM can
emerge the following service: Elastic Large to Extra Large EC2 instance which
costs for example $0.40 per hour. The lower case is to have a Large EC2 in-
stance, and the upper case is to expand it to Extra Large EC2. As in Amazon
EC2 Spot Instances, the idea behind the cost reduction is the dependency on
the free capacity in cloud provider. Such approach depends on the probability of
having free resources in the same zone, which is not guaranteed. However, having
a global workload management plan that runs a complement workload on the
same zone, considering the daylight differences around the world, increases the
probability of having free resources in the same host.

5 Conclusion & Future Work

In this paper, we proposed an Elastic VM scalability architecture and compared
it with existing Multi-instances scalability architecture. The presented work sug-
gests modifications to current Multi-instances architecture that increases its sta-
bility and improve performance. Experiment results proved that Elastic VM
reduces the provisioning overhead, mitigates SLOs violations, and maintains a
higher throughput. Moreover, it enables scaling applications, such as databases,
with lower cost and complexity.

Elastic Virtual Machine for Fine-grained Cloud Resource Provisioning 15

Our immediate future work includes developing a global management policy
for VMs management. It does not only consider scaling VMs in place but also
relocation of VMs to physical hosts with less utilization. We also study integrat-
ing both Multi-instances and Elastic VM scaling architecture to enable rapid
and fine-grained scaling architecture which is unlimited to one physical host.
Moreover, we study the influence of the Elastic VM architecture on the current
pricing models in cloud environments.

References

1. GoGrid, http://www.gogrid.com/
2. Slashdot, http://slashdot.org/
3. VMWare, http://www.vmware.com/
4. Xen hypervisor, http://www.xen.org/
5. Amazon: Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
6. Amza, C., Cecchet, E., Ch, A., Cox, A.L., Elnikety, S., Gil, R., Marguerite, J.,

Rajamani, K., Zwaenepoel, W.: Bottleneck Characterization of Dynamic Web Site
Benchmarks (2002)

7. Bhuvan Urgaonkar, G.P.: An analytical model for multi-tier internet services and
its applications. In: In Proc. of the ACM SIGMETRICS2005. pp. 291–302 (2005)

8. Chess, Y.D., Hellerstein, J.L., Parekh, S., Bigus, J.P.: Managing Web server per-
formance with AutoTune agents. IBM Systems Journal 42(1), 136–149 (Jan 2003)

9. Dawoud, W., Takouna, I., Meinel, C.: Elastic VM for Cloud Resources Provisioning
Optimization, Communications in Computer and Information Science, vol. 190.
Springer Berlin Heidelberg (2011), 10.1007/978-3-642-22709-743

10. Dubey, A., Mehrotra, R., Abdelwahed, S., Tantawi, A.: Performance modeling of
distributed multi-tier enterprise systems. ACM SIGMETRICS Performance Eval-
uation Review 37(2), 9 (Oct 2009)

11. Iqbal, W., Dailey, M.N., Carrera, D.: SLA-Driven Dynamic Resource Management
for Multi-tier Web Applications in a Cloud. In: 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing. pp. 832–837. CCGRID ’10,
IEEE, Washington (2010)

12. Jung, G., Joshi, K.R., Hiltunen, M.A., Schlichting, R.D., Pu, C.: Generating Adap-
tation Policies for Multi-tier Applications in Consolidated Server Environments.
IEEE (Jun 2008)

13. Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and self-configured
CPU resource provisioning for virtualized servers using Kalman filters. In: Pro-
ceedings of the 6th international conference on Autonomic computing - ICAC ’09.
p. 117. ACM Press, New York, New York, USA (Jun 2009)

14. KVM: Kernel Based Virtual Machine
15. Liu, X., Sha, L., Diao, Y., Froehlich, S., Hellerstein, J.L., Parekh, S.: Online Re-

sponse Time Optimization of Apache Web Server (2003)
16. Munir B., S., Abhik, C., S. L., N., K. T., S.: Novel Approach to Improve QoS of a

Multiple Server Queue. Int’l J. of Communications, Network and System Sciences
3(1), 83–86 (2010)

17. TPC-W: Transactional web e-Commerce benchmark, http://www.tpc.org/tpcw/
18. Tran, D.N., Huynh, P.C., Tay, Y.C., Tung, A.K.H.: A new approach to dynamic

self-tuning of database buffers. ACM Transactions on Storage 4(1), 1–25 (May
2008)

16 Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel

19. Wiese, D., Rabinovitch, G., Reichert, M., Arenswald, S.: Autonomic tuning expert.
CASCON ’08, ACM Press, New York, New York, USA (2008)

