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ABSTRACT
Power management is a major concern in datacenters. Using
virtualization in datacenters enables applications’ consoli-
dation to reduce power consumption. However, processors
consume the most fraction of the host’s power. Furthermore,
the rising number of cores in a single processor extensively
contributes to the increase of power consumption if there are
no efficient power management solutions. These solutions
are considered inefficient if they do not take into account
the number of active physical cores and the configuration of
a virtual machine, which runs a certain job. In this paper,
we analyze power consumption of a multicore processor and
develop a CPU power model and a performance model based
on the number of active cores and frequency. Then, we
propose an optimization solution for power and performance
management in virtualized servers. Our optimization model
achieves power proportionality and guarantees performance;
it is based on a mixed integer programming model. The
optimization model provides an optimum configuration for
both a host and its VMs in terms of their number of virtual
CPU and their proportional weight. Finally, we demonstrate
efficiency of the proposed solution via experiments. The
results show that between 23% and 48% savings in power
consumption compared to a typically provisioned power by
hypervisor performance governor.

Categories and Subject Descriptors
K.6 [MANAGEMENT OF COMPUTING AND IN-
FORMATION SYSTEMS]: General; K.6.2 [Installation
Management]: Performance and usage measurement
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1. INTRODUCTION & RELATED WORK
Datacenter power consumption has become a significant

concern with the rapid emergence of cloud services such
as Amazon EC2. For example, Hamilton [1] has reported
that Amazon’s datacenters are facing a highly increased
power demand where the servers consume 59% of the to-
tal power supply. Furthermore, the U.S. Environmental
Protection Agency (EPA) reported that the energy con-
sumption of the datacenters located in U.S. consumed 61
billion kilowatt-hours in 2006, which costs $4.5 billion [2].
This amount of money represents a substantial portion of a
datacenter’s budget [3].

Furthermore, servers are equipped with multicore proces-
sors. According to Moore’s law, not only are a number of
cores in a single processor doubled every 18 months, but
also the power dissipation is doubled. In fact, the processor
is the component that consumes the most dynamic power
of a computer system [2][4], there have been many proposed
approaches for datacenters power management based on Dy-
namic Voltage Frequency scaling (DVFS) [5]-[10]. DVSF
mechanism enables processors to run on different perfor-
mance states: P0-Pn. CPU P state saves power by changing
CPU frequency and voltage. P0 has the highest frequency
and the highest power consumption meanwhile Pn has the
lowest frequency and the lowest power consumption.

Currently, datacenters leverage virtualization technology
such as Xen and VMware. Using virtualization increases
servers’ utilization by enabling applications consolidation
onto fewer physical servers and turning off unused servers to
save power. In this work, we used Xen as an open source hy-
pervisor which is widely used in clouds. Its default scheduler
called credit-scheduler. Credit-scheduler is a proportional
fair share CPU scheduler. The amount of credits assigned
for a virtual machine (VM) is based on the capacity and
weight of the VM. For example, a half of CPU cycles will be
given to a VM with a weight of 1 when is scheduled with a
VM with a weight of 2 on a contended server.

Several solutions have been implemented in particularly
for virtualized environments at datacenter level [11]-[13].
Kusic et al. [11] have developed a dynamic resource pro-
visioning framework based on lookahead control, which es-
timates the future workload demand. They concluded that
the intensity of the workload directed at the VMs does not



affect the power consumption. Additionally, they reported
that the power consumed by a host machine only affected
by the number of VMs running on it regardless of the ar-
rival rate experienced by the VMs. In this paper, we show
different results where the power computation changes with
the workload intensity even when we have one VM. Wang
et al. [12] have implemented a central controlled global
optimization of resource allocation for multi-tier services.
However, the centralized controller could cause a single point
of failure. Additionally, collecting information about com-
puting resource allocation to each VM hosted in every server
[13] causes an overhead. Our solution differs from [11]-[13]
by considering power optimization at server level (i.e., local
optimization). As a future extension, we will integrate our
solution into virtualized cluster to achieve both levels of
optimization: local at the server level and global at the
cluster level.

NapSAC [14] presents a totally different approach com-
pared to previous works. They used heterogeneous servers
to build a cluster of web applications. The servers have
different power consumption and performance capabilities.
Unfortunately, this approach is not applicable to current
datacenters that could consist of homogeneous multicore
processors. These processors have the same power consump-
tion and computing capabilities. Importantly, in this paper,
the optimization problem solver could give a solution with
heterogeneous settings of cores in terms of frequency. This
allows the server to run on a fine-grained level of power con-
sumption. In contrast, Petrucci et al. [15] have implemented
a dynamic optimization model for selecting efficient power
configuration of a cluster. They only considered homoge-
neous configuration of the server. However, their work was
implemented for cluster of web application.

A heuristic-based solution for the power-aware consolida-
tion problem of virtualized clusters is presented in [16]. Gen-
erally, heuristic-based solutions could not guarantee find-
ing a solution that is near to the optimal. In this work,
a greedy KnapSack algorithm is used in order to provi-
sion an optimum or near optimum of both virtual machines
(VM) and host configuration at any given time. Further-
more, our proposed solution could be suitable for virtualized
High-Performance Computing applications in Clouds as we
consider that a VM could execute a specific job with a cer-
tain workload demand. Likewise, Grids, which are based on
virtualization, dedicate a shared pool of virtualized resources
to job processing [17][18]. Throughout this paper, we use
a VM term when discussing the number of virtual CPUs
and VMs’ weight; a job term is used when discussing the
throughput of this job at specific configuration of a VM that
hosts this job.

The purpose of this paper is to provide a fine-grained
power provisioning in contrast with those approaches that
are considered as course-grained where the frequency was
set to the physical server as a unit regardless of the number
of cores in its processor. Furthermore, this solution concerns
power optimization at the server level by dynamic configu-
ration of its VMs. To this end, we develop two models: the
first model shows the relationship between the power and
VM configuration (i.e., number of vCPUs) and the second
one depicts the performance of VM with different configu-
ration. Then, an optimization problem is formulated to find
an optimum solution for both VMs and host configuration
according to the number of jobs and the workload demand

of each job. Finally, we present performance evaluation of
our proposed solution to affirm its applicability and perfor-
mance. The results show that with dynamic configuration of
a host and its VMs better power savings could be achieved
compared to the baseline. The baseline in this work is
the default hypervisor performance-governor which mostly
makes cores to run at the highest frequency to guarantee
performance.

The rest of this paper is organized as follows. The follow-
ing section presents models’ development. Section 3 presents
an overview of system architecture. In Section 4, we for-
mulate the dynamic optimization problem. Performance
evaluation and results are presented in Section 5. Finally,
our conclusions and future work are presented in Section 6.

2. MODELS DEVELOPMENT
In this section, we present the experimental setup. Then,

we present performance model and power model develop-
ment for CPU-intensive jobs.

2.1 Experimental Setup
The evaluation experiments were performed on Fujitsu

PRIMERGY RX300 S5 server that has a CPU Power mea-
surement capability. It has a processor of Intel(R) Xeon(R)
CPU E5540 with 4-cores. The frequency range is 2.53GHz
to 1.59GHz. Each core enables 2-logical cores. The server
is equipped with 12GB physical memory. The experiments
were run on a virtualized server using Xen-4.1 hypervisor.
To build two models, we used a CPU-intensive program
EP Embarrassing Parallel, which is one of NAS Parallel
Benchmarks (NPB) [19]. It generates pairs of Gaussian
random deviates according to a specific scheme. EP is a
multithreaded program which runs a number of threads cor-
responding to the VM’s virtual CPU number. The system
throughput was measured by Million Operations Per second
(MOPs).

We measured the capacity of a VM for each frequency and
vCPUs number combination. Notably, the number of vC-
PUs is corresponding to the number of active cores. Xenpm
command [20] was used to set core’s frequency and get the
actual running frequency of each core. Finally, to measure
CPU Power consumption, we used the CPU-Power measure-
ment capability of our server. In our experiments, the per-
centile average was considered to get accurate power read-
ings. More details about the two obtained models are pre-
sented in the next sections.

2.2 VM performance model
In this section, we present a model of VM performance.

This model was built using a VM with different settings
of the number of vCPUs. Then, we measured the job’s
performance (i.e., throughput MOPs) at each VM config-
uration and cores frequency combination. Figure 1 depicts
the surface plot for VM performance with VM configura-
tion and core frequency. It should be noted that we could
achieve a certain performance level with different combina-
tions of VM’s configuration and cores’ frequency. Figure
1 also shows that EP could scale almost linearly with fre-
quency and number of cores. The same result has been found
in [21] for BT and FT benchmarks. Takouna et al. [21]
have conducted a sensitivity analysis of frequency for NPB
suite benchmarks. In our solution, we exploit this linear
relationship by increasing number of vCPUs to increase the



throughput of a VM instead of increasing cores’ frequency.
This will assist in achieving better throughput for multi-
threaded applications and efficient utilization of multicores
processors. However, as our concern is power efficiency, we
study the consumed power for each combination in next
section.
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Figure 1: Host-VM Configuration: performance model.

2.3 Host power model
Here, a model of power consumption with Host-VM Con-

figuration and cores frequency is presented. To construct
this model, we created a VM with different settings of the
number of vCPUs and cores’ frequency combinations. Then,
we measured the power consumption of the CPU at each
configuration. Figure 2 depicts the surface plot for CPU
power consumption with VM configuration and cores’ fre-
quency. This figure shows a non-liner relationship between
frequency and the consumed power. On the other hand,
it shows a linear relationship between number of vCPUs
and the consumed power. Importantly, Figure 2 suggests
utilizing the number of cores to achieve more power savings.

3. SYSTEM ARCHITECTURE OVERVIEW
We need to minimize the consumed power and satisfy

throughput demand. The set of currently active cores and
frequency configuration should be maintaining our objective
function. The server hosts a number of VMs. It supports
dynamic optimization according to demand change. The
proposed system consists of three modules as depicted in
Figure 3: Workload dispatcher, Power Performance Opti-
mizer, and Host-VM Configuration manager.

The workflow of this system is as follows. We assume that
load dispatcher has knowledge about the demand through-
put for each job, and has knowledge of each VM capacity
so it dispatches the jobs to a VM with configuration that
achieves throughput demand. So, before the job is sent
to a VM, the dispatcher informs the Power-Performance
Optimizer about job demand. After the optimizer solves the
optimization problem, it sends the suitable configuration of
this job for Host-VM Configuration manager. Importantly,
the proposed optimization problem was implemented using
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Figure 2: Host-VM Configuration: power model.

IBM ILOG CPLEX Studio [22] which implements efficient
algorithms to search for configuration solutions. The prob-
lem was always solved in less than 1 second using a computer
with Intel Pentium 2.6GHz. Finally, Host-VM Configura-
tion manager applies these configurations to the host and its
VMs after calculating suitable weight values for each VM.
Then, it informs the dispatcher that the VMs is ready now to
execute these jobs. When considering two or more of VMs
the provisioned resources will be divided according to the
weight setting of VM which is proportional to the workload
demand of each job.

Host-VM 

Configuration 

Manager 

Load dispatcher 

 
 
 
 
 

Host 

Job.1-VM1 

Job.2-VM1 Power-Performance 

Optimizer 

Job.2 Job.1 

(Throughput demand i.e.,  MOPs) 

(Power-Aware Host-VM Configuration ) 

Hypervisor(VMM) 

Output of  optimizer 

 Workload demand 

  Notification 

Figure 3: System architecture overview.

4. DYNAMIC OPTIMIZATION CONFIGU-
RATION

Multithreaded jobs could exploit the number of cores in
a processor to reduce execution time. A VM optimization
problem that we consider is to determine the most effi-
cient power Host-VM configuration to handle throughput
demand. To realize fine-grained power provisioning, the
optimization problem could produce heterogeneous settings
of cores’ frequency. For instance, a VM could be scheduled
in two physicals cores with frequency 1.6GHz, and the other
two could be scheduled on physical cores with frequency
2.2GHz. Furthermore, the need of VMs’ pre-configuration
is because of the characteristic of these jobs. In other words,
when a job starts with a specific number of threads, the job
afterwards cannot be enforced to increase or decrease the
number of its threads.



4.1 Optimization problem formulation
We introduce the following notation to formulate our op-

timization problem. We assume that a host has C of cores.
These cores are homogeneous cores in terms of clock fre-
quency. Each core c runs on frequency Fc. The frequency
level f ∈ Fc ranges between 1.6GHz and 2.4GHz. This server
could host multiple jobs J. Each job j ∈ J runs on a VM.
The parameter Dj represents the workload demand which
guarantees the job j to finish before the deadline. The binary
decision matrix is defined by conf(c,f) to denote whether the
core c has been selected to run on frequency f to handle
the total workload of jobs J. The matrix rows represent the
number of cores meanwhile columns represent the frequency
levels. For instance, conf(1,1) = 1 means that the core
1 has been selected to run on frequency level 1. In fact,
frequency level 1 gives the slowest clock frequency and the
lowest performance. The provisioned capacity cap(c,f) is the
capacity of the host when it runs on core c with frequency
f . These settings also will provide an amount of power
pow(c,f). Thus, the optimization problem is represented by
the following mixed integer program (MIP):

Minimize :∑
c∈C

∑
f∈Fc

conf(c,f) ∗ pow(c,f) (1)

Subject to :∑
j∈J

Dj ≤
∑
c∈C

∑
f∈Fc

cap(c,f) ∗ conf(c,f) ∀c ∈ C,∀f ∈ Fc (2)

∑
f∈Fc

conf(c,f) ≤ 1 ∀c ∈ C (3)

The objective function given by Equation 1 is to find a
Host-VM configuration that minimizes power consumption.
As observed experimentally via the model of power in Sec-
tion 2.3, the power consumed by a server grows linearly with
the number of cores at full utilization for the same given
CPU frequency. Equation 2 prevents a possible solution in
which the demand of all running jobs J exceeding the total
capacity of the server at specific configuration. Equation
3 guarantees that only one frequency f ∈ Fc is assigned
to a given core c. For example, the solver could return a
solution of a configuration matrix as presented in Figure
4. The matrix of conf1 means that the server has 8 ac-
tive cores and each VM has 8 vCPUs. All cores run on
frequency level 1 (i.e., 1.6Ghz). The second configuration
matrix conf2 has heterogeneous configuration where it has
two cores run on frequency level 2 (i.e., 1.72Ghz) and the
others run on 1.6Ghz. Nevertheless, in case of heterogeneity,
CPU affinity is used to guarantee that vCPUs are scheduled
on the suitable cores. Indeed, the total capacity provided by
these configurations is divided among the hosted VMs ac-
cording to their demand using the proportionality weight of
credit-scheduler. Furthermore, these configurations guaran-
tee the minimal power consumption of the server to execute
the jobs.

4.2 VM-weight proportionality to demand
As we mentioned in the previous section that the server

could host multiple jobs at a specific time, we need a mech-
anism to distribute the provisioned resources among the

conf1 =



1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0



conf2 =



0 1 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0



Figure 4: Example of two different host’s configurations.

running VMs which run the jobs. In this case, Host-VM
configuration manager is responsible to set up the suitable
weight for each VM to satisfy the assigned job demand. In
credit-scheduler of Xen, a VM’s weight is a proportional
value to divide resources particularly CPU cycles among
VMs. Thus, if we set a VM’s weight to be proportional to its
job demand, we guarantee the fairness share. For instance,
two VMs hosts two jobs; job-1 demands 150 MOPs and runs
on VM-1 meanwhile job-2 demands 100 MOPs and runs on
VM-2. In this scenario, Host-VM configuration manager will
set up the weights 3 and 2 for VM-1 and VM-2 respectively.
The legal weights range from 1 to 65535 and the default
is 256. However, the Host-VM Configuration manager will
calculate the suitable Weight of each VM (WVM) using
Equation 4.

WVMj = Dj/GCD(D[1,J]) (4)

Dj is the demand of job j; GCD(D[1,J]) represents Great-
est Common Divisor of the jobs’ demand. Table 1 presents
an example of the calculated weight of each VM according to
job demand. The third row of this table presents weight of
the previous example. The weights of WVM1 and WVM2

are 3 and the weight of the third VM is 2.

Table 1: An example of calculated weight for three VMs
with different job demand.

D1 D2 D3 WVM1 WVM2 WVM3

10 12 20 5 6 10
100 100 80 5 5 4
150 150 100 3 3 2

5. PERFORMANCE EVALUATION
In this section, we present two experimental setups to eval-

uate our proposed solution. First, we show how our solution
could achieve power proportionality to workload. Second,
we present dynamic changes of VMs configuration to satisfy
each VM requirement with efficient power consumption.



5.1 Power proportionality to workload
To show the performance of our solution compared to the

baseline power management governors of hypervisor (i.e.,
Performance-governor), we generate several jobs with a dif-
ferent pattern of demand. Then, by using optimization
model, Host-VM Configuration manager configures both of
the host and its VMs to suitable configuration that minimize
the total power to execute these jobs. In this experiment,
we simulated the total demand of a host to achieve the jobs’
demand at that time. The trace of the host’s throughput
shown in Figure 5. The x-axis of Figure 5 represents the
configuration index that was obtained by optimizer when
the workload state was changed. For instance, index 1 rep-
resents the state of the total required jobs’ demand which
was 147 MOPs at that time. Then, this demand increased
at index 4 to become 163 MOPs; a new configuration was
generated. Finally, the demand reached its maximum at
index 19. The throughput of the host increased due to the
increase of jobs’ demand. Afterward, the demand ramped
down after index 21. Importantly, the solution of this opti-
mization model could result of heterogeneous active cores in
terms of frequency. The heterogeneity of cores can assist in
achievement of power-proportionality. To achieve fairness,
we configured each VM with a number of vCPU, which was
suggested by the optimizer. Then, these vCPU were mapped
to the physical cores set. For example, at indices 1-3 the
optimizer gave a solution with 4 active cores all of them run
at the lowest frequency and 4 vCPU for each VM. After this,
the optimizer increased number of active cores and frequency
according to workload intensity taking into account mini-
mization of power. Figure 5 depicts a big difference between
the provisioned power using the performance-governor of
hypervisor and our proposed solution of dynamic configura-
tion. However, using the performance-governor caused the
gap between the provisioned power and the demand power
when executing specific jobs. This gap emerged because
of the fixed number of VM at each workload and setting
frequency at its maximum. Clearly, this gap was relatively
large at low demands, and it vanished when the workload
reached its maximum at index 19. Indeed, with dynamic
configuration of both host and its VMs, we can realize a
fine-grained power proportionality to workload.
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Figure 5: Dynamic Host-VM Configuration: provisioning
power proportionality to workload demand.

5.2 VM-weight proportionality to workload
This section presents a dynamic configuration of VM weight

to make each VM’s capacity proportionality to workload
demand of its hosted job. As in previous experiment, we
generate workload with changing intensity over time. In
this experiment, we assumed that the jobs’ should achieve a
certain amount of throughput to finish within its deadline.
The jobs’ demands were changing according to the submit-
ted job size. Then, we recorded the output of Host-VM
configuration manager and the achieved the throughput of
each job. The trace of the dynamic change of the weight of
VM proportionality to workload is presented in Figure 6 and
7. The calculation of the weight of each VM was discussed
in Section 4.2. Figure 7 depicts the achieved throughput
for each job and the total of jobs demand. In short, we
achieved the fairness among VMs and satisfied each VM’s
demand with more efficient power provisioning.
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Figure 6: Dynamic settings of the weight of VM
proportionality to workload demand.
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6. CONCLUSIONS AND FUTURE WORK
We present an optimization solution to achieve power pro-

portionality for virtualized servers. Our solution enables a
dynamic configuration of host and its VMs as well to sat-
isfy workload demand while minimizing power consumption.



The optimization model could provide a set of heterogeneous
cores in terms of frequency. This realizes a fine-grained
power provisioning compared to homogeneous cores. We
implemented a prototype of proposed solution. Then, we
conducted experiments to show its effectiveness in power
savings compared to hypervisor performance governor. The
results showed that our solution could achieve power savings
between 23% to 48% compared to the performance-governor
as baseline. As a future work, we will integrate and evaluate
our solution into a virtualized cluster environment to achieve
a global power optimization by distributing jobs into hosts
that can execute the jobs and maintain the jobs’ demand
with the lowest possible power. Finally, we will consider
other virtualization technologies such as VMware.
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