A Distributed Virtual Laboratory Architecture
for Cybersecurity Training

Christian Willems*, Thomas Klingbeil*, Lukas Radvilavicius'*, Antanas Cenys* and Christoph Meinel*

*Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
Email: {christian.willems, thomas.klingbeil, meinel } @hpi.uni-potsdam.de

TUAB nSoft
Vilnius, Lithuania
Email: lukas.radvilavicius @nsoft.lt

Vilniaus Gedimino Technikos Universitetas
Vilnius, Lithuania
Email: {lukas, ac} @fmf.vgtu.lt

Abstract—The rapid burst of Internet usage and the corre-
sponding growth of security risks and online attacks for the
everyday user or enterprise employee lead to the concepts of
Awareness Creation and Information Security Culture. Neverthe-
less, security education has remained an academic issue mainly.
Teaching system security or network security on the basis of
practical experience inherits a great challenge for the teaching
environment, which is traditionally solved using a computer
laboratory at a university campus. The Tele-Lab project offers
a system for hands-on IT security training in a remote virtual
lab environment — on the web, accessible by everyone.

The Tele-Lab platform provides individual learning envi-
ronments for each student, that may consist of up to three
virtual machines per learning environment. Besides in explorative
learning, where students use the laboratory whenever they
like, the Tele-Lab is used in a blended learning approach: a
lecturer introduces a security topic in class using e.g. Powerpoint
slides. Subsequently, the students perform a supervised practical
exercise in the virtual laboratory. A typically sized course with
15 students can in consequence request up to 45 virtual machines
from the Tele-Lab server.

The paper at hand briefly presents usage, management and
operation of Tele-Lab as well as its architecture. Furthermore,
this work introduces an architecture for clustering of the virtual
lab on application level and the necessary prerequisites for the
implementation. The paper also presents an existing distributed
usage scenario.

I. INTRODUCTION

Increasing propagation of complex IT systems and rapid
growth of the Internet draws attention to the importance of IT
security issues. Technical security solutions cannot completely
overcome the lacking awareness of computer users, caused by
laziness, inattentiveness, and missing education. In the context
of awareness creation, cybersecurity training has become a
topic of strong interest — as well as for educational institutions
as for companies or even individual Internet users.

Traditional techniques of teaching (i.e. lectures or litera-
ture) have turned out to be not suitable for cybersecurity
training, because the trainee cannot apply the principles from
the academic approach to a realistic environment within the
class. In security training, gaining practical experience through
exercises is indispensable for consolidating the knowledge.
Precisely the allocation of an environment for these prac-
tical exercises poses a challenge for research and develop-
ment. That is, since students need privileged access rights
(root/administrator-account) on the training system to perform
most of the imaginable security exercises. With these privi-
leges, students might easily destroy a training system or even
use it for unintended, illegal attacks on other hosts within the
campus network or the Internet world.

The classical approach is to provide a dedicated computer
lab for cybersecurity training. Such labs are exposed to a num-
ber of drawbacks: they are immobile, expensive to purchase
and maintain, and must be isolated from all other networks
on the site. Of course, students are not allowed to have
Internet access on the lab computers. Hands-on exercises on
network security topics even demand to provide more than
one machine to each student, which have to be interconnected
(e.g. a Man-in-the-Middle attack needs three computers: one
for the attacker and two other machines as victims).

Tele-teaching for cybersecurity education consists of mul-
timedia courseware or demonstration software mostly, which
does not offer practical exercises. In simulation systems users
have a kind of hands-on experience, but a simulator doesn’t
behave like a realistic environment and the simulation of
complex systems is very difficult — especially when it comes
to interacting hosts on a network. The Tele-Lab project builds
on a different approach for a Web-based tele-teaching system
(explained in detail in section II).

ChristianWillems, ThomasKlingbeil, LukasRadvilavicius AntanasCenys,ChristophMeinel:

"A DistributedVirtual LaboratoryArchitecturefor Cybersecuritylraining”

in Proceedingsf the 6th InternationalConferencdor InternetTechnologyandSecuredlransactiongICITST 2011),

IEEE PressAbu Dhabi, UAE, 12,2011(to be published).

cwillems
Schreibmaschinentext
Christian Willems, Thomas Klingbeil, Lukas Radvilavicius, Antanas Cenys, Christoph Meinel:
"A Distributed Virtual Laboratory Architecture for Cybersecurity Training"
in Proceedings of the 6th International Conference for Internet Technology and Secured Transactions (ICITST 2011),
IEEE Press, Abu Dhabi, UAE, 12, 2011 (to be published).

cwillems
Schreibmaschinentext

cwillems
Schreibmaschinentext

cwillems
Schreibmaschinentext

cwillems
Schreibmaschinentext

cwillems
Schreibmaschinentext

cwillems
Schreibmaschinentext

Section III presents an agile and comprehensive distributed
setup for Tele-Lab’s virtual laboratory that allows on-site
enhancement of the physical resources for the lab environment
as well clustering of independent installations of Tele-Lab on
globally dispersed locations.

Section IV summarizes and gives an outlook on future
enhancements to the Tele-Lab platform.

II. TELE-LAB: A REMOTE VIRTUAL SECURITY
LABORATORY

The Tele-Lab platform (accessible at http://www.tele-lab.
org/, see fig. 1) was initially proposed as a standalone system
[4], later enhanced to a live DVD system introducing virtual
machines for the hands-on training [5], and then emerged to
the Tele-Lab server [6], [8]. The Tele-Lab server provides a
novel e-learning system for practical security training in the
WWW while meeting the requirements of traditional offline
security labs. It basically consists of a web-based tutoring
system and a training environment built of virtual machines.
The tutoring system presents learning units that do not only
offer information in form of text or multimedia, but also
practical exercises. Students perform those exercises on virtual
machines (VM) on the server, which they operate via remote
desktop access. A virtual machine is a software system that
provides a runtime environment for operating systems. Such
software-emulated computer systems allow easy deployment
and recovery in case of failure. Tele-Lab uses this feature
to revert the virtual machines to the original state after each
usage.

With the release of the current iteration of Tele-Lab, the
platform introduced the dynamic assignment of several virtual
machines to a single user at the same time. Those machines are
connected within a virtual network (known as feam, see also in
[2]) providing the possibility to perform basic network attacks
such as interaction with a virtual victim (e.g. port scanning).
A victim is the combination of a suitably configured virtual
machine running all needed services and applications and a
collection of scripts that simulate user behavior or react to the
attacker’s actions (see also exemplary description of a learning
unit below). A short overview of the architecture of the Tele-
Lab platform is given later in this section.

A. Learning Units in Tele-Lab — an exemplary walkthrough

Learning units follow a straightforward didactic path begin-
ning with general information on a security issue, getting more
concrete with the description of useful security tools (also
for attacking and exploiting) and culminating in a hands-on
exercise, where the student has to apply the learned concepts
in practice. Every learning unit concludes with hints on how
to prevent the just conducted attacks.

An exemplary Tele-Lab learning unit on eavesdropping
(described in more detail in [10]) starts off with academic
knowledge such as information on technologies for local area
networks (LAN), the difference between switches and hubs
or wireless networking. After that, various existing tools for

0 ZicThosts laufen.
1p, amap oder wuch telnet, Bedenken Sie, dass

% s r e e
.

Feria SR

Fig. 1. Screenshot of the Tele-Lab Tutoring Interface

packet sniffing are presented, such as tcpdump or the well
known Wireshark network protocol analyzer.

Following an offensive teaching approach (see [11] for
different teaching approaches), the user is asked to take the
attacker’s perspective — and hence is able to lively experience
possible threats to his personal security objectives. The closing
exercise for this learning unit is to eavesdrop on network
traffic between two virtual communication partners, reveal
credentials (username and password) for services from the
captured messages and use these to steal private data from
an FTP server.

Since the laboratory machines are connected on a virtual
hub-like device, the student is able to capture all messages
on the network — including the traffic between the two virtual
victims Alice and Bob. Bob runs a server with HTTP and
FTP services, Alice uses those services. The student has to
use wireshark and inspect the captured packets for the login
data. After that, he can log into Bobs servers using Alices
username and password.

Such an exercise implies the need for the Tele-Lab user to
be provided with a team of interconnected virtual machines:
one for attacking (all necessary tools installed), one machine
for Bobs services and a third one for the client (Alice) running
a set of scripts that access Bobs server. Remote desktop access
is only possible to the attackers VM.

Other learning units are also available on, e.g., authen-
tication, wireless networks, secure e-mail, reconnaissance,
firewalls, malware, Man-in-the-Middle attacks etc. The system
can easily be enhanced with new content.

B. Architecture of the Tele-Lab Platform

The current architecture of the Tele-Lab server is a refac-
tored enhancement to the infrastructure presented in [8].
Basically it consists of the components illustrated in fig. 2.

Tele-Lab Server

Tutoring Interface
(Tomcat)

O |

VM Pool
Team 1
VM 1

Database

VM n

Ly

vmService ——O—

Team n

VM 1

R
v
Tele-Lab Control Services
Browser — | remoteDesktop-
Service
Il
R ¢
v
noVNC Server

)
-/ VM n

Fig. 2. Overview — Architecture of the Tele-Lab Platform

The following overview just explains the components that
have to be enhanced for a distributed setup of the learning
environment.

Virtual Machine Pool: The server is charged with a set of
different virtual machines which are needed for the exercise
scenarios — the pool. The resources of the physical server limit
the maximum total number of VMs in the pool. In practice,
a few (3-5) machines of every kind are started up. If all
teams for a certain exercise scenario are in use, new instances
can be launched dynamically (again depending on the current
load of the physical host). Those machines are dynamically
connected to teams and bound to a user on request. The current
hypervisor solution used for providing the virtual machines is
KVM/Qemu [12], [1]. The libvirt package [13] is used as a
wrapper for the virtual machine control. LVM (Linux Logical
Volume Management) provides virtual hard discs that are
capable of copy-on-write-like differential storage. Differential
storage is important to save space on the physical hard disc,
because the Tele-Lab server holds so called VM templates as
master images and clones multiple instances of each template
for use within the exercise environment. VM templates also
contain configuration files defining hardware parameters like
memory, number of CPUs, and network interfaces.

For the network connections within the teams, Tele-Lab
uses the Virtual Distributed Ethernet (VDE) package [3]. VDE
emulates all physical aspects of Ethernet LANs in software.
The Tele-Lab Control Services launch virtual switches or hubs
for each virtual network defined for a team of VMs and
connect the machines to the appropriate network infrastructure.
For the distribution of IP addresses in the virtual networks, a

DHCEP server is attached to every network. After sending out
all leases, the DHCP server is killed due to security constraints.

Remote Desktop Access Proxy: The Tele-Lab server must
handle concurrent remote desktop connections for users per-
forming exercises. This is realized using the open-source
project noVNC, a client for the Virtual Network Comput-
ing protocol based on HTMLS Canvas and WebSockets [7].
The noVNC package comes with the HTMLS5 client and a
WebSockets proxy which connects the clients to the VNC
servers provided by QEMU. Ensuring a protected environment
for both the Tele-Lab users and system is a challenge that
is important to thoroughly implement at all levels, as the
issue of network security for virtual machines in a Cloud
Computing setting (such as the case of Tele-Lab) poses special
requirements. The system uses a token-based authentication
system: an access token for a remote desktop connection is
generated, whenever a user requests a virtual machine team for
performing an exercise. Using TLS ensures the confidentiality
of the token.

Tele-Lab Control Services: Purpose of the central Tele-Lab
control services is bringing all the above components together.
To realize an abstraction layer for the encapsulation of the vir-
tual machine monitor (or hypervisor) and the remote desktop
proxy, the system implements a suite of lightweight XML-RPC
web services: the vmService and the remoteDesktopService.
The vmService is to control virtual machines — start, stop
or recover them, grouping teams or assigning machines or
teams to a user. The remoteDesktopService is used to initialize,
start, monitor, and terminate remote desktop connections to
machines, which are assigned to students when they perform

exercises. The above-mentioned Grails applications (portal,
tutoring environment, and web admin) let the user and ad-
ministrators control the whole system using the web services.

On the client side, the user only needs a web browser sup-
porting SSL/TLS. The current implementation of the noVNC
client does not even need an HTMLS5-capable browser: for
older browsers, HTML5 Canvas and/or the WebSockets are
emulated using Adobe Flash.

ITI. ENHANCING THE TELE-LAB ARCHITECTURE FOR A
DISTRIBUTED SETUP

As already mentioned, the Tele-Lab platform is intentionally
also used to provide learning environments for hands-on
practical exercises in a blended learning approach — where a
high number of students pose a challenge to the scalability of
the physical host running the virtual laboratory. The obvious
solution is to integrate additional physical hosts in the data
center to be able to run more virtual machines and balance
the load between those servers.

During a project funded by the Leonardo da Vinci program
for life-long learning of the European Commission, the Tele-
Lab platform has been transferred to the Vilniaus Gedimino
Technikos Universitetas, the technical university of Vilnius,
Lithuania. The cooperation led to the existence of two com-
pletely independent instances of Tele-Lab. Both sites do not
just run the same platform but also share most of the content
— learning units as well as virtual machines for learning
environments are the same or at least very similar. Considering
the differences in lab scheduling between the sites in Germany
and Lithuania, it became obvious, that “borrowing” resources
from the respective other site could help both universities
providing more virtual machines for lab classes without the
need to purchase additional hardware.

The first task — load balancing between physical hosts at
the same site — is fairly easy to solve, since Tele-Labs vm-
ControlService is implemented with a 2-layer architecture: the
encapsulation for the management of the VM lifecycle consists
of an agent (KVM Wrapper), that controls the hypervisor on a
physical host and a middleware layer to address several agents
on different host machines. All on-site agents register with a
single instance of the middleware. A Tele-Lab administrator
can control all the virtual machines using a unified web-based
administration interface.

The second task — borrowing virtual machines from another
independent system — poses a number of challenges:

1) The Tele-Lab instances must be able to negotiate about
the provision of virtual machines to users of the other
system.

2) The VM teams on each server must be comparable:
when requesting a specific team from another Tele-Lab
server, the team template must be identified properly.

3) Virtual machines on a server must be assigned to users
from another server. The remote desktop access to the
virtual machines must be able to transparently forward
a user of site A to a VM on site B.

4) In the original system, the Tele-Lab control services
can only be accessed from localhost due to security
constraints. The exposure of the vmControlService to a
remote host must also be realized in a secure way.

A. VM and Team Identification

Virtual machines and teams of VMs in Tele-Lab consist of
the VMs hard disk images and XML-based descriptions. A
VM template description configures network interfaces (num-
ber, MAC addresses) and physical resources (CPUs, memory,
hard disk image), a team template description determines
which virtual machines are aggregated into a virtual network
and the network structure. Fig. 3 shows a basic VM team
template with three virtual hosts in two different virtual net-
work. The XML file describes, to what network each network
interface of all the virtual machines belongs to, e.g. the firewall
machine having two network adapters connected to different
switches.

<tl:team name="Example Team" >
<!-— wvirtual machine instances —-->
<tl:machine name="VM 1 (Attacker)">
<tl:networkInterface
mac="00:11:22:33:44:55"
networkName="netQ" />
</tl:machine>
<tl:machine name="VM 2
<tl:networkInterface
mac="11:22:33:44:55:66"
networkName="net0" />
<tl:networkInterface
mac="22:33:44:55:66:77"
networkName="netl" />
</tl:machine>

(Firewall) ">

<tl:machine name="VM 3 (Victim)">

<tl:networkInterface
mac="33:44:55:66:77:88"
networkName="netl1l" />

</tl:machine>

<!-— virtual network -->

<tl:network name="netQ0" id="1"
mode="switch" />

<tl:network name="netl" id="2"

mode="switch" />
</tl:team>

Fig. 3. Exemplary XML Team Configuration

To address the second challenge presented at the end of the
preceding section, the equality of virtual machines and team
templates has to be defined as follows. We define two VM
templates A and B as identical (VM A = VM B), if 1) the
hard disk images are identical, and 2) the number of network
interfaces is the same. Therefore, we calculate the md5 hash
value for the hard disk image, concatenate the number of
network interfaces to the md5 hash and hash that value again.

We call this value the vmid; for a virtual machine <.

vmid; = md5(md5(hd;) + fnic;) (1)
A =B & vmida = vmidp 2)

This definition still classifies two machines as identical, if they
differ in the amount of allocated memory or the number of
CPUs, since those parameters just influence on the perfor-
mance of the machines, but not on the basic functionality.

We define two team templates as identical if 1) all VM tem-
plates are identical, and 2) the network structure is identical.
Let a team of VMs as in (3) be a 2-tupel consisting of a vector
of VMs v and a vector of network representations n:

team; = (v;,n;) 3)
teamid; = mdb(v; + n;) (@))
A = B & teamid s = teamidpg 5)

The elements of v are the vmids of the team members in
the lexicographic order. n is a vector representing the network
structure as a normalized form of the network connections
between the team members. A network is expressed as strings
of the format type(sorted_indices_of vms), where type is either
“switch” or “hub” and the sorted_indices_of _vms is a vector
built from the indices of the elements of v, e.g. switch(1,3,4).
The elements of n must also be in lexicographic order.

The id of a team (4) is then defined as the md5 value of the
vector v concatenated with the vector n (both represented as
string without whitespace). Two teams A and B are identical,
if their teamids are equal (5).

In the above example (see fig. 3, there are three virtual
machines in two networks. Let the calculated vmids be as
follows:

o vmidy,1 = 7€716d0e702d£0505. ..

o vmidyme = d41d8cd98£00b204e. . .

o vmidyms = a3ccal2blaale3b5bd. ..

Vector v in the team tupel team = (v,n) would be v =
(vmidym1, VMidyms, vMidyma), while the networks in n
would be constructed as n = (switch(1,3), switch(2,3)).
The id for the example team template would be calculated
as teamid = md5(v, n).

The defined identifiers must be calculated, when a new
virtual machine or VM team is created. The identifiers must
also be updated, whenever a virtual machine changes (for
example after installing a new tool, changing configuration,
...) or the team template is reconfigured. A new vmid for a
team member must be propagated to any team that uses the
respective VM template.

B. Enhancing the vmControlServices

When a user requests for a VM team in order to perform an
exercise, the server runs through a sequence of steps to check,
whether the request can be approved. The sequence described
as follows is the situation before the implementation of the
off-site distribution workflow:

1) The tutoring frontend requests a VM team (more pre-

cisely a remote desktop connection to a team) from the

User requests
VM team

Request to
vmControlService

Free
VM team?

Free
resources?

Add request Access

to waiting queue information

Request Request
delayed approved

Fig. 4. Workflow: Requesting a Team of Virtual Machines

remoteDesktopService. That service forwards the request
to the middleware. The desired template for the specific
learning situation that is requested from the Tele-Lab’s
control services has to be specified by the author of a
learning unit.

2) The middleware checks, if there is an unoccupied team
that has been cloned from the corresponding template on
one of the on-site servers connected through the agents
(servers A or B at location A in fig. 6).

3) If this is not the cause, the server checks its physical
resources and the current load. If the load allows to
launch additional virtual machines, the vmControlSer-
vices are triggered to fire an additional instance of the
requested team template. It can also be the cause, that
there are active virtual machines in the VM pool, that
are no longer needed. These can be shut down to free
additional resources.

4) If the current load is to high to provide additional VMs,
the user request is added to a waiting queue.

5) Otherwise — if a suitable virtual machine team is avail-
able — the requested VMs are assigned to the user. The
remoteDesktopService issues a token-secured URL for
the VNC connection to the assigned machine.

The situation changes, if there is another independent Tele-
Lab server. If the on-site physical resources do not allow the
immediate assignment of a requested VM team (step 4), the
local Tele-Lab server can ask the other server for an instance of

that team template. Such functionality has to be implemented
in the middleware part of the vmControlService (see fig. 6): a
middleware instance of multiple connected Tele-Lab servers
has to be aware of other middleware nodes, must be able
to request virtual machine teams from other instances and
needs an extensive ruleset to decide the response to a resource
request. In particular, the latter aspect holds several issues
that have to be considered when implementing the middleware
extensions.

Request from
remote

Schedule
blocked?

Matching
VM team?

Free
resources?

Access
information

Request
denied

Request
approved

Workflow: Decision on Remote VM Team Requests

Fig. 5.

Connecting multiple middleware nodes is realized in a
straightforward way: system administrators add the IP address
of other known and cooperating servers to a configuration file.
There is no auto-discovery or any other automatic features (see
section III-D for details on mutual authentication).

For requesting a virtual machine team from another server,
the the XML-RPC API of the middleware is amended with
a function requestRemoteTeam(). The only parameter for this
function is the feamid for the requested team template cal-
culated as in section III-A. On success — an instance of
the requested VM team is available and can be borrowed
— the function returns a socket for access, precisely an IP
address and port number for the VNC connection. Otherwise,
the function returns false and an error message for local
logging. requestRemoteTeam is called after the local Tele-Lab
server determined too high load value for providing a VM
from its own resources in step 4 of the sequence in fig. 4.

More complex is the decision policy, whether a request for
a remote virtual machine can be approved or must be denied
(illustrated in fig. 5). The influencing factors for this decision
are not only of technical nature: the first restriction to be
checked is the lab schedule at the remote site. A Tele-Lab
administrator can define time slots where no resources can be
requested from remote. This can happen in order to guarantee,
that on-site classroom sessions can not run out of resources due
to load caused by lent virtual machines. If a request happens
during such an “exclusive” time slot, it is instantly denied.

The next limiting factor is the availability of VM team
instances matching to the requested team template. The request
and the existing templates can be matched using the trans-
mitted teamid. To determine a free instance, the middleware
uses the procedures described in step 2 and 3 of the original
workflow (fig. 4). If there are no free resources to provide the
requested machine, the request is not enqueued in a waiting
list, but simply denied.

C. Assigning and Providing Virtual Machines for Remote
Users

Assigning a virtual machine team involves two activities in
Tele-Lab: the VM team is flagged as in use in the database by
the vmControlService, and the remoteDesktopService stores a
mapping of the requesting user to the VNC socket provided
by the middleware. This procedure must not be changed at all
for the implementation of distributed setup.

A user at location A requests a VM team that can be pro-
vided by the server at location B (see fig. 6). The middleware
at location A has received the access information (IP address
and port number for the VNC connection) from its counterpart
at location B and hands it back to the remoteDesktopService.
This service works as follows:

1) a data structure containing the user id, the connection
information and a timestamp is created

2) the service generates a hash value (access token) from
the information in this data structure

3) a URL built of the address of the noVNC proxy server
and the access token is transmitted to the user

4) the browser opens the web-based VNC client, the token
is used for authentication

5) the noVNC proxy forwards the client to the VNC
server socket stored in the data structure and flags the
connection as established

6) the remoteDesktopService waits for the user to terminate
the remote desktop session (i.e. close the client window)

When the remoteDesktopService recognizes, that a session
is terminated, it informs the vmControlService to release the
VM team and roll it back to the original state. This procedure
has to be extended for the distributed setup: the middleware
can easily determine, if a service call to terminate a session
is meant for a local VM team or a remote on (comparison of
the IP address in the connection information). If the request
involves a remote team, the middleware passes the call to the
server being responsible for that team.

Location A

Q

Web browser

Web
HTTP Q Sockets Q

Server A
noVNC

Tutoring Frontend

Q XML-RPC O

XML-RPC via VPN ,’-\l_

: Location B
|
|
|
|
| ¢
|
|
|
: Web browser
|
Web
: HTTP Sockets
|
|
|
| Tutoring Frontend noVNC
|
|

Q XML-RPC Q
|
[

Middleware N\ Middleware
XML-RPC via local /)
XML-RPC LT XML-RPC
Server B
KVM Wrapper KVM Wrapper KVM Wrapper

OIS

)

)

(VM Store) Cl'emplate DBD

(VM Store) Cremplate DBD

C VM Store) CTemplate DB)

oo

Fig. 6.

The process of “borrowing” a virtual machine team from a
remote location is completely transparent for the user, there is
no difference in the user experience at all.

D. Security Considerations

As Tele-Lab provides the users with full-privileged access
on the virtual machines they should use for training, the
security of the system is a major issue for the implementation
(described in detail in [9]). In general, the implementation
aims on minimizing the attack surface and allowing as few
attack vectors as possible: the only services accessible from
the Internet shall be the web server for the tutoring interface
(ports 80 and 443) and the noVNC proxy server for remote
desktop connections (port 10099). Even the web interface for
administration is only available from the internal network,
XML-RPC based services are actually only accessible from
the localhost or (in case of on-premise clustering, illustrated
with location A in fig. 6) from the respective other Tele-Lab
servers in the local network.

Ports for the VNC remote desktop connections are not
accessible from the Internet — the policy for the XML-RPC
services also applies for this service. All remote desktop
connections must be initiated through the noVNC proxy
server, that checks the transmitted access token from a request
against the database and thus determines if the access can be

Clustering of Tele-Lab Servers: On-Site Clustering (Location A) and Clustering of Independent Instances

authorized.

To prevent attacks with IP spoofing (external attacker mod-
ifies source IP address to belong to the address range of
the internal network), there is an additional physical network
interface for the communication with the local network. All
packets sent from an internal IP addresses and received on the
network interface for Internet connection are dropped by the
firewall.

The enhanced system described in the paper at hand requires
to permit access to the XML-RPC services provided by the
middleware to the off-site instances of the Tele-Lab system,
i.e. the Tele-Lab server in Lithuania must be allowed to access
the middleware services provided by the Tele-Lab server in
Germany. Access to the middleware services allows various
attacks, such as starting up a large number of virtual machines
and creating an overload situation or shutting down VM teams
that are in use. Strong mutual authentication and authorization
mechanisms are therefore essential.

A sufficient solution can be provided with the use of
virtual private networking. The Tele-Lab hosts are connected
through a VPN tunnel based on IPsec and certificates. In
practice, OpenSWAN is configured to create the VPN tunnel.
OpenSWAN creates new network interfaces on both machines
for the endpoints of the VPN tunnel. The firewall must
be adjusted, to also accept requests to the XML-RPC port

of the middleware from these network interfaces (analogous
to the additional dedicated network interface for the local
network). Since the VPN also encrypts all traffic, there is an
supplementary protection against any replay-style attacks.

For a future increase of scalability of this solution, the
introduction of security tokens for the access to the middleware
services is considered.

IV. CONCLUSION AND FUTURE WORK

The paper at hand presents a comprehensive architecture
for a distributed virtual computer security laboratory with
geographically dispersed hosting sites. The solution preserves
the organizational independence of the institutions providing
the local lab infrastructures, while it allows sharing physical
computing resources for all participating lab providers. The
paper also introduces a straightforward method to compare
virtual machines and VM teams in order to assure the equality
of two exercise scenarios on different lab servers.

The proposed architecture has been implemented for the
Tele-Lab platform. A distributed infrastructure has been estab-
lished for two independent instances of Tele-Lab in Germany
and Lithuania.

A known limitation of this architecture is the dependence on
the existence of a suitable (equal) virtual machine team on a
remote server. If there is no such equal team (or team template)
available, the request for the remote resources must be denied.
A valuable supplement for the proposed architecture is the
possibility to instantly exchange virtual machines or VM team
descriptions. While the exchange of team descriptions in XML
format do not pose a real challenge, the immediate transport
of VM hard disk images over the VPN tunnel consumes
CPU resources for the encryption and takes some time due to
bandwidth limitations: 2 Gigabyte of binary data (reasonable
size for a VM hard disk) would take about 6.5 minutes to
be transferred with a T3 connection (45 Mbps). The transfer
of a team of three virtual machines would take more than
15 minutes, even with such a fast connection. It is quite
likely to assume, that there will be free resources on the local
server within this time frame and the initiated transfer becomes
useless. Furthermore, the cost for data transfer indicates the
dynamic transfer of virtual machines or VM teams to be
infeasible.

For the future, there are two more sophisticated approaches
to this problem to be investigated. The first approach bases on
the observation, that independent Tele-Lab instances usually
start with an equal set of virtual machines. Local adminis-
trators apply minor adjustments to the VMs to fit the needs
of their students (i.e. change the default language and key
mapping). The idea is to introduce a version control for virtual
machines: the base disk image will be kept in a repository,
changes to a VM are stored as differential files, and a history of
vmids allows to determine the base image of a virtual machine.

In case of a remote request, that would have to be denied with
the current architecture, the system can look for a suitable
base system and just transfer the differential files. Future

work will evaluate the performance of tools for differential
synchronization of binary files and so thus determine the

feasibility of this approach.

A second approach could be the description of the spec-
ifications of the system running in a virtual machine in a
computable manner. Operating systems and versions, tools
running, services, vulnerabilities, and all other parameters
influencing the typical application possibilities of a machine
must be described in a formal way. Semantic technologies
(e.g. the Resource Description Framework RDF or ontologies)
could be useful components of this approach. While this
idea allows the definition of a universal comparison operator
for systems running inside the VMs (respectively exercise
scenarios), it poses a lot of challenges for the data collection:
this should at least be realized in a semi-automatic manner,
since human input tends to be prone to error.

ACKNOWLEDGMENT

This work was partially funded by the Leonardo da Vinci
program for Lifelong Learning of the European Commission
(project number: LLP-LdV-TOI-2009-LT-0037).

REFERENCES

[1] F. Bellard. (2011) QEMU — Open Source Processor Emulater homepage.
[Online]. Available: http://www.qemu.org/, accessed: 2011-10-17

[2] C. Border. “The development and deployment of a multi-user, remote
access virtualization system for networking, security, and system admin-
istration classes”, SIGCSE Bulletin, 39(1): p. 576-580, 2007.

[3] R. Davoli. (2011) Virtual Distributed Ethernet homepage. [Online].
Available: http://vde.sourceforge.com/, accessed: 2011-10-17

[4] J. Hu, M. Schmitt, C. Willems, and C. Meinel. “A tutoring system for
IT-Security”, in Proceedings of the 3rd World Conference in Information
Security Education, p. 51-60, Monterey, USA, 2003.

[5] J. Hu and C. Meinel. “Tele-Lab IT-Security on CD: Portable, reliable
and safe IT security training”, Computers & Security, 23:282-289, 2004.

[6] J. Hu, D. Cordel, and C. Meinel. “A Virtual Machine Architecture
for Creating IT-Security Laboratories”, Technical report, Hasso-Plattner-
Insitut, 2006.

[7]1 J. Martin. (2011) noVNC project website. [Online]. Available: http://
kanaka.github.com/noVNC/, accessed: 2011-10-17

[8] C. Willems and C. Meinel. “Tele-Lab IT-Security: an Architecture for
an online virtual IT Security Lab”, International Journal of Online
Engineering (iJOE), X, 2008.

[9] C. Willems, W. Dawoud, T. Klingbeil, and C. Meinel. “Protecting

Tele-Lab — Attack Vectors and Countermeasures for a Remote Virtual

IT Security Lab”, in International Journal of Digital Society (IJDS),

Volume 1, Issue 2, p. 113-122, 2010.

C. Willems and C. Meinel. “Practical Network Security Teaching in an

Online Virtual Laboratory”, in Proceedings of Security and Management

2011, p. 65-71, Las Vegas, USA, 2011.

W. Yurcik and D. Doss. “Different approaches in the teaching of infor-

mation systems security”, in Security, Proceedings of the Information

Systems Education Conference, p. 32-33, 2001.

Red Hat, Inc. (2011) Kernel-based Virtual Machine (KVM) homepage.

[Online]. Available: http://www.linux-kvm.org/, accessed: 2011-10-17

The Libvirt Developers. (2011) libvirt — The virtualization API home-

page. [Online]. Available: http://libvirt.org/, accessed: 2011-10-17

[10]

(11]

[12]

[13]

