
Practical Network Security Teaching in an Online Virtual
Laboratory

Christian Willems and Christoph Meinel
Hasso-Plattner-Institute, University of Potsdam, Potsdam, Germany

Abstract— The rapid burst of Internet usage and the cor-
responding growth of security risks and online attacks for
the everyday user or enterprise employee have emerged the
terms Awareness Creation and Information Security Culture.
Nevertheless, security education has remained an academic
issue mainly. Teaching system security or network security
on the basis of practical experience inherits a great chal-
lenge for the teaching environment, which is traditionally
solved using a computer laboratory at a university campus.
The Tele-Lab project offers a system for hands-on IT security
training in a remote virtual lab environment – on the web,
accessible by everyone.

An important part of security training focuses on network
security: which attacks exist on the different network layers?
What is the impact of those attacks? And, how can we
secure a network through proper configuration or protective
measures like firewalls?

The paper at hand briefly presents usage, management
and operation of Tele-Lab as well as its architecture. Fur-
thermore, this work introduces the integration of the Virtual
Distributed Ethernet technology (VDE) into the Tele-Lab
Server and the realization of learning units on network secu-
rity with complex exercise scenarios such as eavesdropping
on local network traffic or Man-in-the-Middle attacks by
means of ARP spoofing.

Keywords: Web-based Training, Security Education, Virtual Lab-
oratory, Virtual Machines

1. Introduction
Increasing propagation of complex IT systems and rapid

growth of the Internet draws attention to the importance of
IT security issues. Technical security solutions cannot com-
pletely overcome the lacking awareness of computer users,
caused by laziness, inattentiveness, and missing education.
In the context of awareness creation, IT security training has
become a topic of strong interest – as well as for educational
institutions as for companies or even individual Internet
users.

Traditional techniques of teaching (i.e. lectures or lit-
erature) have turned out to be not suitable for security
training, because the trainee cannot apply the principles from
the academic approach to a realistic environment within
the class. In security training, gaining practical experience
through exercises is indispensable for consolidating the

knowledge. Precisely the allocation of an environment for
these practical exercises poses a challenge for research and
development. That is, since students need privileged access
rights (root/administrator-account) on the training system to
perform most of the imaginable security exercises. With
these privileges, students might easily destroy a training
system or even use it for unintended, illegal attacks on other
hosts within the campus network or the Internet world.

The classical approach is to provide a dedicated computer
lab for security training. Such labs are exposed to a number
of drawbacks: they are immobile, expensive to purchase and
maintain, and must be isolated from all other networks on
the site. Of course, students are not allowed to have Internet
access on the lab computers. Hands-on exercises on network
security topics even demand to provide more than one
machine to each student, which have to be interconnected
(i.e. a Man-in-the-Middle attack needs three computers: one
for the attacker and two other machines as victims).

Tele-teaching for security education consists of multime-
dia courseware or demonstration software mostly, which
does not offer practical exercises. In simulation systems
users have a kind of hands-on experience, but a simulator
doesn’t behave like a realistic environment and the simula-
tion of complex systems is very difficult – especially when
it comes to interacting hosts on a network. The Tele-Lab
project builds on a different approach for a Web-based tele-
teaching system (explained in detail in section 2).

The enhanced Tele-Lab architecture proposed in this paper
makes this teleteaching platform even more equivalent to a
physical dedicated computer security lab: integration of a
virtual networking solution described in section 3 allows to
provide training environments for complex exercise scenar-
ios in a dynamic and flexible manner.

Section 4 introduces two learning units on network secu-
rity – an eavesdropping scenario and the practical application
of a Man-in-the-Middle attack – that show the feasibility of
this solution. Section 5 summarizes and gives an outlook on
future enhancements to the Tele-Lab platform as well as on
additional use cases.

2. Tele-Lab: A Remote Virtual Security
Laboratory

The Tele-Lab platform (accessible at http://www.
tele-lab.org/, see Figure 1) was initially proposed as a

cwillems
Schreibmaschinentext
Christian Willems, Christoph Meinel:
"Practical Network Security Teaching in an Online Virtual Laboratory"
in Proceedings of the 2011 International Conference on Security & Management (SAM 2011),
CSREA Press, Las Vegas, Nevada, USA, 7, 2011, ISBN: 1-60132-198-8.

cwillems
Schreibmaschinentext

cwillems
Schreibmaschinentext

cwillems
Schreibmaschinentext

cwillems
Schreibmaschinentext

cwillems
Schreibmaschinentext



standalone system [1], later enhanced to a live DVD system
introducing virtual machines for the hands-on training [4],
and then emerged to the Tele-Lab server [3], [6]. The Tele-
Lab server provides a novel e-learning system for practical
security training in the WWW and inherits all positive
characteristics from offline security labs. It basically consists
of a web-based tutoring system and a training environment
built of virtual machines. The tutoring system presents
learning units that do not only offer information in form
of text or multimedia, but also practical exercises. Students
perform those exercises on virtual machines (VM) on the
server, which they operate via remote desktop access. A
virtual machine is a software system that provides a runtime
environment for operating systems. Such software-emulated
computer systems allow easy deployment and recovery in
case of failure. Tele-Lab uses this feature to revert the virtual
machines to the original state after each usage.

With the release of the current iteration of Tele-Lab,
the platform introduced the dynamic assignment of several
virtual machines to a single user at the same time. Those
machines are connected within a virtual network (known as
team, see also in [2]) providing the possibility to perform
basic network attacks such as interaction with a virtual
victim (i.e. port scanning). A victim is the combination of
a suitably configured virtual machine running all needed
services and applications and a collection of scripts that
simulate user behavior or react to the attacker’s actions (see
also exemplary description of a learning unit below). A short
overview of the architecture of the Tele-Lab platform is
given later in this section.

2.1 Learning Units in Tele-Lab – an exemplary
walkthrough

Learning units follow a straight-forward didactic path
beginning with general information on a security issue,
getting more concrete with the description of useful security
tools (also for attacking and exploiting) and culminating in a
hands-on exercise, where the student has to apply the learned
concepts in practice. Every section concludes with hints on
how to prevent the just conducted attacks.

An exemplary Tele-Lab learning unit on malware (de-
scribed in more detail in [5]) starts off with academic
knowledge such as definition, classification, and history of
malware (worms, viruses, and Trojan horses). Methods to
avoid becoming a victim and relevant software solutions
against malware (scanners, firewalls) are presented as well.
Afterwards, various existing malware kits and ways of
distribution are described in order to prepare the hands-
on exercise. Following an offensive teaching approach (see
[7] for different teaching approaches), the user is asked
to take the attacker’s perspective – and hence is able to
lively experience possible threats to his personal security
objectives. The closing exercise for this learning unit on
malware is to plant a Trojan horse on a scripted victim’s

Fig. 1: Screenshot of the Tele-Lab Tutoring Interface

computer system – in particular it is the outdated Back
Orifice Trojan horse.

Back Orifice (BO) is a Remote Access Trojan Horse
developed by the hacker group “Cult of the Dead Cow”
(see [9]). In order to distribute the Trojan horse to the
attacker, the student has to prepare a carrier for the BO
server component and send it to the victim via e-mail. A
carrier is usually a “gimmick” application that has actually
no useful functionality but installs the Trojan horse server in
the background. The script on the victim’s virtual machine
will answer the mail and indicate that the Trojan horse server
has been installed (mail attachment has been opened).

The next step is the application of knowledge gained in
a prior learning unit on Reconnaissance: in order to find
the now vulnerable virtual machine, the network must be
scanned for hosts that offer a service on the port used for the
Back Orifice server. This can be done using a port scanner
like the well-known nmap tool. The student can now use the
BO client to take control of the victim’s system and spy out
some private information. The knowledge of that information
is the user’s proof to the Tele-Lab tutoring environment, that
the exercise has been solved successfully.

Such an exercise implies the need for the Tele-Lab user to
be provided with a team of interconnected virtual machines:
one for attacking (all necessary tools installed), a mail server
for e-mail exchange with the victim and a vulnerable victim
system (unpatched Windows 95/98 in this case). Remote
Desktop Access is only possible to the attackers VM.

Other learning units are also available on, e.g., authen-
tication, wireless networks, secure e-mail, reconnaissance,
firewalls, etc. The system can easily be enhanced with new
content.



Fig. 2: Overview – Architecture of the Tele-Lab Platform

2.2 Architecture of the Tele-Lab Platform
The current architecture of the Tele-Lab server is a

refactored enhancement to the infrastructure presented in [6].
Basically it consists of the following components (illustrated
in Figure 2).

Portal and Tutoring Environment: The Web-based training
system of Tele-Lab is a custom Grails application running
in a Tomcat application server. This web application han-
dles user authentication, allows navigation through learning
units, delivers their content and keeps track of the students’
progress. It also provides controls to request a team of virtual
machines for performing an exercise.

Virtual Machine Pool: The server is charged with a set of
different virtual machines which are needed for the exercise
scenarios – the pool. The resources of the physical server
limit the maximum total number of VMs in the pool. In
practice, a few (3-5) machines of every kind are started up.
If all teams for a certain exercise scenario are in use, new
instances can be launched dynamically (again depending on
the current load of the physical host). Those machines are
dynamically connected to teams and bound to a user on
request. The current hypervisor solution used for providing
the virtual machines is KVM/Qemu [10], [11]. The libvirt
package [16] is used as a wrapper for the virtual machine
control. LVM (Linux Logical Volume Management) provides
virtual hard discs that are capable of copy-on-write-like
differential storage. Differential storage is important to save
space on the physical hard disc, because the Tele-Lab server
holds so called VM templates as master images and clones
multiple instances of each template for use within the exer-
cise environment. VM templates also contain configuration
files defining hardware parameters like memory, number of
CPUs, and network interfaces.

Database: The Tele-Lab database holds all user informa-
tion, the content for web-based training and learning unit

structure as well as the information on virtual machine and
team templates. Team templates are models for connected
VMs that allow performing specific exercise scenarios. The
database also persists current virtual machine states.

Remote Desktop Access Proxy: The Tele-Lab server must
handle concurrent remote desktop connections for different
users performing exercises. Those connections are proxied
using a free implementation of the NX server (freeNX, see
[12]). The NX server forwards incoming connections to
the respective assigned virtual machine accessing the Qemu
framebuffer device via VNC (Virtual Network Computing).
The NX Client software launched from the student’s browser
connects to the NX Server using SSH-based authentication:
client and server mutually certify each others identity us-
ing public-key authentication. Subsequently, the NX Client
connects to a specific session with extra user credentials.
For mandatory encryption of the remote sessions, NX offers
transport layer security (TLS).

Administration Interface: The Tele-Lab server comes with
a sophisticated web-based administration interface that is
also implemented as Grails application (not depicted in
Figure 2). The main functionality of this interface is content
management for the web-based training environment and
user management for the whole platform. Additionally, the
admin interface can be used for manual virtual machine
control, monitoring and for registering new virtual machines
or team templates.

Tele-Lab Control Services: Purpose of the central Tele-
Lab control services is bringing all the above components
together. To realize an abstraction layer for encapsulation
of the virtual machine monitor (or hypervisor) and the
remote desktop proxy, the system implements a number of
lightweight XML-RPC web services: the vmService and the
remoteDesktopService. The vmService is to control virtual
machines – start, stop or recover them, grouping teams or as-



signing machines or teams to a user. The remoteDesktopSer-
vice is used to initialize, start, monitor, and terminate remote
desktop connections to machines, which are assigned to
students when they perform exercises. The above-mentioned
Grails applications (portal, tutoring environment, and web
admin) let the user and administrators control the whole
system using the web services.

On the client side, the user needs a web browser sup-
porting SSL/TLS and the appropriate Java-plugin for the
browser only. For the remote desktop connections, the NX
WebCompanion is included in the tutoring web application.
The WebCompanion is a launcher application for the NX
Client implemented as Java applet.

3. Virtual Networking for Tele-Lab
As already stated, many scenarios for exercises in security

training demand for a networked environment. Exercises on
single host training systems are limited to very few tasks
that could possibly also be performed on a physical local
system without any harm. More interesting and complex
exercises (like the malware learning unit described in section
2) and especially exercises on network security as introduced
later in section 4 cannot be performed without a training
environment providing machines that are connected within
a local network.

Earlier implementations of Tele-Lab could connect virtual
machines combined to a team using multicast groups: each
team is provided with an individual multicast socket that is
connected to each team member’s virtual network. Routing,
firewall, and virtual network devices on the physical host are
dynamically configured to separate the network segments
from each other. Each multicast group (VM team) can
communicate internally only.

To understand this idea, we have to explain the networking
concept of Qemu in detail: the virtualization suite sets up a
VLAN (virtual LAN) for each Qemu process. Those VLANs
can be understood as virtual hubs, where you can attach
virtual network interfaces – such as the one of the virtual
machine running in that process. All attached interfaces to
a VLAN intercept all packages sent via that virtual hub. To
connect the VLANs of a team of virtual machines, Tele-
Lab connects a multicast socket to the virtual LAN of each
machine belonging to the respective team, when it starts up.
This technique for setting up a virtual network in a Tele-Lab
team limits the resulting virtual Ethernet-based networks to:

a) LAN segments with a hub (no switched networks)
b) simple network structures: no routing, no internet-

working (interconnection of networks)
c) static IP addresses for the VM templates: this limits the

reusability of VM templates, i.e. if one wants to have
more than one instance of the same virtual machine in
one exercise scenario (respectively team template)

Since the paradigm for Tele-Lab is to provide a training
environment being as realistic as possible, the integration

of software-emulated networking devices to overcome the
above limitations is a highly desirable enhancement.

3.1 Virtual Distributed Ethernet (VDE)
A suitable solution for more sophisticated networking

within the VM teams in Tele-Lab exists with the Virtual
Distributed Ethernet (VDE) project [8]. VDE is a system
which consistently emulates all aspects of Ethernet network-
ing on the data-link layer in a completely realistic manner.
VDE maps hardware devices from the physical world – like
switches, plugs and cables – on software running in user-
mode. The main components of a VDE installation are:

VDE switch – a highly customizable software emulation
of an Ethernet switch. It supports VLANs, different oper-
ation modes (switch/hub), cascading several VDE switches
(including Spanning Tree Protocol), and extensive command
line management. You can attach different kinds of network
interfaces, such as TUN/TAP interfaces, QEMU/KVM-based
virtual machines, and VDE plugs. TUN and TAP are virtual
network devices provided by the Linux kernel. While TAP
(as in network tap) simulates an Ethernet device and operates
on ISO/OSI layer 2, TUN (as in network TUNnel) simulates
a network layer device and operates with layer 3 packets (i.e.
IP packets).

VDE plug – the virtual counterpart of an Ethernet plug
can be connected to a VDE switch. It sends all data from
the standard input to the VDE switch which is connected to
and writes all data from the virtual switch to standard output.
A tool named dpipe (a bi-directional pipe) can connect two
VDE plugs to a virtual cable by diverting the standard output
of one VDE plug to the standard input of the other one (and
vice-versa). wirefilter is an enhanced version of dpipe, which
also allows for simulating problems and limitations from the
physical world like packet loss, duplicated packets, limited
bandwidth or different MTUs.

Fig. 3: Examplary Deployment for Virtual Distributed Eth-
ernet in Tele-Lab

A possible VDE setup with virtual machines for a complex
Tele-Lab learning unit may look like illustrated in Figure 3:
let the task be a remote exploitation of VM 3, the attacker
uses VM 1. While this would be an easy task if attacker
and victim would be connected to the same local network,
it gets much more challenging as soon as there is a firewall



between the attacker and target host. The use of two VDE
switches, both connected to different network interfaces of
the firewall host (VM 2) allows to compile such an exercise
scenario.

VDE switches and VDE plugs can also be connected if
they run on different physical hosts, which is also a useful
feature for a further enhanced Tele-Lab architecture (see
Outlook in section 5).

3.2 Integrating VDE into the Tele-Lab Archi-
tecture

When Tele-Lab creates a new team of virtual machines,
the vmService (see Figure 2) is responsible for starting
Qemu processes for each VM and for setting up the virtual
network that connects the team members. It consumes a
team configuration provided as XML file and transforms
its elements to parameters for command line calls. Such an
XML file for the example configuration from Figure 3 would
look like depicted in Figure 4 (without attributes not relevant
for virtual networking):

<tl:team name="Example Team" >
<!-- virtual machine instances -->
<tl:machine name="VM 1 (Attacker)">

<tl:networkInterface
mac="00:11:22:33:44:55"
networkName="net0" />

</tl:machine>
<tl:machine name="VM 2 (Firewall)">

<tl:networkInterface
mac="11:22:33:44:55:66"
networkName="net0" />

<tl:networkInterface
mac="22:33:44:55:66:77"
networkName="net1" />

</tl:machine>

<tl:machine name="VM 3 (Victim)">
<tl:networkInterface

mac="33:44:55:66:77:88"
networkName="net1" />

</tl:machine>

<!-- virtual network -->
<tl:network name="net0" id="1"

mode="switch" />
<tl:network name="net1" id="2"

mode="switch" />
</tl:team>

Fig. 4: Examplary XML Team Configuration

After parsing the XML data, the vmService starts
up virtual machines from the VM templates identified
by the <tl:machine> element and initiates the re-
spective network interfaces specified with the enclosed
<tl:networkInterface> items, i.e. two interfaces for
the firewall machine (VM 2).

It also starts an instance of VDE Switch for each virtual
network specified with <tl:network>, either as hub or as
switch depending on the mode value. The network interfaces
of the virtual machines are bound to the matching switch
instances.

The assignment of IP addresses inside the virtual ma-
chines posed a challenge during implementation, since they
had to be allocated dynamically. An obvious solution was to
attach a DHCP server to each VDE switch after startup using
TAP interfaces. This DHCP server assigns an IP address
to each of the virtual machines connected to the virtual
switch based on its MAC address. IP addresses for the virtual
machines can also be defined in the team configuration
file. If an administrator decides to do so, the DHCP server
for the respective team is dynamically configured to issue
those defined IP addresses to the network interface with the
corresponding MAC address.

Due to security constraints, users of virtual machines in
Tele-Lab should not be able to access any services running
on the physical host. For this reason, the DHCP server and
the TAP interface are shut down, after the DHCP leases have
been issued.

The generation of the above described XML representa-
tions of virtual networks will be realized as a web based
tool: Tele-Lab administrators can use a convenient interface
to combine virtual machine templates to a team and define
the network connections for the team members.

4. Network Security Exercise Scenarios
There are a lot of conceivable exercise scenarios in the

area of network security, which require the provision of a
networked training environment. Two such exercises have
already been introduced earlier in this paper: the malware
learning unit from section 2 needs three hosts on a network
(attacker and victim machines, mail server). The exemplary
scenario on remote exploitation outlined in section 3 requires
three hosts on two different networks. In the following, two
more learning units on network security are presented briefly.

4.1 Exercise Scenario: Eavesdropping of Net-
work Traffic

Eavesdropping is basically about secret listening to some
private communication of two (or more) communication
partners without their consent. In the domain of computer
networks, the common technique for eavesdropping is packet
sniffing. There are a number of tools for packet sniffing –
packet analyzers – freely available on the Internet, such as
the well-known tcpdump or Wireshark [13] (used in this
learning unit).

A learning unit on packet sniffing in a local network
starts off with an introduction to communication on the data-
link layer (Ethernet) and explains the difference between
a network with hub and a switched environment. This is
important for eavesdropping, because this kind of attack is



way easier when connected to a hub. The hub will forward
every packet coming in to all its ports and hence to all
connected computers. These hosts decide, if they accept
and further compute the incoming data based on the MAC
address put in the destination field of the Ethernet frame
header: if the destination MAC is the own MAC address, the
Ethernet frame is accepted, or dropped otherwise. If there
is a packet analyzer running, also frames not intended for
the respective host can be captured, stored and analyzed.
This situation is different in a switched network: the switch
does not broadcast incoming data to all ports but interprets
the MAC destination to “switch” a dedicated line between
source and destination ports. In consequence, the Ethernet
frame is only delivered to the actual receiver.

After providing general information on Ethernet-based
networking, the learning unit introduces the idea of packet
sniffing and describes capabilities and usage of the packet
analyzer Wireshark, especially how to capture data from the
Ethernet device and how to filter and read the captured data.

The practical exercise presents the following task to the
learner: “Sniff and analyze network traffic on the local
network. Identify login credentials and use them to obtain
a private document.” The student is challenged to enter the
content of this private document to proof, that she has solved
the task.

When requesting access to a training environment, the
user is assigned to a team of three virtual machines: the
attacker machine equipped with the Wireshark tool, and two
machines of (scripted) communication partners: Alice and
Bob. In this scenario, Bob’s machine hosts an FTP server and
a Web server, while Alice’s VM runs a script that generates
traffic by initiating arbitrary connections to the services
on Bob’s host. Among those client/server connections are
successful logins to Bob’s FTP server. As this learning unit
focuses on sniffing and the interpretation of the captured
traffic, the machines are connected with a hub. There is
no need for the attacker to get into a Man-in-the-Middle
position in order to capture the traffic between Alice and
Bob.

Since FTP does not encrypt credentials, the student can
obtain username and password to log in to that service using
the stolen credentials. On the server, the student finds a file
called private.txt that contains the response to the challenge
mentioned above.

The lesson concludes with hints on preventing eaves-
dropping attacks, such as the usage of services with secure
authentication methods (i.e. SFTP or ftps instead of plain
FTP) and data encryption.

4.2 Exercise Scenario: Man-in-the-Middle At-
tack with ARP Spoofing

The general idea of a Man-in-the-Middle attack (MITM)
is to intercept communication between two communication
partners (Alice and Bob) by initiating connections between

the attacker and both victims and spoofing the identity of the
respective communication partner (Fig. 5). More specific,
the attacker pretends to be Bob and opens a connection to
Alice (and vice versa). All traffic between Alice and Bob
is being relayed via the attackers computer. While relaying,
the messages can be captured and/or manipulated.

Fig. 5: General Idea of Man-in-the-Middle Attacks

MITM attacks can be implemented on different layers of
the TCP/IP network stack, i.e. DNS cache poisoning on the
application layer, ICMP redirecting on the Internet layer
or ARP spoofing in the data-link layer. This learning unit
focuses on the last-mentioned attack, which is also called
ARP cache poisoning.

The Address Resolution Protocol (ARP) is responsible for
resolving IP addresses to MAC addresses in a local network.
When Alice’s computer opens an IP-based connection to
Bob’s one in the local network, it has to determine Bob’s
MAC address at first, since all messages in the LAN are
transmitted via the Ethernet protocol (which only knows
about the MAC addresses). If the Alice only knows the IP
address of Bob’s host, (i.e. 192.168.0.10) she performs an
ARP request: Alice sends a broadcast message to the local
network and asks, “Who has the IP address 192.168.0.10?”
Bob’s computer answers with an ARP reply that contains
its IP address and the corresponding MAC address. Alice
stores that address mapping in her ARP cache for further
communication.

ARP spoofing [14] is basically about sending forged ARP
replies: referring to above example, the attacker repeatedly
sends ARP replies to Alice with Bob’s IP address and
the own MAC address – the attacker pretends to be Bob.
When Alice starts to communicate with Bob, she sends the
ARP request and instantly receives one of the forged ARP
replies from the attacker. She then thinks, the attackers MAC
address belongs to Bob and stores the faked mapping in her
ARP cache. Since the attacker performs the same operation
for Alice’s MAC address, he can also manage to imply Bob,
that his MAC address is the one of Alice. In consequence,
Alice sends all messages to Bob to the MAC address of the
attacker (same for Bob’s messages to Alice). The attacker
just has to store the original MAC addresses of Alice and



Bob to be able to relay to the original receiver.
A learning unit on ARP spoofing begins with general

information on communication in a local network. It explains
the Internet Protocol (IP), ARP and Ethernet including the
relationship between the two addressing schemes (IP and
MAC addresses).

Subsequently, the above attack is described in detail and
a tool, that implements ARP spoofing and a number of
additional MITM attacks is presented: Ettercap [15]. At this
point, the learning unit also explains what the attacker can
do, if he becomes Man-in-the-Middle successfully, such as
specifying Ettercap filters to manipulate the message stream.

The hands-on exercise of this chapter asks the student to
perform two different tasks. The first one is the same as
described in the exercise on packet sniffing above: “monitor
the network traffic, gain FTP credentials and steal a private
file from Bob’s FTP server”. The training environment is
also set up similar to the prior scenario. The difference is
that the team of three virtual machines is connected through
a virtual switch this time (instead of a hub), so that capturing
the traffic with Wireshark would not reveal the messages
between Alice and Bob. Again, the student has to proof the
successful attack by putting in the content of the secret file
in the tutoring interface.

The second (optional) task is to apply a filter on the traffic
and replace all images in transmitted HTML content by an
image from the attackers host (which would be displayed in
Alice’s browser). This attack is still working and dangerous
in many currently deployed local network installations. The
only way to protect oneself against ARP spoofing would be
the usage of SSL with a careful verification of the hosts
certificate, which is explained in conclusion of the learning
unit.

A future enhancement of the practical exercise on ARP
spoofing would be the interception of an SSL secured
channel: Ettercap also allows a more sophisticated MITM
attack including the on-the-fly generation of faked SSL
certificates, which are presented to the victims instead of
the original ones. The Man-in-the-Middle can then decrypt
and re-encrypt the SSL traffic when relaying the messages

5. Conclusions and Outlook
The paper at hand presents a comprehensive infrastructure

for a remote virtual computing lab for security education.
The described enhancements with the Virtual Distributed
Ethernet software suite allows the implementation of training
environments for complex network security exercises, such
as the learning units on packet sniffing and ARP spoofing.

Future work on the system includes the creation of more
learning units in the network security domain as well as
the implementation of technical enhancements. Additional
learning units may cover topics like other Man-in-the-Middle
attacks (i.e. the above mentioned DNS cache poisoning),

firewall configuration, intrusion detection and prevention,
etc.

Technical enhancements planned for the next iterations of
the Tele-Lab server are

• integrating a convenient administration interface for the
creation of team templates, precisely a graphical editor
for virtual networks, where you can drag and drop
virtual machine templates, switches and network cables,

• switching the Remote Desktop Access from NX to
an HTML5/AJAX based VNC client (i.e. noVNC, see
http://kanaka.github.com/noVNC/),

• the implementation of tools for remote collaborative
learning and tutoring (e.g. Remote Desktop Assistance),

• and clustering on application level to provide larger
virtual machine pools.

The clustering enhancement will allow users of intercon-
nected Tele-Lab servers to use virtual machines running on
other physical hosts than the one known to the user. The
integration of VDE even allows having the virtual machines
of one team running on different physical machines.

References
[1] J. Hu, M. Schmitt, C. Willems, and C. Meinel. “A tutoring system

for IT-Security”, in Proceedings of the 3rd World Conference in
Information Security Education, p. 51–60, Monterey, USA, 2003.

[2] C. Border. “The development and deployment of a multi-user, remote
access virtualization system for networking, security, and system ad-
ministration classes”, SIGCSE Bulletin, 39(1): p. 576–580, 2007.

[3] J. Hu, D. Cordel, and C. Meinel. “A Virtual Machine Architecture for
Creating IT-Security Laboratories”, Technical report, Hasso-Plattner-
Insitut, 2006.

[4] J. Hu and C. Meinel. “Tele-Lab IT-Security on CD: Portable, reliable
and safe IT security training”, Computers & Security, 23:282–289,
2004.

[5] C. Willems and C. Meinel. “Awareness Creation mit Tele-Lab
IT-Security: Praktisches Sicherheitstraining im virtuellen Labor am
Beispiel Trojanischer Pferde”, in Proceedings of Sicherheit 2008, p.
513–532, Saarbruecken, Germany, 2008.

[6] C. Willems and C. Meinel. “Tele-Lab IT-Security: an Architecture for
an online virtual IT Security Lab”, International Journal of Online
Engineering (iJOE), X, 2008.

[7] W. Yurcik and D. Doss. “Different approaches in the teaching of infor-
mation systems security”, in Security, Proceedings of the Information
Systems Education Conference, p. 32–33, 2001.

[8] R.Davoli. (2011) Virtual Distributed Ethernet homepage. [Online].
Available: http://vde.sourceforge.net/

[9] Cult of the Dead Cow. (2011) Back Orifice – Windows Remote
Administration Tool homepage. [Online]. Available: http://www.
cultdeadcow.com/tools/bo.php

[10] Red Hat, Inc. (2011) Kernel-based Virtual Machine (KVM)
homepage. [Online]. Available: http://www.linux-kvm.org/

[11] F. Bellard. (2011) QEMU – Open Source Processor Emulater
homepage. [Online]. Available: http://www.qemu.org/

[12] F. Franz. (2011) FreeNX – the free NX project homepage. [Online].
Available: http://freenx.berlios.de/

[13] Wireshark Foundation. (2011) Wireshark homepage. [Online].
Available: http://www.wireshark.org/

[14] S. Whalen. (2011) An Introduction to ARP Spoofing.
[Online]. Available: http://www.rootsecure.net/content/downloads/pdf/
arp_spoofing_intro.pdf

[15] A. Ornaghi and M. Valleri. (2011) EttercapNG homepage. [Online].
Available: http://ettercap.sourceforge.net/

[16] The Libvirt Developers. (2011) libvirt – The virtualization API
homepage. [Online]. Available: http://libvirt.org/




