A Document-Centric Method For Combined
Synchronous And Asynchronous Applications

Lutz Gericke, Christoph Meinel
Hasso Plattner Institute Potsdam
Prof. Dr. Helmert Str. 2-3, Potsdam, Germany
{lutz.gericke, meinel} @hpi.uni-potsdam.de

Abstract—In this paper, we present a concept for developing
applications that allow users to work synchronously together
while being able to use asynchronous features, such as work
resumption from any point in time. Therefore, we formulate
abstract requirements for a protocol realizing the introduced
approach. Furthermore, an architecture for deployment is out-
lined. We show three different applications — all realizing the
proposed method. An evaluation summarizes the drawbacks and
advantages of the approach.

The introduced concept should show up a practical solution
especially to sufficiently store collaboration processes. By proving
the combination of synchronous and asynchronous features into
one application to fulfill basic user needs, it could be an efficient
way for applications realizing two working modes, which mostly
have been addressed separately in previous solutions.

Keywords—synchronous collaboration; asynchronous collabo-
ration; collaboration process history

I. INTRODUCTION

In the recent time, we have seen many applications moving
from single user applications to multi-user environments. With
the growing importance of cloud-based applications, a key
features is to keep documents on servers in a central infras-
tructure. People are more and more used to give away data
sovereignty from their local computers to third-party infras-
tructure. Those applications often still lack features for near
real-time collaboration, although the infrastructure would be
perfectly suited for implementing collaborative features easily.
Functionality in different products ranges from just storing
documents and making them available on other devices or
for colleagues, to live-collaboration on documents, including
a limited document history. What seemingly has not been
commercialized before is an application environment allowing
live-collaboration and a full-detailed history function at the
same time.

In interviews with different corporate work groups we found
out that they are demanding for both working modes at
the same time. Teams are oftentimes spread over the globe,
utilizing telephones, video conferences or any other data-
based communication as their exchange channels. To our
experience, e-mail, shared folders, and screen-sharing are the
most common tools in companies, when it comes to remote
collaboration. There are still difficulties with tools, enabling

people to work together on the same content, as traceability
and access to shared documents is often not sufficient.

Explicit versioning of content has a long history. You can
often find files named after their version on shared folders.
Modern document management systems are much more ad-
vanced. There are distributed systems where it is sometimes
not clear, who keeps the most recent version of a document.
It becomes even non-trivial to say, if there is the right copy
of a document. This problem is often solved by building up a
central infrastructure with a version history for each document.

We assume that there is a need for near real-time syn-
chronization among clients. This need is independent from
the technology being used in the applications. The problems
are similar, no matter if it is based on HTML and JavaScript
or any desktop technology. The general goal is to coordinate
applications, in order to keep the same content at every
location while preserving a central edit history on a central
server. Content can be of various kinds, it can be text-based,
any graphical format or even 3D models. For our approach
the only restriction is that documents have a state, streaming
formats can be embedded into documents, but are not in our
focus as documents to be synchronized by our approach.

This paper should not be seen as a scaffold for implementing
combined synchronous/asynchronous applications, but explain
a possible strategy towards realizing such a system.

II. RELATED WORK

There has been a lot of research on synchronization of
applications. This research is mostly focussed on the problem
of multiple clients having a copy of one document. Application
of changes on one copy will be applied on the remote sides.
The main challenge faced during the implementation of these
approaches is synchronization and fault tolerance.

There is a multitude of approaches dealing with synchro-
nization of documents [9]: pessimistic, optimistic [24], edit-
based (e.g. based on the operational transformation algorithm),
three-way merges (as found in Google Docs, Subversion etc.,
described by Lindholm in [22]), differential synchronization
(described in detail by Fraser in [9]) and many more. Ac-
cording to [24], the approach presented within this paper, is
a single-master, state transfer, syntactic scheduling method

and thereby could also be called an optimistic replication
algorithm.

“Operational Transformation” (OT) was first described by
Ellis et al. [8] and became popular since. In [6], [18], [19], the
authors describe the development of systems or frameworks
adapting existing applications in order to synchronize their
states to other locations. OT is used as a conflict resolution
strategy. Applications will transfer change-sets of operations
that are applied to the document. As pointed out by Fraser in
[9], server-side three way merges do not scale well in certain
situations.

Rather than integrating a new synchronization approach into
existing applications, we want in the first place find a generally
applicable methodology to combine near real-time synchro-
nization as well as asynchronous features into an application.
There is a large need for asynchronous applications. This
might have several reasons (see [1]). People are oftentimes
not able to work at the same time (different working habits,
timezones, etc.). We agree with Barksdale et al. [1] on their
statement “not all teams have this luxury” of working together
synchronously. As people are increasingly spread over the
globe, but working for the same company or are otherwise
in need for coordination, this becomes a growing problem.

13

Biuk-Aghai highlights an important point: “.. in asyn-
chronous collaboration awareness of the event history of the
collaboration space is of importance.” [2]. Only storing the
latest state of a collaboration process does not necessarily
establish an asynchronous application. Archiving the whole
path towards the end result and being able to replay it, might
be even more important.

Frameworks for easier building groupware applications are
available, such as OpenCoWeb (http://opencoweb.org). It sup-
ports Websockets as well as the cometD Bayeux protocol
and uses OT as conflict resolution strategy. As browsers are
growingly important as a platform for applications, Gutwin et
al. [16] researched on technologies for web-based networking.

Xia et al., Davis et al., and Sun et al. all experience chal-
lenges during realization of a system implementing operational
transformation [6], [25], [27]. Sun et al. [25] and Xia et
al. [27] are showing a method to transparently adapt single
user applications to multi-user working modes. An application
combing also asynchronous and synchronous working modes
is presented in [3] and [23]. Masoodian et al. [23] implemented
the text editor “RECOLED”, which allows users to work
together on text documents while the system also captures
several other data streams, such as gestures or voice.

Awareness in virtual workspaces has been studied a lot. As
Dourish et al. point out in [7], awareness can be related to
the content or the character. Several kinds of awareness infor-
mation are imaginable, such as feedback, pointers, etc.. When
combining synchronous and asynchronous working modes into
one application, this becomes especially challenging. Gutwin
et al. say that it is important to create awareness by knowing

what happens on the other side [15]. In asynchronous systems,
there is often no other side, so the takeaway for us is that
awareness information as to be captured as well, which is also
supported by Masoodian et al. [23].

III. REQUIREMENTS FOR A GENERIC SYNCHRONOUS AND
ASYNCHRONOUS APPLICATION STATE MANAGEMENT

The general goal of a synchronized application is to coor-
dinate a state between different instances. This state contains
of the content within the application, but is not limited to
that. Awareness information can also be part of the application
state. In a spreadsheet application, the sheet consisting of
cells can be enriched by highlighting cells that show the
currently editing users. This information can help guiding
users attentions, but could also distract users from working
properly, e.g. think of a synchronized tool bar with a color
picker, when everybody wants to write in a different color. For
this reason, we define the term “content” as the information
within the application, which users can modify and are the
same in every instance of the application.

We differentiate between three synchronization approaches:
input-operation-centric, ~ document-operation-centric, and
operation-centric synchronization. The major difference in
those approaches is the unit of transport, which has a large
influence on flexibility of the protocol, but also on technology
dependence.

For the operation-centric approach, the transfer unit is
focussed on capturing change operations on the editor side,
transferring it to the remote location, and reproducing the
changes on the other side. Those operations can be e.g. "press
key ’a’”’. When the user at location A now triggers input on the
one location, it will be reproduced at location B. A replay of
this information to achieve a certain state of the document is
expensive and tedious. Reproducing a document from a series
of input events demands for a lot of operations, where also -
in the worst case - a lot of events will not directly be visible
in the final document (e.g. writing and deleting a paragraph).

In a document-operation-centric approach, operations are
abstracted, so that a change message can look like Insert the
string ’abc’ at position 4 in cell 23:45”. This might cause
problems in resolving conflicting operations, which can be
solved by operational transformation [8], but will be growing
in complexity when adding new operations to the system.
Almost the same problems arise as before, when trying to
reconstruct a document state from a log. Snapshotting might
be a workaround. There are two options: Having the user
snapshotting states of work (pushing the “save”-button) or
having automatic snapshotting at certain times. Defining the
points in time seems difficult, as fixed intervals produce long
phases of irrelevancy and during phases of intense work, leave
out too much information. For us, storing just every change
operation is the better option, as we can also define afterwards,
which state is more relevant than another, also based on other
data forms (annotations, audio/video recordings etc.).

We propose a further simplification or abstraction towards a
document-centric approach. We look at content as documents
and items within these documents. This simple definition
matches a broad range of document types: text documents
(items = lines, paragraphs), graphics editing (items = shapes,
images), etc.. These artifacts/items define a simple set of
operations: new, change, delete. Having this model in mind, we
can realize a synchronization mechanism for many different
applications. The major difference to those two methods before
is the perspective towards change events. The fact that there
was a change of 2 letters with the second line at position 14 is
seen as too fine-grained. It merely matters that line 2 changed,
so we would transfer this item as a change message.

A comparison of the three approaches can be seen in Table I,
which differentiates four factors:

o replay: The operation centric-approaches have to retrace
the whole history of events and reapply them to document
items, whereas the document-centric approach just needs
to fetch the latest state of all items.

o message size: Message payload size is often smaller in the
first two approaches, because only deltas are transmitted.
Thus, depending on the item granularity, the difference
to document-centric is rather small.

o error-proneness by missing messages: A document state
cannot be reliably restored, if messages are missing in
the operation-centric approaches. The document-centric
approaches does store full representations of the last state
of an item, so leaving out messages can be acceptable.

o conflict resolution: needs to be more elaborate when
just deltas are sent around, but can be simpler in the
document-centric case

o granularity/abstraction level: Is higher in the operation-
centric approach, as there can be fine-grained opera-
tions used. Those operations are more abstract in the
document-operation-centric approach, but different from
application to application. Items in the operation-centric
approach have a fixed set of operations.

TABLE 1
COMPARISON OF SYNCHRONIZATION STRATEGIES

input- document- document-

operation operation centric
replay costly costly cheap
message size smallest small larger
error-proneness high high low
conflict resolving difficult yes inherent
granularity/abstraction | large medium limited

Table I reveals advantages and disadvantages on both ends
of the scale. As we want to build systems combining asyn-
chronous and synchronous modes into one application, we
need to focus on an approach, which makes it easy and flexible
to replay sessions. In order to follow this document-centric
approach, we first try to find a general description of an
item and a modification event describing it. We found a tuple
describing every message as follows:

msg = (id, doc_id, opcode, timestamp, user, type, data)

td describes the identifier for the item. doc_id keeps the
connection to a specific document, the item belongs to, e.g.
a text file or a whiteboard panel. opcode has one of the
values of the enumeration { NEW,CHANGE, DELETE},
to identify the operation type. timestamp describes the point
in time when the operation took place. user is the user, who
took out this operation. type reveals the item type. data is
the actual content of the item that has been changed. A list of
events can be seen as the history of a document. In a relational
database, the tuple ty., = (id, doc_id, opcode,timestamp)
will be the primary key for the event. This brings up a
limitation of the approach: The granularity of the history
can be limited by the granularity of the timestamp, which
could be adjusted to a second. As we have for example two
CHANGE operations in rapid sequence on one item of the
same document, it might be that only the last of these events
are stored into the database, as we use a replace rather than
a insert semantic during database insertion. It can be a proper
factor for adjusting the amount of data that is being stored
during high-load scenarios.

Content is typically ordered within a document. Order can
be very diverse in meaning seen by the application. For a
drawing application it can be a combination of position and
z-order, for a text application it is just the line number. Our
assumption is that the application-internal ordering should be
part of the application or client-logic and thereby reflected
within the data-field. As this information is highly application-
specific, it should not be reflected in the database schema. One
exception can be using the id-field as a criterion for ordering
one-dimensional information such as text-only documents.
This will not be suitable as soon as there are other item types
involved, e.g. figures.

Synchronization is realized by transferring item descriptions
to the other clients and applying them on the content. There-
fore, the tuple is packed into a message, sent to the server,
where it is broadcasted to every connected client editing the
respective document. While the server has complete control
over the content, it can be stored in a database, in order to
allow reconstruction of the whole process, but also analysis of
the work process.

Regeneration of a state of the document is straightforward.
Given the set of events for a document, the events can be
grouped by the item identifier and ordered using the times-
tamps of the events. Now taking the last event that took place
just before the queried time, we get the latest state of every
object. If the latest state at that point in time has the opcode
"DELETE”, then the object is not existing at that point in time.
With that procedure you can easily reproduce any point in time
of the interaction history. Of course, the most frequently used
timestamp will be the latest state (see Figure 1), as it will
be generated on client startup in order to receive the current
document version.

Apart from the reconstruction of a whiteboard state, it is

]
Object #2 CHANGE DELETE
]
/\ .
NEW CHANGE CHANGE
]

N
Figure 1. Schema for querying a document state. Given a point in time that
should be reconstructed, all events after will be omitted and the latest event
represents the latest state of the object. The x-axis represents the time. The
set of items existing at the given time (red line) represent the document state.

Obiject #3

also possible to copy one state into a new document. We
refer to that as “branching”. Branching is quite similar to
the reconstruction of whiteboard content, because the data
extracted from the database for one state will just be copied
and relabeled for another document. This strategy does not
copy the history information. There can be two strategies to
circumvent this behavior: First, copy everything before that
point in time that is going to be branched or second, copy only
the state and keep a log of branch actions. For our applications,
we prefer the second strategy.

The history archive can also be used to analyze team
interaction processes, as we showcased in [11]. Automatically
captured data can replace a lot of effort done usually via
coding of captured video of the teams.

The major aspects of this section can be summarized into
following points:

o A general message format is used for synchronizing
diverse kinds of applications.

« Synchronization is realized over a central server system
that also stores every single event message in a database.

o The stored event database can be used for reconstructing,
branching, and analyzing previous work.

IV. GENERALIZED ARCHITECTURE FOR A SYNCHRONIZING
ASYNCHRONOUS COLLABORATION PLATFORM

The proposed abstract protocol description is realized by
two basic components - server and client. The server has
three tasks: message routing, message storing, and document
reconstruction. Clients continuously send update messages
towards the server. Messages are distributed to the other
connected clients. The server component stores the messages
in an adequate format, in order to enable reconstruction of the
document at any point in time of the interaction process.

Message routing describes the way incoming messages will
be distributed to any other connected client. Therefore, the
notion of a Session becomes important. The scope of a session
is limited to one document, meaning there is a one-to-many
(one document, many sessions) relationship of a document and
its sessions. Editing a new document will assign the client to a
session belonging to that specific document. All clients editing

a document will receive updates for it, while being in the same
session during synchronous modification.

The central server manages the sessions and handles user
authorization. Depending on the transport protocol being used,
the message routing is already implemented to a large extend.
For instance, session handling (via multi user chat rooms) and
authorization (internally or externally via LDAP) are features
that are readily available with open source XMPP servers such
as Openfire!. But for example using web technology, the effort
for synchronization might be higher, as HTTP is mainly a
request-response driven protocol. Although there is a variety
of options to use persistent connections in the web [16]. As
the general idea is not bound to a specific protocol, you could
also think of any other transport protocol being used.

Another requirement for the server system is that it can
capture every packet that is being sent over this server. Two
possibilities are: First, self-implementing the message routing
and taking care of storing the information in place. Second,
using any kind of plugin mechanism to build a packet inter-
ceptor that can at least read all incoming messages. There also
must be any kind of database system. It indeed makes sense
to be able to have indices on attributes. The reconstruction of
document states can be answered much faster, when there is at
least an index on the timestamp and id fields, easing grouping,
selection, and sorting on the attributes. Therefore, a relational
database is highly sufficient, but thinking of more complex
types of items (e.g. graphics or three-dimensional objects), it
can be adequate to use specialized database types, such as
XML databases or key-value stores.

We use a “last writer wins” approach including timestamps
for data storage. Operations being sent to the server will be
processed in the order of the timestamp. This can be used to
overwrite the last state within a certain timestamp accuracy
interval (e.g. one second), in order to save storage space as
there can be situations having multiple operations on one
element in rapid sequence.

The requirements described so far, are intentionally very
technology-independent. Most of the requirements are not
bound to a specific protocol, but can be applied with almost
any transport protocol. In our developed applications, we
used XMPP and HTTP as key technologies. We choose those
technologies, because those are well-proven standards, widely
adopted, and very different in their intention. The last point
should show the universality of our approach.

V. APPLICATIONS FOR THE GENERIC PROTOCOL

This section describes three different applications imple-
menting the concept of a combined synchronous/asynchronous
system. There are two different domains used: whiteboard in-
teraction and text editing, both very different in their demands
for user interfaces and synchronization effort. Furthermore,
there are also two different protocols used: XMPP and HTTP.

Thttp://www.igniterealtime.org/projects/openfire/

A. Tele-Board

Tele-Board is meant to be a solution for people, who are
often working at whiteboards, using paper and pens or other
tangible tools, in order to visualize their ideas and designs
[5]. It is our goal to support this way of working also for
geographically dispersed teams. The application should retain
working modes of the analog world as closely as possible
[13]. Additionally, the system shall have all advantages of a
digital solution, as for example saving whiteboard states and
continuing at another place of work. Therefore, Tele-Board
uses a paradigm of message exchange and capturing, which
enables synchronous as well as asynchronous interactions [10]
seamlessly integrated into one system. In contrast to other
solutions (e.g. [4], [17]), we do not store images but the
communication flow itself.

Figure 2.

Tele-Board component architecture

Figure 2 shows what kind of devices can be connected
to the system and the different working modes people might
have using it. There are basically two different kinds of task,
users can achieve using the system: creating sticky notes and
working on the whiteboard. There are overlaps between these
working modes.

The proposed protocol comes into play when the white-
boards are synchronized. As an underlying transport protocol
we use XMPP. The Whiteboard client sends updates to the
communication server, which has a plugin registered that
captures every packet that is sent to the server and routes it to
any other connected clients of this session. A central database
archives a history of the whiteboard states.

To transform the content into data units fitting into the
proposed protocol format, we came up with four kinds of
items: sticky notes, paths, clusters, and the whiteboard. In this
implementation, the items are coded as XML. So for example
a sticky note will be rendered as shown in Figure 3. It also
gives you an impression on the possible actions that can be
made on a sticky note: duplicate, cluster, delete, change color,
pin to background.

Clusters are items to group content, Paths are drawn
sketches or handwriting, and the whiteboard element stores
scroll position and zoom level. This awareness information
can help remote users following the editing on the remote
side, as the virtual whiteboard surface can be much larger than

<postit id="17:312" I:]
color="yellow" ImP|icif storage
x="1104.0" y="830.7427" o
sizex="60.0" sizey="40.0" ﬁé/‘
text="Implicit storage"

bgimaqe="" \
skribble="M 13.1 25.2 L 17.0..."
pinned="false"
skribblecolor="black"/>

Figure 3. Sticky Note XML representation; whiteboard client view on the
selected Sticky Note including a context menu bar.

what is actually shown on the screen. The scroll and zoom
whiteboard events are sent continuously, but users can switch
off the synchronization to their local virtual whiteboards. This
can be desirable in situations, when collaborators do not want
to be distracted by remote operations, e.g. while working on
a private area on the board. In asynchronous settings, this
information can also be used to guide users attention.

In Figure 4, screenshots of the two major user interfaces
are shown. The whiteboard client, that is used to modify
whiteboard content is shown in the foreground. It offers very
basic tools to edit or create content with (pen, sticky notes,
eraser). Content sent from mobile clients (e.g. tablets) will be
delivered to the receiver area at the bottom, where people can
drag content from there onto the whiteboard. The whiteboard
client is meant to be used on large-scale interactive whiteboard
devices as well as desktop computers. In the background, the
portal is shown. It is an interface to sort panels (= documents)
into projects, write sticky notes, review changes and activities,
explore the history as well as starting the client.

o i itps @ tele-board.de <

Tele-Board feedback K=

Actons. Documentation | History Edit

USA (#687) | Tele-Board

/
TR

\@Qﬁ—wam
| et -

Hasso
Plattner|
Institut]

Remore
Collaborarion

D=0

LL 4
= | [=

Figure 4. Tele-Board application screenshots: portal (background) and
whiteboard client (foreground)

User feedback revealed that the conflict handling strategy
within this application does work as expected. In the rare
situation, when more than one person is dragging a sticky

note to a different spot on the board, it can be that the sticky
note rapidly switches from one position to another (local and
remote point). According to the last-writer-wins approach,
this behavior is as expected. As the irritation is minimal, we
refrained from implementing special locking in the client’s UL

B. Tele-Edit

Tele-Edit is a technology demo to prove that the networking
core of Tele-Board can also handle other information than
just whiteboard data. Here we used a basic text editor as a
front end. Users can connect to a server and start editing a
document. Changes are synchronized through the server to
other locations and directly archived on the server. It uses
the slightly modified networking component of the Tele-Board
Whiteboard client on the client-side. The server-side has not
been changed at all. The only change that had to be made
was for the data format according to synchronizing the text
document. An item is a single text line within the editor. So
a change event data payload looks as follows:

<line t="This is a text line." n="3" />

There are basically two attributes, ¢ stores the text content
and n is the line number within the document. This positional
information is used by the client to sort the lines accordingly.
Having in mind that inserts might trigger a lot of further
change events (for all of the following lines), one could
think of another approach for the position information being
stored. Replacing the line number position information by
a succeeding element identifier could reduce the number of
messages sent to the server, but raises complexity in terms
of identifier generation. A line insertion operation would then
only trigger a maximum of two additional change messages.
However, this linked-list approach would result in globally
identical list of identifiers to be used assigned to the lines. We
already use this approach in the Tele-Board Whiteboard client,
where the identifier is a combination of the session identifier
and a counter valid within the session. Both approaches
can be used, whereas we used the one-dimensional ordering
information for the special case of a text editor.

By using the system, it turns out that the last-writer-wins
semantics within the server is better suited for applications
having a graphical representation. When two people work on
the same line, it occurs that changes of one collaborator will
be overwritten by the other one. In practice, this happens not
very often and can be also prevented by also synchronizing
cursor locations or locking the lines for editing by just one
person at the same time. This is what for example Google Docs
does for inhibiting multiple editors of one line. This general
problem of having awareness information of the collaborators
has been studied extensively (see [14], [15], [26]) and will not
be elaborated here.

C. Tele-Edit web

This application brings the previous domain - a simple text
editor - to the web and shows how our concept can also be

realized using web-based technology. The architecture is as
before, but based on a combination of Apache and PHP on
the server side and HTMLS5 and JavaScript on the client side.
It is still a technology prototype, but can be easily adapted to
other use cases. Looking at communities such as github?, a
text-editing tool using synchronous and asynchronous aspects
at the same time, could offer new perspectives in terms of
users really working together on source code at the same time.
Figure 5 shows the application running in 3 different browsers
at the same time, synchronizing the same document over these
locations.

We are not relying on XMPP connections here, but use
EventSource or “Server-Sent Events” as the technology for
subscribing to updates. XMPP would also be an option in the
browser, as there are many JavaScript-based libraries available
implementing full XMPP client connectivity in the browser.
Nevertheless, we wanted to showcase the still relatively un-
popular EventSource approach in order to show that HTMLS5
has good mechanisms for synchronization already. As Gutwin
et al. [16] have shown, there are a couple of technologies
available being mature to be used in synchronous applications,
such as Websockets. Server-Sent Events are widely supported,
but one interesting fact is that fallbacks for older browsers
(Internet Explorer, Firefox <6) are easy to implement® or one
could even use a framework adapting to browser specifics®.

sends modification
events (HTTP POST)

subscribes
(EventSource)

pushes updates
(EventSource)

Figure 6. Tele-Edit web application general component structure

updates
content (SQL)

Client Web-Server Database

answer:
line items (SQL)

EventSource as it is specified and described in [20] and [21]
as an “API for opening an HTTP connection for receiving push
notifications from a server”. That is why, we realized just the
channel from the server to the client using EventSource. Mes-
sages from the clients towards the server are sent via HTTP
POST requests (see Figure 6). There are some limitations to
that approach. The PHP script serving the stream for the client
side, is relying on the database and queries for changes in a
fixed interval. This is delaying the message routing, because
the streaming script does not keep any state itself, remaining
slim in memory footprint.

The functionality is limited (see Figure 5) but it fulfills the
fundamental task of having an equal copy of the document
on different places and synchronizing it between them. The
history of every document can be seen in the database. A
possibility that arises from this infrastructure is that you can

Zhttp://github.com
3https://github.com/Yaffle/EventSource
“http://www.eventsourcehq.com/browser-support

000

localhost/sse_php/client.php

[Eocalhost/sse_op/clenco *

€ - C [locathost/sse_php/client.ohp

Working on file: index.htm

jungle and raised by wolves,

he suddenly becane

=T
o)
(-]

dex.html

5 | This will become a nice welcome page.

<
9 | <h3>Author 1 Bior</h3>
9 |Born in the jungle and raised by wolves, he suddenly becane

Figure 5.

have an almost step-less “diff”” of states in-between beginning
and ending of the editing process. You could also retrace which
author worked on which part, who contributed most and what
have been the most actively reworked parts of the document.

As a data representation we decided for JSON. The line
event looks as follows:
{p: 1, 1: 4, t: "text ", o:

"CHANGE", u: "lutz"}

It transmits information about the user (u), the operation
code (0), the text line (¢), the line number (I), as well as
the document id this line belongs to (p). This textline-item is
the only one in this application. You could think of a pointer
element as well, showing where remote people are currently
working on, enhancing awareness between multiple locations.

VI. EVALUATION

All insights presented in this section are based on informal
user feedback and observations. The general idea presented in
this paper definitely works for all of the different scenarios, but
the “timestamped last-writer-wins” based (TSLWW) conflict
resolution strategy has its limitations. While dragging sticky
notes around the board, it is not problematic. Sometimes users
even enjoy having little “battles”, when multiple people want
to relocate a sticky. On the other hand, for the text editor
scenario it could make sense to introduce more client-side
concurrency control or prevention, even though conflicting
situations only rarely happen. Locking the line which is
currently edited by another person seams absolutely viable
and acceptable from user perspective (see [23]). As already
said, this strategy addresses not a technology point-of-view
but more an awareness problem.

TSLWW can be also used properly in limited bandwidth
scenarios. A map of queues stores the update sequence of
every element. As there is the full description of an element
in each message about the specific element, it would be

s will becone a nice welcome page.

E
9 | <h3>Author 1 Bio:/h3>
Born in the jungle and raised by wolves, he suddenly becane

3 <>
<h3>Author 2 Bio:</h3>
15 |As one of the founders of

A Screenshot image of a Tele-Edit web document opened in 3 different Browsers (Firefox, Chrome, Safari) simultaneously

perfectly viable to discard earlier messages about the item
during limited-bandwidth scenarios and only losing some steps
on the way to the end-result. This strategy does probably not
work in use cases such as gaming (e.g. first person shooters)
with high demands on network performance and a closer to
real-time experience. There is also not a real need for a history,
but more a stream-based archiving of the action is preferred.

General thoughts on performance are presented in [12],
especially focussing on the impact of on-the-fly storage of
the communication data. It turns out that multiple sessions in
parallel are fine, but having many users in one session, all
updating very frequently brings the system to its limits, as
the updates have to be broadcasted, resulting in a quadratic
number of messages depending on the number of users
connected. We also found out that the load caused by the
asynchronous features is proportional to the communication
load. As this approach produces more data, depending on the
granularity of items, in our scenarios (some hundreds of users
produced a few GB of data) it is a very adequate way of
storing information. When it comes to larger datasets, server-
side compression could be an option. As the data is very
structured and differences often very small between events,
significant compression rates can be expected. Although, our
opinion is that storage space is cheap and the workload being
caused by compression is not worth the saved storage space.

Currently, security features are implemented on a document-
basis. After the user having logged into the system, there is a
server-based check if the user is allowed to access and edit
the document. For most applications, this granularity turns
out to be adequate, but you could also think of a per-item
access control. Protocol level security should be realized using
encryption on the communication channel (e.g. HTTPS or
SSL-encrypted XMPP).

Comparing the approach to Google Docs (or Google Drive
since April 2012), there are some conceptual differences.

Fraser [9] states that Google is using three-way merge [22]
for synchronization. He also says that three-way merges “do
not scale well when attempting real-time collaboration across a
network with latency”. We try to address these problems with
a fault-tolerant but simple approach. Performance was shown
to scale well especially on the server-side, because consistency
checks are handled by the data storage inherently. We can only
conjecture about the internal data structure for Google Docs
document history, but the granularity of the history is not as
fine, as with our approach, so that analyses of the work process
can be more difficult to realize.

VII. CONCLUSION AND OUTLOOK

In this paper we presented a methodology describing how to
easily develop applications being able to synchronize content
while preserving the possibility to also work asynchronously
with the data. This is achieved by storing the communication
data on-the-fly and broadcast it to the connected clients. A
data model describing content being structured in documents
and items can be adequate for many use cases. While not
transferring delta information to the database, the archived in-
formation is conveniently usable for reconstruction of activity.
Additional analytic tasks of the work process can be achieved,
e.g. comparing different states of the work, having statistical
analyses on the usage in order to find out more about team
performance, or simply analyze work processes.

We are currently working on combining the document
information as presented with additional data gathered from a
broad range of sensors, which usually output more of a stream
format. Sensor data can range from accelerometers to captured
video or audio. Having such a combination, we can analyze
behavior of the people working with the system more detailed
in order to come up with a system that tells you about the
interesting phases of work. So far we did analyses, which are
described in [11]. One of the problems of asynchronous work
- especially for collaborators in different time zones - is that
the archived data often does not speak for itself. Annotations
or other data streams are needed to enhance understanding.

As the overall approach turned out to be adaptable in many
different settings, we are confident being able to adopt this
methodology in different domains.

ACKNOWLEDGMENTS

We thank the HPI-Stanford Design Thinking Research Program for funding
and supporting this project. The authors are especially grateful to Raja
Gumienny and Matthias Wenzel for giving their valuable feedback.

REFERENCES

[1] J. Barksdale, K. Inkpen, and M. Czerwinski. Video threads: asyn-
chronous video sharing for temporally distributed teams. In Computer
Supported Cooperative Work, pages 1101-1104, 2012.

[2] R. P. Biuk-aghai. Patterns of Virtual Collaboration. Phd, University of
Technology, Sydney, 2003.

[3] M. Bouamrane, D. King, S. Luz, and M. Masoodian. A framework
for collaborative writing with recording and post-meeting retrieval
capabilities. Special issue on the 6th Int. Workshop on Collaborative
Editing Systems, 2004.

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]
[21]
[22]

[23]

[24]

[25]

[26]

(27]

S. Branham, G. Golovchinsky, S. Carter, and J. T. Biehl. Let’s go
from the whiteboard: supporting transitions in work through whiteboard
capture and reuse. Human Factors in Computing Systems, pages 75-84,
2010.

T. Brown. Design Thinking. Harvard Business Review, June 2008.

A. H. Davis, C. Sun, and J. Lu. Generalizing Operational Transformation
to the Standard General Markup Language. In Proceedings of CSCW
2002, pages 58—67, 2002.

P. Dourish and V. Bellotti. Awareness and coordination in shared
workspaces. Proceedings of the 1992 ACM conference on Computer-
supported cooperative work - CSCW 92, pages 107-114, 1992.

C. Ellis and S. Gibbs. Concurrency control in groupware systems. In
Proceedings of the 1989 ACM SIGMOD international conference on
Management of data, pages 399-407, June 1989.

N. Fraser. Differential synchronization. Proceedings of the 9th ACM
symposium on Document engineering - DocEng 09, page 13, 2009.

L. Gericke, R. Gumienny, and C. Meinel. Message Capturing as a
Paradigm for Asynchronous Digital Whiteboard Interaction. In 6th In-
ternational ICST Conference on Collaborative Computing: Networking,
Applications and Worksharing, pages 1-10, 2010.

L. Gericke, R. Gumienny, and C. Meinel. = Analyzing distributed
whiteboard interactions. In CollaborateCom 2011, pages 27-34, 2011.
L. Gericke and C. Meinel. Evaluating an instant messaging protocol for
digital whiteboard applications. In Proceedings of the 2011 International
Conference on Internet Computing (ICOMP 2011), pages 3-9, 2011.
R. Gumienny, L. Gericke, M. Quasthoff, C. Willems, and C. Meinel.
Tele-Board : Enabling Efficient Collaboration In Digital Design Spaces.
In Proceedings of 15th International Conference on Computer Supported
Cooperative Work in Design (CSCWD), pages 47-54, 2011.

C. Gutwin and S. Greenberg. Workspace awareness for groupware.
Conference companion on Human factors in computing systems common
ground - CHI "96, pages 208-209, 1996.

C. Gutwin and S. Greenberg. A Descriptive Framework of Workspace
Awareness for Real-Time Groupware. Computer Supported Cooperative
Work (CSCW), 11(3):411-446, 2002.

C. Gutwin, M. Lippold, and T. C. N. Graham. Real-Time Groupware in
the Browser : Testing the Performance of Web-Based Networking. In
Proceedings of the ACM conference on Computer supported cooperative
work, pages 167-176. ACM New York, NY, USA, 2011.

L.-w. He, Z. Liu, and Z. Zhang. Why take notes? Use the whiteboard
capture system. In Proc. Int’l Conf. on Acoustics, Speech, and Signal
Processing, pages 776=779. Microsoft Research, IEEE, 2003.

M. Heinrich and F. J. Gr. Enriching Web Applications with Collaboration
Support Using Dependency Injection. In ICWE’I2 Proceedings of
the 12th international conference on Web Engineering, pages 473—476.
Springer Berlin Heidelberg, 2012.

M. Heinrich, T. Springer, F. Lehmann, and M. Gaedke. Exploiting
Single-User Web Applications for Shared Editing - A Generic Transfor-
mation Approach. In Proceedings of the 21st international conference
on World Wide Web, pages 1057-1066, 2012.

I. Hickson. Server-Sent Events W3C Working Draft 2012-04-26, 2012.
1. Hickson. Server-Sent Events Editor’s Draft 2013-01-02, 2013.

T. Lindholm. A Three-way Merge for XML Documents Categories
and Subject Descriptors. In 3rd ACM international workshop on Data
engineering for wireless and mobile access, pages 93 — 97, New York,
NY, USA, 2004. ACM.

M. Masoodian, S. Luz, M. Bouamrane, and D. King. Recoled: A group-
aware collaborative text editor for capturing document history. In JADIS
International Conference on WWW/Internet, pages 323-330, 2005.

Y. Saito and M. Shapiro. Optimistic Replication. ACM Computing
Surveys, V(3):1-44, 2005.

C. Sun, S. Xia, and D. Sun. Transparent Adaptation of Single-User Ap-
plications for Multi-User Real-Time Collaboration. ACM Transactions
on Computer-Human Interaction, 13(4):531-582, 2006.

J. C. Tang, J. B. Begole, R. B. Smith, and N. Yankelovich. Work
rhythms: analyzing visualizations of awareness histories of distributed
groups. Computer Supported Cooperative Work, pages 334-343, 2002.
S. Xia, D. Sun, C. Sun, D. Chen, and H. Shen. Leveraging Single-
user Applications for Multi-user Collaboration: the CoWord Approach
Categories and Subject Descriptors. In Proc. of the ACM conference on
Computer supported cooperative work, pages 162—171, 2004.

