
Implementation of a Secure and Reliable Storage
Above the Untrusted Clouds

Maxim Schnjakin, Dimitri Korsch, Martin Schoenberg, Christoph Meinel
Hasso Plattner Institute

Potsdam University, Germany
Prof.Dr-Helmertstr. 2-3, 14482 Potsdam, Germany

maxim.schnjakin, dimitri.korsch@student, martin.schoenberg@student, office-meinel@.hpi.uni-potsdam.de

Abstract—Cloud Computing as a service-on-demand architec-
ture has grown in importance over the previous few years. One
driving force of its growth is the ever increasing amount of data
which is supposed to outpace the growth of storage capacity.
This way, public cloud storage services enable organizations to
manage their data with low operational expenses. However, the
benefits of cloud computing come along with challenges and
open issues such as security, reliability and the risk to become
dependent on a provider for its service. In general, a switch
of a storage provider is associated with high costs of adapting
new APIs and additional charges for inbound and outbound
bandwidth and requests. In this paper, we describe the design,
architecture and implementation of Cloud-RAID, a system that
improves availability, confidentiality and integrity of da ta stored
in the cloud. To achieve this objective, we encrypt user’s data
and make use of the RAID-technology principle to manage data
distribution across cloud storage providers. Our approachallows
users to avoid vendor lock-in, and reduce significantly the cost
of switching providers. In general, the data distribution is based
on users’ expectations regarding providers geographic location,
quality of service, providers reputation, and budget preferences.
In this paper, we also discuss the security functionality and reveal
our observations on the overall performance when encrypting and
encoding user’s data.

I. I NTRODUCTION

Cloud Computing is a concept of utilizing computing as an
on-demand service. It fosters operating and economic efficien-
cies and promises to cause an unanticipated change in business.
Using computing resources as pay-as-you-go model enables
service users to convert fixed IT cost into a variable cost based
on actual consumption. Therefore, numerous authors argue for
the benefits of cloud computing focusing on the economic
value [10]. However, despite of the non-contentious financial
advantages cloud computing raises questions about privacy,
security and reliability.

Among available cloud offerings, storage services reveal an
increasing level of market competition. According to iSuppli
[9] global cloud storage revenue is set to rise to $5 billion
in 2013, up from $1.6 billion in 2009. One reason is the
ever increasing amount of data which is supposed to outpace
the growth of storage capacity. Currently, it is very difficult
to estimate the actual future volume of data but there are
different estimates being published. According to IDC review
[11], the amount of digital information created and replicated
is estimated to surpass 3 zettabytes by the end of this year.
This amount is supposed to more than double in the next two
years. In addition, the authors estimate that today there is9

times more information available than was available five years
ago.

However, for a customer (service) to depend on solely
one cloud storage provider (in the following provider) has
its limitations and risks. In general, vendors do not provide
far reaching security guarantees regarding the data retention.
Users have to rely on effectiveness and experience of vendors
in dealing with security and intrusion detection systems. For
missing guarantees service users are merely advised to encrypt
sensitive content before storing it on the cloud. Placementof
data in the cloud removes many of direct physical controls
that a data owner has over data. So there is a risk that
service provider might share corporate data with a marketing
company or use the data in a way the client never intended.
Further, customers of a particular provider might experience
vendor lock-in. In the context of cloud computing, it is a
risk for a customer to become dependent on a provider for
its services. Common pricing schemes foresee charging for
inbound and outbound transfer and requests in addition to
hosting the actual data. Changes in features or pricing scheme
might motivate a switch from one storage service to another.
However, because of the data inertia, customers may not
be free to select the optimal vendor due to immense costs
associated with a switch of one provider to another. The
obvious solution is to make the switching and data placement
decisions at a finer granularity then all-or-nothing. This could
be achieved by replicating corporate data to multiple storage
providers. Such an approach implies significant higher storage
and bandwidth costs without taking into account the security
concerns regarding the retention of data.

A more economical approach which is presented in this
paper is to separate data into unrecognizable slices, whichare
distributed to providers - whereby only a subset of the nodes
needs to be available in order to reconstruct the original data.
This is indeed very similar to what has been done for years at
the level of file systems and disks. In our work we use RAID-
like (Redundant Array of Independent Disks) techniques to
overcome the mentioned limitations of cloud storage in the
following way:

1) Security. The provider might be trustworthy, but
malicious insiders represent a well known security
problem. This is a serious threat for critical data
such as medical records, as cloud provider staff has
physical access to the hosted data. We tackle the
aforementioned problem by encoding and encrypting

the original data and later by distributing the frag-
ments transparently across multiple providers. This
way, none of the storage vendors is in an absolute
possession of the client’s data. Moreover, the usage
of enhanced erasure algorithms enables us to improve
the storage efficiency and thus also to reduce the total
costs of the solution.

2) Service Availability. Management of computing re-
sources as a service by a single company implies
the risk of a single point of failure. This failure
depends on many factors such as financial difficulties
(bankruptcy), software or network failure, etc. How-
ever, even if the vendor runs data centers in various
geographic regions using different network providers,
it may have the same software infrastructure. There-
fore, a failure in the software in one center will affect
all the other centers, hence affecting the service avail-
ability. In July 2008, for instance, Amazon storage
service S3 was down for 8 hours because of a single
bit error [18]. Our solution addresses this issue by
storing the data on several clouds. Whereby no single
entire copy of the data resides in one location, and
only a subset of providers needs to be available in
order to reconstruct the data.

3) Reliability. Any technology can fail. According to
a study conducted by Kroll Ontrack1 65 percent of
businesses and other organizations have frequently
lost data from a virtual environment. A number that
is up by 140 percent from just last year. Admittedly,
in the recent times, no spectacular outages were ob-
served. Nevertheless failures do occur. We deal with
the problem by using erasure algorithms to separate
data into packages, thus enabling the application to
retrieve data correctly even if some of the providers
corrupt or lose the entrusted data.

4) Data lock-in. By today there are no standards for
APIs for data import and export in cloud computing.
This limits the portability of data and applications
between providers. For the customer this means that
he cannot seamlessly move the service to another
provider if he becomes dissatisfied with the current
provider. This could be the case if a vendor increases
his fees, goes out of business, or degrades the quality
of the provided services. As stated above, our solution
does not depend on a single service provider. The
data is balanced among several providers taking into
account user expectations regarding the price and
availability of the hosted content. Moreover, with
erasure codes we store only a fraction of the total
amount of data on each cloud provider. In this way,
switching one provider for another costs merely a
fraction of what it would be otherwise.

The main contributions of this paper are:

• We present an application that can be used to over-
come the limitations of individual clouds by using
encryption, erasure codes and by integrating various
cloud storage providers;

• An set of experiments showing that given the speeds

1http://www.krollontrack.com/resource-library/case-studies/

of current disks and CPUs, the libraries used (for
both erasure coding and encryption) are easily fast
enough to provide good performance, reliable and
secure storage system;

• A performance evaluation of Cloud-RAIDs security
component.

II. A RCHITECTURE OVERVIEW

The ground of our approach is to find a balance between
benefiting from the cloud’s nature of pay-per-use and ensuring
the security of the company’s data. The goal is to achieve
such a balance by distributing corporate data among multiple
storage providers, automizing big part of the selection process
of a cloud provider, and removing the auditing and adminis-
trating responsibility from the customer’s side. As mentioned
above, the basic idea is not to depend on solely one storage
provider but to spread the data across multiple providers
using redundancy to tolerate possible failures. The approach
is similar to a service-oriented version of RAID. While RAID
manages sector redundancy dynamically across hard-drives,
our approach manages file distribution across cloud storage
providers. RAID 5, for example, stripes data across an array
of disks and maintains parity data that can be used to restore
the data in the event of disk failure. We carry the principle
of the RAID-technology to cloud infrastructure. In order to
achieve our goal we foster the usage of erasure coding technics
(see III-C2). This enables us to tolerate the loss of one or
more storage providers without suffering any loss of content
[13].Our architecture includes the following main components:

• User Interface Module. The interface presents the
user a cohesive view on his data and available fea-
tures. Here users can manage their data and specify
requirements regarding the data retention (quality of
service parameters).

• Resource Management Module.This system com-
ponent is responsible for an intelligent deployment of
data based on the user’s requirements.

• Data Management Module.This component handles
data management on behalf of the resource manage-
ment module.

Interested readers will find more background information
in our previous work [17],[4]. The system has a number
of core components that contain the logic and management
layers required to encapsulate the functionality of different
storage providers. The next section gives an overview on the
implementation of our system on a more detailed level.

III. D ESIGN

In this section we describe how we achieve the goal of
the consistent, unified view on the data management system
to the end-user. The web portal is developed using Grails, JNI
and C technologies, with a MySQL back-end to store user
accounts, current deployments, meta data, and the capabilities
and pricing of cloud storage providers. Keeping the meta data
locally ensures that no individual provider will have access
to stored data. In this way, only users that have authorization
to access the data will be granted access to the shares of (at

least) k different clouds and will be able to reconstruct the
data. Further, our implementation makes use of AES for sym-
metric encryption, SHA-1 and MD5 for cryptographic hashes
and an improved version of Jerasure library [13] for using
the Cauchy-Reed-Solomon and Liberation erasure codes. Our
system communicates with providers via ”storage connectors”,
which are discussed further in this section.

A. Service Interface

The graphical user interface provides two major function-
alities to an end-user: data administration and specification of
requirements regarding the data storage. Interested readers are
directed to our previous work [16] which gives a more detailed
background on the identification of suitable cloud providers
in our approach. In short, the user interface enables users
to specify their requirements (regarding the placement and
storage of user’s data) manually in form of options (e.g. data
might be placed based on user’s price or quality of service
expectations).

B. Storage Repositories

1) Cloud storage providers:Cloud storage providers are
modeled as a storage entity that supports not more than six
basic operations:create a container,write a data object,
read a data object,list all data objects,delete an object
and getDigest which returns the hash value of the specified
data object. Further, the individual providers are not trusted.
This means that the entrusted data can be corrupted, deletedor
leaked to unauthorized parties [12]. This fault model encom-
passes both malicious attacks on a provider and arbitrary data
corruption like the Sidekick case (section I). The protocols
require n = k + m storage clouds, at mostm of which
can be faulty. Present-day, our prototypical implementation
supports the following storage repositories: Amazons S3 (in all
available regions: US west and east coast, Ireland, Singapore
and Tokyo), Box, Rackspace Cloud Files, Azure, Google Cloud
Storage (EU and US), HP Cloud Service and Nirvanix SND.
Further providers can be easily added.

2) Service repository:At the present time, the capabilities
of storage providers are created semi-automatically basedon
an analysis of corresponding SLAs which are usually written
in a plain natural language [6]. Until now the claims stated
in SLAs need to be translated into WSLA statements and up-
dated manually (interested readers will find more background
information in our previous work [16]). Subsequently the
formalized information is imported into a database of the
system component namedservice repository. The database
tracks logistical details regarding the capabilities of storage
services such as their actual pricing, SLA offered, and physical
locations. With this, the service repository represents a pool
with available storage services.

3) Matching: The selection of storage services for the
data distribution occurs based on user preferences set in the
user interface. After matching user requirements and provider
capabilities, we use the reputation of the providers to produce
the final list of potential providers to host parts of the user’s
data. A provider’s reputation holds the details of his historical
performance plus his ratings in the service registries and is
saved in a Reputation Object (introduced in our previous work

16 44 42
6 37 65

8 34 29
72

117
75

802

1084

0

200

400

600

800

1000

Cloud-RAID [3:1] Cloud-RAID [4:3] Cloud-RAID [6:1]

T
im

e
 t

a
ke

n
 (

m
il

li
se

co
n

d
s)

943
100kB

500kB

1MB

10MB

100MB

Fig. 1. The average performance of the erasure algorithm with data objects
of varying sizes (100kB, 500kB, 1MB, 10MB and 100MB).

[3], [2], [5]). By reading this object, we know a provider’s
reputation concerning each performance parameter (e.g. has
high response time, low price). With this information the
system creates a prioritized list of repositories for each user.
In general, the number of storage repositories needed to
ensure data striping depends on a user’s cost expectations,
availability and performance requirements. The total number of
repositories is limited by the number of implemented storage
connectors.

C. Data Management

1) Data model: In compliance with [1] we mimic the
data model of Amazon’s S3 by the implementation of our
encoding and distribution service. All data objects are stored
in containers. A container can contain further containers.
Each container represents a flat namespace containing keys
associated with objects. An object can be of an arbitrary
size, up to 5 gigabytes (limited by the supported file size of
cloud providers). Objects must be uploaded entirely, as partial
writes are not allowed as opposed to partial reads. Our system
establishes a set ofn repositories for each data object of the
user. These represent different cloud storage repositories.

2) Encoding: Upon receiving a write request the system
splits the incoming object intok data fragments of an equal
size - calledchunks. Thesek data packages hold the original
data. In the next step the system addsm additional packages
whose contents are calculated from thek chunks, wherebyk
and m are variable parameters [13]. This means, that the act
of encoding takes the contents ofk data packages and encodes
them onm coding packages.

In turn, the act of decoding takes some subset of the collec-
tion of n = k + m total packages and from them recalculates
the original data. Any subset ofk chunks is sufficient to
reconstruct the original object of sizes [15]. The total size
of all data packets (after encoding) can be expressed with the
following equation:(s

k
∗k)+(s

k
∗m) = s+(s

k
∗m) = s∗(1+m

k
).

With this, the usage of erasure codes increases the total storage
by a factor of m

k
. Summarized, the overall overhead depends

on the file size and the defined m and k parameters for the
erasure configuration. Figure 1 visualizes the performanceof
our application using different erasure configurations.

In our work we make use of the Cauchy-Reed-Solomon
algorithm for two reasons. First, according to [13] the algo-
rithm has a good performance characteristics in comparisonto
existing codes. In their work, the authors performed a head-to-
head comparison of numerous open-source implementations of

Cloud-RAID Jerasure

-27%

-25%

0

2

4

6

8

10

12

[3, 1] [4, 2] [10, 1]

T
im

e
 t

a
ke

n
 (

in
 m

il
li

se
co

n
d

s)

Erasure configura ons [k, m]

-21%

(a) Encoding of a 100kB data object

0

200

400

600

800

1000

1200

1400

1600

T
im

e
 t

a
ke

n
 (

in
 m

il
li

se
co

n
d

s)

[3, 1] [4, 2] [10, 1]

Erasure configura ons [k, m]

Cloud-RAID Jerasure

-63%
-51% +18%

(b) Encoding of a 100MB data object

Fig. 2. Total time taken when Jerasure and Cloud-RAID libraries are used
to encode data objects of varying sizes.

various coding techniques which are available to the general
public. Second, the algorithm allows free selection of coding
parameters k and m. Whereas other algorithms restrict the
choice of parameters. Liberation Code [14] for example is
a specification for storage systems with n = k + 2 nodes to
tolerate the failure of any two nodes (the parameter m is fix and
is equal to two). However, the functionality of the encoding
component is based on the Jerasure library [13] which is an
open C/C++ framework that supports erasure coding in storage
applications. In our implementation we were able to improve
the overall performance of the library by more than 20%.
Figure 2 summarizes the results of 20 runs executed on test
machine 1 (see IV-A1).

Competitive storage providers claim to have SLAs ranging
from 99% to 100% uptime percentages for their services.
Therefore choosingm = 1 to tolerate one provider outage or
failure at time will be sufficient in the majority of cases. Thus,
it makes sense to increasek and spread the packages across
more providers to lower the overhead costs.

In the next step, the distribution service makes sure that
each encoded data package is sent to a different storage
repository. In general, our system follows a model of one

thread per provider per data package in such a way that the
encryption, decryption, and provider accesses can be executed
in parallel.

However, most erasure codes have further parameters as for
examplew, which is word size2. In addition, further parameters
are required for reassembling the data (original file size, hash
value, coding parameters, and the erasure algorithm used).
This metadata is stored in a MySQL back-end database after
performing a successful write request.

3) Data Distribution: Each storage service is integrated by
the system by means of a storage-service-connector (in the
following service-connector). These provide an intermediate
layer for the communication between the resource management
service (see section III-D) and storage repositories hosted by
storage vendors. This enables us to hide the complexity in
dealing with proprietary APIs of each service provider. The
basic connector functionality covers operations like creation,
deletion or renaming of files and folders that are usually
supported by every storage provider. Such a service-connector
must be implemented for each storage service, as each provider
offers a unique interface to its repository. As discussed earlier
in this chapter all accesses to the cloud storage providers can
be executed in parallel.

4) Reassembling the data:When the service receives
a read request, the service component fetchesk from n
data packages (according to the list with prioritized service
providers which can be different from the prioritizedwrite-
list, as providers differ in upload and download throughputas
well as in cost structure) and reassembles the data. This is
due to the fact, that in the pay-per-use cloud models it is not
economical to read all data packages from all clouds. There-
fore, the service is supported by aload balancercomponent,
which is responsible for retrieving the data units from the most
appropriate repositories. Different policies for load balancing
and data retrieving are conceivable as parts of user’s data are
distributed between multiple providers. Interested readers will
find more information about distribution strategies in our work
[17].

D. Resource Management Service

This component tracks each user’s actual deployment and
is responsible for various housekeeping tasks:

1) The service is equipped with a MySQL back-end
database to store crucial information needed for de-
ploying and reassembling of users data.

2) Further, it audits and tracks the performance of the
participated providers and ensures, that all current
deployments meet the corresponding requirements
specified by the user.

3) The management component is also responsible for
scheduling of not time-critical tasks.

Further details can be found in our previous work [17] and
[5].

2The description of a code views each data package as havingw bits worth
of data.

0

50

100

150

200

250

300

350

[4,2] [6,1] [6,2] [10,1] [10,2] [10,3]

T
im

e
 t

a
ke

n
 (

in
 m

il
li

se
co

n
d

s)

Erasure configura�ons [k,m] with a 128kB data object

encode encrypt encrypt encode

[4,1]

(a) Processing of a 128kB data object on a dual-core CPU

0

20

40

60

80

100

120

140

160

T
im

e
 t

a
ke

n
 (

in
 m

il
li

se
co

n
d

s)

Erasure configura�ons [k,m] with a 128kB data object

[4,2] [6,1] [6,2] [10,1] [10,2] [10,3][4,1]

encode encrypt encrypt encode

(b) Processing of a 128kB data object on a quad-core CPU

0

2000

4000

6000

8000

10000

T
im

e
 t

a
ke

n
 (

in
 m

il
li

se
co

n
d

s)

Erasure configura�ons [k, m] with a 100MB data object

[4,2] [6,1] [6,2] [10,1] [10,2] [10,3][4,1]

encode encrypt encrypt encode

(c) Processing of a 100MB data object on a dual-core CPU

0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
im

e
 t

a
ke

n
 (

in
 m

il
li

se
co

n
d

s)

Erasure configura�ons [k, m] with a 100MB data object

encode encrypt encrypt encode

[4,2] [6,1] [6,2] [10,1] [10,2] [10,3][4,1]

(d) Processing of a 100MB data object on a quad-core CPU

Fig. 3. Total time taken when encryption occurs either before or after the encoding step. Tests were executed on a dual-core / quad-core CPU. The bars
correspond to the complete data processing cycle: the encoding of a data object into data packages, the subsequent encryption of individual chunks in parallel
threads, the decryption of data packages and finally the reassembling of the data in the decoding step. The opposite orderencompasses the following operations:
encryption, encoding, decoding and decryption.

IV. SECURITY

Although erasure algorithms perform a series of coding
operations on data, they do not provide far reaching security
functionality. There may be enough data in the encoded
fragments that useful content (a username and a password or
a social security number for example) could be reassembled.
The only protection measure provided through erasure coding
is the logical and physical segregation of the data packages,
as these are distributed between different providers. Thus,
we implemented a security service which enables users of
our application to encrypt individual data packages prior to
their transmission to cloud providers. The encryption algorithm
depends on the user’s security requirements specified in the
user interface. In general, our implementation makes use ofthe
AES-128 and AES-256 algorithms for data encryption. On top
of this, we use SHA-1 and MD5 cryptographic hash functions
to test the integrity of cloud-stored data.

A. Encryption

Concerning the security strategy, it is important to deter-
mine the point when the encryption occurs and who holds the

keys to decrypt the data. In general, we performed two sets
of experiments with different erasure configurations - one for
initial encryption prior to the encoding step and another vise
versa.

1) Experiment Setup:We employed two machines for
the experiment. Neither is exceptionally high-end, but each
represents a middle-range commodity processor, which should
be able to encode, encrypt, decrypt and decode comfortably
within the I/O speed limits of the fastest disks, where:

• Machine 1: Windows 7 Enterprise (64bit) system with
an Intel Core 2 Duo E8400 @3GHz, 4 GB installed
RAM and a 160 GB SATA Seagate Barracuda hard
drive with 7200 U/min;

• Machine 2: Windows 7 Enterprise (64bit) system with
an Intel Core i5-2500 @ 3,30GHz, 16 GB DDR3
RAM, 64bit Windows 7 Ultimate and a Seagate Bar-
racuda hard drive with 7200 U/min.

2) Results: Figures 3 shows the results of 100 runs (per
machine) executed in a random order. The test encompasses
the complete data processing cycle: the encoding of a data

object, its subsequent encryption, its decryption and finally
the decoding step. We observe, that the processing order
(encode encrypt vs. encrypt encode) does not really matter
with the dual-core processor. This applies despite the factthat
the usage of erasure algorithms causes an additional storage
overhead (see III-C2). With regard to erasure configuration
there is another factor of importance: whether the sum of the
configuration attributesk and m is odd or even (see erasure
configurations [4,1] and [4,2] as well as [10,1] and [10,2]
in figure 3). This has an impact on the parallel processing
(encryption of the data) in the following step. However, the
test with a quad-core processor provides the expected results:
first, the encoding of smaller data objects causes a significant
higher I/O overhead and second, the encryption of larger files
(executed in parallel threads) after an initial encoding step is
more efficient than the opposite. With this, we made a decision
to encrypt data after its being encoded inton coding packages.

B. Key possession

Another important part when developing an encryption
strategy is key the possession. The only encryption option
for most of the available cloud solutions is that the keys are
managed by the cloud storage providers, which is convenient
to the user (the provider can assist with data restoration for
example) but it entails a certain amount of risk. On one hand
there are laws and policies that allow government agencies
easier access to data on a cloud than on a private server.
For example, in the USA the Stored Communication Act
enables the FBI to access data without getting a warrant or the
owner’s consent. Furthermore, closed subpoenas may prohibit
providers to inform their customers that data has been given
to the government [19]. On another hand there is always the
chance of a disgruntled employee circumventing security and
using the data in a way the user never indented.

In order to provide the user 100% control over the encryp-
tion process, we store the keys locally so that no third partyis
able to access and read the secured data. This, however also
creates a single source of failure and means that the backup
of the keys and metadata required for reassembling the data
is in the responsibility of the user. However, the mitigation of
this issue is part of our future work and analysis.

C. Observations

To assess the impact of encryption and encoding on the
overall performance of the data transmission process we per-
formed a further experiment on our dual-core test machine. We
utilized the system to transfer some data to a set of randomly
selected providers. The results represented in figure 4 capture
the end-to-end transmission performance of our application
with files of varying sizes (1MB and 10MB). Compared with
the results presented in the figure 3 we conclude that in the
case of significantly higher transmission rates, encryption can
be added with no noticeable performance impact.

V. RELATED WORK

The main idea underlying our approach is to provide
RAID technique at the cloud storage level. In [1] authors
introduce RACS, a proxy that spreads the storage load over
several providers. This approach is similar to our work as

1 MB 10 MB

-

Encode 47 ms = 0,3% 15 ms = 0,37%

Upload 15615 ms = 99,7 % 4042 ms = 99,63 %

0

4000

8000

12000

16000

T
im

e
 t

a
k

e
n

 (
in

 m
s)

Cloud RAID [4,2]

Encode Upload

Fig. 4. Time taken for the encoding and upload of data objectswith Cloud-
RAID. The encoding step requires not more than 0,5% of the entire data upload
process. The data packages were sent to the following providers: Google US,
Amazon EU, Amazon (US-west-1), Nirvanix, Azure and Google EU.

it also employs erasure code techniques to reduce overhead
while still benefiting from higher availability and durability
of RAID-like systems. Our concept goes beyond a simple
distribution of users’ content. RACS lacks the capabilities such
as intelligent file placement based on users’ requirements or
automatic replication. In addition to it, the RACS system does
not try to solve security issues of cloud storage, but focuses
more on vendor lock-in. Therefore, the system is not able to
detect any data corruption or confidentiality violations.

The future of distributed computing has been a subject of
interest for various researchers in recent years. In [8] Broberg
and Buyya introduce a service for intelligent data placement
and automatic replication which enables content creators to
leverage the services of multiple cloud storage providers.
However, this work does not address security and provider
lock-in concerns which are mainly addressed in our approach.
Further, in our work we do not aim to allocate resources from
cloud providers to sell them to the customers. Our service
acts as an abstraction layer between service vendors and
service users automatising data placement processes. In fact,
our approach enables cloud storage users to place their dataon
the cloud based on their security policies as well as qualityof
service expectations and budget preferences. Furthermore, the
usage of erasure algorithms for data placement is more efficient
than a native replication (in terms of storage and costs).

VI. CONCLUSION

In this paper we outlined some general problems of cloud
computing such as security, service availability and a general
risk for a customer to become dependent on a service provider.
In the course of the paper we demonstrated how our system
deals with the mentioned concerns. In a nutshell, we dis-
tribute users’ data across multiple providers while integrating
with each storage provider via appropriate service-connectors.
These connectors provide an abstraction layer to hide the
complexity and differences in the usage of storage services.

We use erasure code techniques for striping data across
multiple providers. The first experiments proved, that given
the speed of current disks and CPUs, the libraries used are

fast enough to provide good performance and reliable storage
system. The average performance overhead caused by data
encoding is less than 0,4% of the amount of time for data
transfer to a cloud provider. With this, encoding is dominated
by the transmission times and can be neglected. Here, the
storage overhead can be varied to achieve higher availability
values depending on user requirements.

By spreading users data across multiple clouds our ap-
proach enables users to avoid the risk of data lock-in and
provide a low-level protection even without using security
functionality. Further, our approach has also an advantageof
the user having total control over the encryption process. The
first results showed, that encryption can be added with no
noticeable performance impact. All in all, we enable the user
to take the full responsibility for data security and redundancy
depending on the individual needs and requirements. However,
additional storage offerings are expected to become available
in the next few years. Due to the flexible and adaptable nature
of our approach, we are able to support any changes in existing
storage services as well as incorporating support for new
providers as they appear.

VII. FUTURE WORK

In the last month, we deployed your application using seven
commercial cloud storage repositories in different countries
in order to conduct a comprehensive test of our system. The
results of the experiment are being analyzed currently and will
be addressed in our next publication. Whilst our system is still
under development at present, we will have to use the resultsof
the conducted experiment to improve the overall performance
and reliability.

REFERENCES

[1] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon.
Racs: A case for cloud storage diversity.SoCC’10, June 2010.

[2] Rehab Alnemr, Justus Bross, and Christoph Meinel. Constructing a
context-aware service-oriented reputation model using attention allo-
cation points. Proceedings of the IEEE International Conference on
Service Computing(SCC2009), 2009.

[3] Rehab Alnemr and Christoph Meinel. Getting more from reputation
systems: A context-aware reputation framework based on trust centers
and agent lists. Computing in the Global Information Technology,
International Multi-Conference, 2008.

[4] Rehab Alnemr, Maxim Schnjakin, and Christoph Meinel. A security and
high-availability layer for cloud storage. InWeb Information Systems
Engineering – WISE 2010 Workshops, volume 6724 ofLecture Notes in
Computer Science, pages 449–462. Springer Berlin / Heidelberg, 2011.

[5] Rehab Alnemr, Maxim Schnjakin, and Christoph Meinel. Towards
context-aware service-oriented semantic reputation framework. IEEE
TrustCom/IEEE ICESS/FCST, International Joint Conference of, 0:362–
372, 2011.

[6] Amazon. Amazon ec2 service level agreement. online, 2009.

[7] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. Above the clouds: A berkeley
view of cloud computing.”Technical Report UCB/EECS-2009, EECS
Department, University of California, Berkeley”, 2009.

[8] James Broberg, Rajkumar Buyya, and Zahir Tari. Creatinga ‘cloud
storage’ mashup for high performance, low cost content delivery.
Service-Oriented Computing (Volume 5472), ICSOC’08 Workshops,
April 2009.

[9] Jeffrey Burt. Future for cloud computing looks good, report says. online,
2009.

[10] Nicholas Carr.The Big Switch. Norton, 2008.

[11] John Gantz and David Reinsel. Extracting value from chaos. online,
2009.

[12] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem.ACM Trans. Program. Lang. Syst., 4(3):382–401,
July 1982.

[13] J. S. Plank, S. Simmerman, and C. D. Schuman. Jerasure: Alibrary in
C/C++ facilitating erasure coding for storage applications - Version 1.2.
Technical Report CS-08-627, University of Tennessee, August 2008.

[14] James S. Plank. The raid-6 liberation codes. InProceedings of the
6th USENIX Conference on File and Storage Technologies, FAST’08,
pages 7:1–7:14, Berkeley, CA, USA, 2008. USENIX Association.

[15] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and
J. Kubiatowicz. Maintenance free global storage in oceanstore. IEEE
Internet Computing, September 2001.

[16] Maxim Schnjakin, Rehab Alnemr, and Christoph Meinel. Contract-
based cloud architecture. InProceedings of the second international
workshop on Cloud data management, CloudDB ’10, pages 33–40, New
York, NY, USA, 2010. ACM.

[17] Maxim Schnjakin and Christoph Meinel. Platform for a secure storage-
infrastructure in the cloud. Proceedings of the 12th Deutscher IT-
Sicherheitskongress (Sicherheit 2011), 2011.

[18] The Amazon S3 Team. Amazon s3 availability event: July 20, 2008.
online, 2008.

[19] Anthony T.Velte, Toby J. Velte, and Robert Elsenpeter.Cloud Comput-
ing: A Practical Approach. Mc Graw Hill, 2009.

