Towards Cross-Platform Collaboration -
Transferring Real-Time Groupware To The Browser

Matthias Wenzel, Lutz Gericke, Raja Gumienny, Christoph Meinel
Hasso Plattner Institute Potsdam
Prof. Dr. Helmert Str. 2-3, Potsdam, Germany
Email: {firstname.lastname } @hpi.uni-potsdam.de

Abstract—Mobile devices such as smartphones and tablets
play an increasing role in today’s working environment. The
variety of computer platforms increased in the same way,
which makes the development of cross-platform applications even
more challenging. Tele-Board is a real-time remote collaboration
system based on the Java programming language. Therefore, it
cannot be run on most mobile devices. In order to overcome this
limitation, we redeveloped the system on the basis of HTMLS5
technology. We present an approach for combining web based
networking and rendering in a single application for real-time
collaboration based on SVG, HTMLS5 Canvas, Websockets, and
Web workers. In our prototype we implemented optimization
mechanisms leveraging the Canvas API’s rendering flexibility.
This way, our canvas based rendering performs better than a
respective SVG version. Moreover, our solution integrates server
communication effectively so that the rendering performance is
hardly influenced by user input.

I. INTRODUCTION

With their growing maturity, mobile devices become in-
creasingly capable of hosting technically demanding applica-
tions. This way, opportunities arise to seamlessly use tools
such as real-time groupware systems on mobile as well as
desktop platforms. There are different approaches for devel-
oping cross-platform software applications. Either creating
native programs for each specific operating system or using a
platform-independent programming environment provided by
e.g. the Java virtual machine. Due to the increasing platform
variety, applying these concepts is becoming more difficult.
The effort for development and maintenance of native platform
specific applications rises significantly. On the other hand,
platform- and vendor-independent runtime environments are
not available across desktop and mobile devices.

Web browsers have evolved to central software systems that
even enable advanced applications [1][2] such as web based
games or office software suites [3] on most desktop and mobile
systems. Many of those web based applications are relying on
browser plugins. The wide spread plugin technologies Adobe
Flash! and Microsoft Silverlight? are hardly available on
mobile platforms such as iOS and Android. Moreover, Adobe
announced that they will no longer continue to develop Flash
on mobile devices [4]. Plugin technology in the web browser
is therefore not an option for cross-platform development.

Thttp://www.adobe.com/software/flash/about/
Zhttp://www.microsoft.com/silverlight/

In this paper, we present and evaluate a browser based
prototype using HTMLS5 technology for replacing a Java based
component of our Tele-Board [5] collaboration system. We
created a web based application that runs on desktop as
well as mobile devices. Our system is therefore available to
a broader range of users while keeping maintenance effort
limited. Other research in the field of real-time groupware and
web technologies focused either on web based networking or
rendering techniques that can be used in a web browser. In
our work, we integrate technologies for web based networking
and rendering in a single application. We elaborate on tech-
niques for decoupling network communication and user input
handling. Besides implementing a browser based solution, we
also tested our prototype’s performance on common mobile
and desktop platforms.

II. OVERVIEW OF THE TELE-BOARD SYSTEM

Tele-Board is a digital whiteboard system allowing creative
teams to work together over geographical and temporal dis-
tances. This collaboration can be synchronous, when people
are able to work at the same time, or asynchronous, which
means people can build upon the content of their co-workers.

Collaboration
Server

Notebook Tablet PC

Fig. 1. The Tele-Board software system architecture

The existing system consists of different components (see
Figure 1), each especially designed for fulfilling a specific
task:
Whiteboard Client: Serves as the main user interface by
presenting the digital whiteboard drawing surface. It enables
people to do the work they are used to from traditional
whiteboards by using common metaphors such as written notes
or sketches. The client runs on any Java-enabled computer,

http://www.adobe.com/software/flash/about/
http://www.microsoft.com/silverlight/

while often a digital whiteboard is used as an input device.
During development, we had different kinds of hardware in
mind, which we evaluated and prototyped for. When we started
the development, 95% of all computers had a Java runtime
environment installed. Furthermore, Java applications were
reliable and very common on different platforms.

The communication server: Every whiteboard client connects
to this server and thereby subscribes to updates of a specific
panel. Content is organized in projects and panels and a project
can consist of multiple panels. A panel is a whiteboard session,
where people are working on, including the whole history of
interaction. Changes made on one location are automatically
synchronized to all other locations.

Tele-Board History: This component is embedded into the
server. Every bit of synchronization communication is cap-
tured and immediately stored in a central database. This allows
to keep track of the whole process of interaction and not
only certain snapshots. Every single operation is stored, which
allows applications to resume from any point in time during
the past lifetime of the panel, copy sessions, or run statistics
on the usage.

Mobile devices: Although content of any kind can be created
directly in the whiteboard client, we want to supply people
with a variety of mobile devices realizing an efficient workflow
that includes (digital) sticky note pads. Optimally, they can
use their own devices. Therefore, we developed applications
for different platforms. People can use their iOS or Android
based devices and can take pictures, make drawings or just
input text. The content is sent to a panel and can be arranged
on the whiteboard surface.

III. RELATED WORK

As we focus on browser based real-time groupware sys-
tems, we provide a short overview of evaluations concerning
HTMLS standard based web technologies.

Gutwin et. al [6] deal with web based networking for real-
time groupware. Many networking techniques that can be used
in web browsers such as Asynchronous JavaScript and XML
(AJAX) and also Websockets® are described in detail. More-
over, the performance of these methods is measured. They
recommend the browser as a suitable environment for real-time
groupware. Additionally, they show that Websockets have the
highest performance among standards based networking web
technolgy. This way, Websocket is the technolgy of choice in
our implementation.

In contrast to that, Hoetzlein [7] focuses on rendering
technologies such as HTML5 canvas®, Flash and WebGL>. He
develops a test suite for measuring graphics performance. In
his tests the hardware accelerated WebGL technology for 3D
graphics performs best. Flash and Canvas have similar test
results. Johnson et. al [8] compare different data visualizations
with the help of Java applets, HTMLS Canvas, Scalable

3http://www.w3.org/TR/websockets/
“http://www.w3.org/TR/html51/
Shttp://www khronos.org/webgl/

Vector Graphics® (SVG) and HTML elements. Java based
rendering delivers best results in all measured test cases.
Canvas performs better than SVG when there is a large amount
of data to be displayed. They show that pure HTML rendering
is not suitable for larger data.

Relying on web standards implemented in most modern
browsers, SVG and Canvas represent good approaches for
rendering. WebGL is not part of the HTMLS specification and
not available in all browsers. Additionally, there is no W3C
WebGL recommendation. For these reasons, WebGL is not an
option for our implementation. The mentioned related work
focuses on just one aspect of real-time groupware systems,
either networking or rendering. The goal of our approach is
to combine these two components in a single prototypical
implementation in order to give information about how they
can be integrated in one application.

IV. TELE-BOARD IN THE WEB BROWSER -
IMPLEMENTATION AND EVALUATION

We developed an HTMLS5 standards based prototype which
resembles the functionality of the above mentioned Java based
Tele-Board whiteboard client. We identified three main aspects
that had to be transferred from the Java application to a
browser based solution:

« Networking - bi-directional communication with the Tele-
Board server component keeps all connected whiteboard
clients synchronized

o Rendering - a virtual whiteboard surface displays white-
board content such as drawings, sticky notes and images

o Threading - networking and rendering have to run in par-
allel, i.e. a threading mechanism prevents interruption of
user interaction when whiteboard content is synchronized
simultaneously

A. Networking with websockets

The traditional way of client-server communication in the
World Wide Web is based on the Hypertext Transfer Protocol
(HTTP) and its underlying request-response paradigm. Even
more sophisticated methods such as AJAX and HTTP server
push, that allow a more flexible communication handling,
follow this pattern. In relation to the size of the message data
to be transmitted, these techniques produce a considerable data
overhead caused by HTTP headers [9].

A web technology facilitating a persistent, bi-directional
Transmission Control Protocol (TCP) based communication
is called Websocket. Websocket came up in the course of
HTMLS and has been standardized by the Internet Engineering
Task Force (IETF). The technology reduces the message over-
head to just two bytes per frame [10]. Websocket functionality
is implemented in many browsers’ and can be accessed by an
API from within JavaScript.

Building on the results and recommendations from Gutwin
et al. [6] we use Websockets as the communication technology

Shttp://www.w3.org/Graphics/SVG/
http://caniuse.com/

http://www.w3.org/TR/websockets/
http://www.w3.org/TR/html51/
http://www.khronos.org/webgl/
http://www.w3.org/Graphics/SVG/
http://caniuse.com/

for our prototype implementation. This way, we implemented a
JavaScript Websocket client component. Whenever an element
(e.g. sticky note or drawing) is created, moved or deleted on
the whiteboard surface a corresponding message is sent to the
server. Prior to that, the respective object and its properties are
serialized using JavaScript Object Notation (JSON).

Since we use Websocket for client-server communication,
a corresponding web server which supports the Websocket
protocol is required. Currently, the synchronization server is
implemented using Java. We therefore decided to use the
Java based Jetty web server® in version 8.1.2. This way, we
implemented a prototypical communication server running on
the Jetty web server while preserving the existing code base.

B. HTML5-Canvas vs. Inline-SVG

As a first step, we implemented a subset of the whiteboard
client’s features in our prototype in order to evaluate available
techniques. It supports drawing, creation, and arrangement of
sticky notes as well as a zooming and panning capability.
HTMLS5 offers several technologies for client-side rendering.
The specification allows the usage of SVG as part of an HTML
document, which is often called inline SVG. Another standards
based technology is HTMLS5 canvas. Canvas represents a
rectangular area where graphics can be drawn onto. Both
technologies can be accessed by a JavaScript API in the
browser. The ways of using these graphics APIs differ fun-
damentally. For comparing the different rendering techniques,
we implemented two versions in our prototype utilizing the
respective APL.

1) SVG-Rendering: SVG is based on XML and was devel-
oped for decribing 2D vector graphics. Transformations such
as scaling can be done without image quality loss. SVG is
a retained-mode graphics model that holds an internal model
with all rendering objects. When calling the API, the internal
model is updated. The graphics library initiates respective
drawing commands, i.e. the actual drawing is done by the
library. Every SVG element (e.g. rectangle, line or text) has
a representation in the Document Object Model (DOM) tree
and can therefore handle user input on its own. Furthermore,
Cascading Style Sheets (CSS) can be used to style SVG
elements which makes it very convenient to set appearance
attributes such as color, gradients or shadows.

The virtual whiteboard surface has a zooming and panning
functionality. In our SVG rendering version we use the svg
element’s viewBox® attribute for scaling and panning. All
other whiteboard elements such as sticky notes and drawings
are represented by SVG’s rect and path elements. For
whiteboard element transformation such as translation and
scaling we use the transform attribute of the respective
SVG element. For example, if there is a drawing on a sticky
note (see listing 1) the respective rect and path elements
are grouped with the help of the SVG g element. The g
element defines a transformation matrix. Changing the matrix’

8http://jetty.codehaus.org/jetty/
http://www.w3.0rg/TR/SVG/coords.html#ViewBoxAttribute

data, included elements can be scaled and translated together.
Therefore, the path’s coordinates are stored relative to the
rect element.
<g transform="matrix(l 0 0 1 1052.67 1365.8)">
<rect 1d="0:8" height="60" y="0" x="0" class="
sticky green" width="90"></rect>
<path id="0:10" class="scribble black" d="M
10.32 39.70 . L 70.32 43.70"></path>
</g>

Listing 1. SVG representation of a sticky note with a drawing on it. The
g element is used for grouping the included elements. Both elements can be
easily scaled and moved by updating g element’s transformation matrix

Since the virtual whiteboard surface is typically larger than
user’s screen resolution, the position on the screen where a
user clicks on a whiteboard element does not necessarily match
the position where the element is placed on the whiteboard sur-
face. To obtain the corresponding whiteboard surface position,
the SVG API offers methods (e.g. matrixTransform) for
translating different coordinate spaces, which is needed for
setting the position and scaling in the whiteboard coordinate
space. Within the application, no further programming effort
is required for rendering. The actual drawing is initiated by the
SVG API. This makes its usage rather convenient compared
to the Canvas based method.

2) Canvas-Rendering: In contrast to SVG, Canvas is pixel
based, i.e. a Canvas represents basically an image where
graphics primitives such as rectangles, lines or polygons
can be drawn onto. In addition, Canvas uses an immediate-
mode API. Immediate-mode rendering means that the graphics
library does not store any internal model of the objects to
be drawn. The model has to be saved inside the application.
Furthermore, the application controls when to draw the scene
and what area needs to be redrawn when the internal model has
changed. Graphical objects drawn on a canvas surface cannot
individually handle user input such as click events. Instead,
the position on the canvas surface has to be used to find the
respective element manually, based on the internal model of
the application. This way, each internal object has to be tested
whether it contains the given position. Though this rendering
method requires more implementation effort, it also provides
a large amount of flexibility.

In order to offer the same zooming and panning func-
tionality as the SVG version, our Canvas based rendering
implementation is using two canvas elements. The first canvas
is declared in the document markup. When the page is loaded
the canvas’ width and height attributes are set to the screen
dimension. The second canvas element is created dynamically
in the memory but is not appended to the document markup.
It serves as an image buffer. The size of this second element
is set to the virtual whiteboard size which can be larger
than screen resolution. All whiteboard elements are drawn
on the second canvas element. Afterwards, the whole image
content of this background canvas is drawn onto the front
element. The API function drawImage can use a canvas
element as an input parameter, i.e. the function just renders
the whole content of the background canvas as one single
image. In particular, for zooming and panning this is very

http://jetty.codehaus.org/jetty/
http://www.w3.org/TR/SVG/coords.html#ViewBoxAttribute

e Safari IE

ﬁ A) Canvas
AN

e Chrome

!

S w1
o o
/'

Average Frames per Second
[N w
o o© o
7!J}

o

10 100 500 1000 2000 3000 4000 10000200003000040000
Number of Visible Sticky Notes

Chrome Beta 25 Asus Nexus 7 Android 4.2.2

Safari iPad4 Apple i0S 6.0.1
70

T

B) SVG

v
o

N
o

w
o

N
o

Average Frames per Second

=
o

o

10 100 500 1000 2000
Number of Visible Sticky Notes

3000 4000

Fig. 2. Canvas and SVG based rendering performance. Rendering and whiteboard content synchronization is executed simultaneously using web workers

efficient since the rendering of all whiteboard content can be
done in a constant time period, no matter how many elements
are contained. These elements are already pre-rendered in the
background canvas. Before rendering the background canvas, a
transformation matrix can be defined in the front canvas. This
way, zooming and panning is realized. The canvas element’s
position and scaling is defined by transformation matrices
similar to the approach we use in our SVG implementation.
For the respective matrix calculations we use the SVG API in
our approach. The API defines methods to efficiently process
matrix multiplications for translation and scaling'®.

In immediate-mode rendering, the application is responsible
for redrawing a scene. When moving a sticky note on the
whiteboard surface, the scene has to be updated. One approach
could be to redraw the whole scene, i.e. to redraw every
element on the surface. However, the more elements exist on
the surface, the slower the rendering works. Therefore, we had
to find a way to reduce redrawing costs. When an element
is updated, e.g. changes its position, only the affected area
has to be redrawn which includes the element itself and all
elements overlapping this region. Our implementation makes
use of the R-tree data structure where data items are stored
according to their spatial location [11]. R-trees can be searched
very efficiently. On the basis of given coordinates an R-tree’s
search algorithm delivers all data items that overlap with the
respective area. We use an open source JavaScript R-tree
implementation'!. This way, we can find those objects that
have to be redrawn. In the next step we define a clipping region
with the help of Canvas API clip method. Afterwards, all
drawing commands only affect the given area. We calculate
the clipping region as the minimum bounding box of an
elements prior and actual dimension. Providing this approach,
the rendering runs much more efficient.

The effort using Canvas API for rendering is higher than in
the SVG version. However, Canvas based rendering performs
better as we will show in section IV-D.

1Ohttp://www.w3.0org/TR/SVG/coords.html#InterfaceS VGMatrix
https://raw.github.com/imbcmdth/RTree/master/src/rtree. js

C. Multithreading - HTML5 Web workers

Most JavaScript implementations in today’s browsers are
single threaded [12][13]. The computation in this thread
includes tasks such as user input handling, repainting or
animating [14]. As a result, scripts that run for a long time can
block processing of other tasks so that the respective website
becomes unresponsive. With the help of the two window
object methods setTimeout and setInterval one can
try to simulate a parallel execution of tasks. Following this
approach, the execution of the respective method is actually
just enqueued by the browser. These execution requests are
processed sequentially in the main thread. Thus, long running
code inside such method calls still compromises website’s
responsiveness.

As a solution for this problem and to leverage the com-
putational power of today’s multi core processors, the new
Web worker API for parallel task execution has been added to
modern browsers with HTMLS5. Web workers run in separate
threads. Since they have a high memory consumption and their
creation is expensive in terms of processor load [15], they are
not well suited for short running, fine grained computational
tasks. A major difference between Web workers and the
threading model in other programming languages (e.g. Java)
is that there is no concept of shared memory. The only way of
communicating between worker and main thread is provided
by message interchange based on an event model where the
passed data is copied. This implies that Web workers are
not allowed to access the DOM [15] (notable exceptions are
setTimeout, setInterval, and XMLHttpRequest).
Most native browser properties are not accessible. Therefore,
some tasks to be processed in a web worker are either not pos-
sible (e.g. file operations) or must be built almost exclusively
on own JavaScript code or appropriate libraries (e.g. XML data
processing). These limitations exclude related challenges such
as data synchronization, locks or race conditions. However,
this new concept of having real threads within web browsers
is strictly limited in its usefulness by the lacking resource
accessibility.

A suitable use case for Web workers is the processing of

http://www.w3.org/TR/SVG/coords.html#InterfaceSVGMatrix
https://raw.github.com/imbcmdth/RTree/master/src/rtree.js

background I/O as it is examplary mentioned in the Web
workers specification [15]. The synchronization of whiteboard
content and therefore required network communication is such
a case. Our implementation requires the processing of a large
number of messages to be sent to the server. For example,
in order to allow a traceable arranging of sticky notes on the
whiteboard surface, a smooth movement animation is required
instead of just setting its final position after moving. The
message data is passed from the main thread to the worker
thread and is added to a queue which is constantly processed
inside the worker thread.

D. Evaluation

In the following, we describe how the different rendering
and threading approaches influence the graphical performance
according to the amount of whiteboard elements that have to
be rendered and synchronized to the server. We do not concen-
trate on network performance measurement since Gutwin et.
al [6] extensively tested this aspect. We focus on rendering
performance while taking network communication into ac-
count as well. Therefore, we measure graphics performance
in terms of frames per second (FPS) on different platforms.
The impression of image movement appears around 20 FPS
[16]. The evaluation goal is to identify to what amount of data
our prototype allows a convenient user interaction.

50

40

30 —\
20 \ e Safari
10 IE

0

Average Frames per Second

10 100 500 1000
Number of Visible Sticky Notes

Fig. 3. Canvas based rendering performance with whiteboard content
synchronization. No rendering optimizations

1) Test setup: The most common operating systems (Win-
dows, Android, iOS) on desktop and mobile computers are
used for our test setup. The evaluation consists of graphics per-
formance tests of our browser based prototypical whiteboard
client implementation. A predefined number of sticky notes is
drawn randomly on our virtual whiteboard surface in different
browsers. We measure FPS while one sticky note is moved
a predefined distance over the screen. The sticky movement
causes concurrent rendering and network load, since every
movement initiates a corresponding network message. On the
desktop system we use the JavaScript library stats.js'? revision
11 for measuring FPS in the web browsers Internet Explorer
10 (IE) Platform Preview, Chrome 23, Safari 5.1 and Firefox
17. Tests are run in full screen mode with a screen resolution
of 1920x1080 pixels on a Windows PC with the following
configuration: CPU: Corei5 750@2.66 GHz, RAM: 6GB,

2https://github.com/mrdoob/stats.js

Graphics: Nvidia GeForce 310, OS: Windows 7 Enterprise SP1
x64. Futhermore, the two mobile devices Apple iPad 4 (Safari,
i0S 6.0.1) and Asus Nexus 7 (Chrome Beta 25, Android 4.2.2)
are used for testing. On these systems, vendor based frame
profiling tools were used.

The following two scenarios will reveal insights regarding
the identified main aspects mentioned in section IV with focus
on the combination of rendering and networking. The first test
scenario evaluates the different approaches of Canvas based
rendering described in section IV-B2 and SVG.

The second scenario looks into browser based threading on
the basis of HTML5 Web workers compared to the traditional
way of “simulating” multithreading using the setTimeout
method. Though it is officialy claimed that the Firefox'3
web browser supports Web workers and Websockets [15][17],
we determined that Websockets are not available inside Web
workers. Therefore, only in this scenario tests were addition-
ally run in the Firefox browser.

2) Scenario 1 - SVG and Canvas rendering optimization
capabilities: In our implementation based on the Canvas
API, we implemented a mechanism for optimizing rendering
performance regarding the region that has to be redrawn when
an element changes. Looking at figure 3 it can be seen that
frame rates are falling rapidly to a level less than 10 FPS
when there are 500 or more elements on the surface. In this
plain approach all elements are redrawn regardless of the
affected area. This is the case if you do not think about any
optimizations using the Canvas API, which performs worse
than SVG based implementation (see Figure 2b). Compared
to that, Canvas based rendering heavily profits from the
optimization we implemented by setting a clipping region with
the help of the R-tree data structure (see section IV-B2) as it
is shown in Figure 2a. Even when there are 10,000 elements
on the surface, Internet Explorer 10 and the webkit based
browsers Chrome and Safari run at high frame rates around
50 FPS. In the SVG version, on average just 50% of the frame
rates are reached when there are only 2,000 elements. On
mobile systems, the behavior is similar. Though the frame
rates are lower than on the desktop system, which is most
likely caused by the generally weaker mobile hardware, it can
be seen that canvas based rendering is nearly twice as fast as
the SVG version. Obviously it is worthwhile to invest some
effort on implementing mechanisms that leverage the Canvas
API’s rendering flexibility.

3) Scenario 2 - Parallel tasks using web workers or set-
Timeout method: The actual scenario focuses on the question
whether our prototype implementation can benefit from util-
ising Web workers instead of the traditional way of avoiding
user interface blocking based on the setTimeout method.
Figures 4 and 2a reveal an advantage for the web worker
approach, when there is a very large number of elements on
the surface. Since we focus on a realistic usage, a mainly
constant network load is generated, which explains the little
difference between both techniques. However, when there

Bhttp://www.mozilla.org/en-US/firefox/fx/

https://github.com/mrdoob/stats.js
http://www.mozilla.org/en-US/firefox/fx/

== Chrome == Safari IE Firefox

AN
N\
N\

70
60 |— \ —
50 \

40

30

A\
20 \\
o N >
\

0 T T T T T T T T T '

Average Frames per Second

O O PSS
S S LSS LS SS
S R R

e &
$
P &

)
Number of Visible Sticky Notes

Fig. 4. Performance of optimized Canvas based rendering with whiteboard
content synchronization using traditional setTimeout method

are larger messages to be processed, we expect to see a
bigger difference between our implemented solutions. The
performance bottleneck is therefore the rendering of large
amounts of elements rather than their synchronization. That
is the reason for only showing the results for the desktop
browsers. On mobile systems, FPS are decreasing much faster
before synchronization has any effect.

V. CONCLUSION AND OUTLOOK

We present a graphical real-time groupware software pro-
totype based on modern standard browser technology. The
system combines technical aspects for rendering and net-
working in a single application that runs on desktop and
mobile hardware as well. Through performance measurements
it became clear that computational power on mobile devices is
still too low for using our application on a satisfactory level.
However, due to more powerful devices, we expect notable
performance improvements within the next year. On desktop
computers, performance is already sufficient for convenient
usage. The good performance results from optimizations we
did on the basis of HTMLS5 canvas, leveraging its rendering
flexibility. We propose an approach for redrawing user affected
regions instead of redrawing the whole canvas during user
interaction. This method relies on the R-tree data structure
that allows to efficiently search in spatial data. For comparing
different rendering technologies we implemented an SVG
based version which in particular performs equal to canvas
when there are no canvas rendering optimizations. Although
there is less programming effort, SVG proved that it is not
suitable for high interaction with large amount of data within
our system. Canvas based rendering is therefore the most
promising approach.

In order to facilitate effective network communication for
synchronizing remote collaboration clients we implemented an
HTMLS5 Websocket based networking. With regard to parallel
processing in the browser, we compared the traditional way of
simulating parallel tasks with the help of the setTimeout
method to multithreading offered by the Web worker API.
Though there are strict conceptual limitations, usage of the

Web worker API has an advantage when the respective task
consumes much computational power.

Future tests have to reveal more precisely at which process-
ing load Web workers significantly improve the application’s
performance. Additionally, we want to investigate whether
caching whiteboard content on temporary canvas elements in
memory can help further enhancing Canvas based rendering
performance. We also have to analyze the effect of increased
memory consumption when applying this approach.

ACKNOWLEDGMENT

The authors would like to thank the HPI-Stanford Design
Thinking Research Program.

REFERENCES

[1] M. Anttonen and A. Salminen, “Transforming the web into a real appli-
cation platform: new technologies, emerging trends and missing pieces,”
Proceedings of the 2011 ACM Symposium on Applied Computing, pp.
800-807, 2011.

[2] T. H. McMullen, K. A. Hawick, V. D. Preez, and B. Pearce, “Graphics on
web platforms for complex systems modelling and simulation,” in Proc.
International Conference on Computer Graphics and Virtual Reality
(CGVR’12). Las Vegas, USA: WorldComp, 16-19 July 2012, pp. 83-89.

[3] A. Wright, “Ready for a Web OS?” Communications of the ACM,
vol. 52, no. 12, p. 16, Dec. 2009.

[4] D. Winokur, “Flash to Focus on PC Browsing and Mobile Apps; Adobe
to More Aggressively Contribute to HTMLS,” http://blogs.adobe.com/
conversations/2011/11/flash-focus.html/, retrieved November 26, 2012.

[5] R. Gumienny, L. Gericke, M. Quasthoff, C. Willems, and C. Meinel,
“Tele-board: Enabling efficient collaboration in digital design spaces,”
in Proc. of the 15th International Conference on Computer Supported
Cooperative Work in Design (CSCWD 2011). Lausanne, Switzerland:
IEEE Press, 6 2011, pp. 47-54.

[6] C. A. Gutwin, M. Lippold, and T. C. N. Graham, “Real-time groupware
in the browser: testing the performance of web-based networking,” in
Proc. of the ACM 2011 conference on Computer supported cooperative
work, ser. CSCW "11. New York, NY, USA: ACM, 2011, pp. 167-176.

[71 R. Hoetzlein, “Graphics Performance in Rich Internet Applications,”
Computer Graphics and Applications, IEEE, vol. 32, pp. 98-104, 2012.

[8] D. W. Johnson and T. J. Jankun-Kelly, “A scalability study of web-
native information visualization,” Proc. of graphics interface 2008, pp.
163-168, May 2008.

[9]1 P. Lubbers and F. Greco, “HTML5 Web Sockets: A Quantum Leap

in Scalability for the Web,” http://www.websocket.org/quantum.html,

retrieved November 27, 2012.

Internet Engineering Task Force (IETF), “RFC 6455: The WebSocket

Protocol,” http://tools.ietf.org/html/rfc6455/, retrieved November 27,

2012.

A. Guttman, “R-trees: A dynamic index structure for spatial searching,”

in INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA.

ACM, 1984, pp. 47-57.

J. Edwards, “Multi-threading in JavaScript,” http://www.sitepoint.com/

multi-threading-javascript/, 10/24/2008.

L. Wagner, “JSRuntime is now officially single-threaded,”

http://blog.mozilla.org/luke/2012/01/24/jsruntime-is-now-officially-

single-threaded/, 01/24/2012.

Rousset, David, “Introduction to HTML5 Web Workers: The JavaScript

Multi-threading Approach,” http://blogs.msdn.com/b/davrous/archive/

2011/07/15/introduction-to-the-html5- web- workers- the-javascript-

multithreading-approach.aspx, 07/15/2011.

W3C, “Web Workers W3C Candidate Recommendation 01 May 2012,”

http://www.w3.org/TR/workers/, retrieved November 28, 2012.

S. K. Card, A. Newell, and T. P. Moran, The Psychology of Human-

Computer Interaction. Hillsdale, NJ, USA: L. Erlbaum Associates

Inc., 1983.

Mozilla Foundation, “Firefox - Built on Open Technology - Power-

ful new innovations that change the way you build the Web,” http:

/lwww.mozilla.org/en-US/firefox/technology/, retrieved November 29,

2012.

(10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]

http://blogs.adobe.com/conversations/2011/11/flash-focus.html/
http://blogs.adobe.com/conversations/2011/11/flash-focus.html/
http://www.websocket.org/quantum.html
http://tools.ietf.org/html/rfc6455/
http://www.sitepoint.com/multi-threading-javascript/
http://www.sitepoint.com/multi-threading-javascript/
http://blog.mozilla.org/luke/2012/01/24/jsruntime-is-now-officially-single-threaded/
http://blog.mozilla.org/luke/2012/01/24/jsruntime-is-now-officially-single-threaded/
http://blogs.msdn.com/b/davrous/archive/2011/07/15/introduction-to-the-html5-web-workers-the-javascript-multithreading-approach.aspx
http://blogs.msdn.com/b/davrous/archive/2011/07/15/introduction-to-the-html5-web-workers-the-javascript-multithreading-approach.aspx
http://blogs.msdn.com/b/davrous/archive/2011/07/15/introduction-to-the-html5-web-workers-the-javascript-multithreading-approach.aspx
http://www.w3.org/TR/workers/
http://www.mozilla.org/en-US/firefox/technology/
http://www.mozilla.org/en-US/firefox/technology/

