
Cluster Labeling for the Blogosphere

Patrick Hennig
Hasso-Plattner-Institut

University of Potsdam, Germany
patrick.hennig@hpi.uni-potsdam.de

Philipp Berger
Hasso-Plattner-Institut

University of Potsdam, Germany
philipp.berger@hpi.uni-potsdam.de

Claus Steuer
Hasso-Plattner-Institut

University of Potsdam, Germany
claus.steuer@hpi.uni-potsdam.de

Christoph Meinel
Hasso-Plattner-Institut

University of Potsdam, Germany
christoph.meinel@hpi.uni-potsdam.de

Christian Wuerz
Hasso-Plattner-Institut

University of Potsdam, Germany
christian.wuerz@hpi.uni-potsdam.de

Abstract—Hierarchical Cluster Labeling helps users to quickly
understand and analyze hierarchical clusters. This may be used
to enhance search engine results or interactive browsing like it is
being used in the BlogIntelligence application. The hierarchical
organization of data helps to represent different levels of detail.
Hierarchical clustering may be quite common, but there are few
good solutions for labeling those clusters. We decided to lay
the focus of this work on labeling binary hierarchical clusters.
Current approaches focus either on statistical features of the
clustered documents or external sources like Wikipedia. We
combined those ideas to profit from both advantages and created
an algorithm, that can handle clustered documents as well as
terms.

I. INTRODUCTION

Since every day millions of posts are being published
the huge collection of web documents inside the blogosphere
is getting bigger and bigger . Clustering this ever-changing
collection is a very time consuming task. BlogIntelligence 1 is
providing a smart search engine for the blogosphere, includ-
ing harvesting, analysis and presenting the results in a very
meaningful way.

In our daily life we often have to deal with unordered
collections of documents. These can be articles from different
streams like news agencies, social networks and blogs or
documents returned by search queries. With growing size it
becomes increasingly difficult to get an overview of the cov-
ered topics and find documents of interest. One solution to this
problem is hierarchical clustering. Hierarchical clustering is a
well known task in information retrieval where a considerable
amount of research has been done. However when users have
to interact with the generated hierarchy it is important to label
the clusters, so that the user knows what topic is covered
by a cluster. Comparatively less research has been done on
automatic labeling of cluster hierarchies. Next to document
cluster hierarchies we consider another cluster type where we
have a set of terms per cluster node instead of documents.

A proper label for a single cluster node in the hierarchy
should fulfill the following criteria:

• It should be general enough to describe all documents
or terms in the cluster node (in a document cluster

1http://www.blog-intelligence.com

hierarchy a non leaf cluster node contains all the
documents of its children).

• It should be specific enough to differ from its child
and sibling cluster nodes.

• It should be a generalization of its child cluster labels
and accordingly a specialization of its parent cluster
label.

This paper proposes two algorithms that automatically find
appropriate labels for binary hierarchical clusters, where each
cluster node can have a maximum of two children. The first
algorithm relies solely on the statistical features of the terms
inside the documents of the cluster hierarchy. To label a cluster
node it takes into account statistical features of the terms
inside the cluster node itself, in its child cluster nodes and its
sibling cluster nodes. The second algorithm uses the DBpedia
category network[13] to find appropriate labels. While the
first algorithm can only be applied to document clusters the
second algorithm also works for term clusters. Indeed the
second algorithm does not use the documents at all but only
a collection of relevant terms for each cluster node which can
be generated using the first algorithm.

Throughout the paper we focus on cluster hierarchies that
resemble binary trees. Although both algorithms can operate
on any tree hierarchy the restriction to binary trees has some
implications for the algorithms. Most notably the resulting
clusters contain fewer documents compared to non binary hier-
archies. We assume that this is the reason why most algorithms
proposed by other researchers, that we implemented, achieved
poor results on our test cluster hierarchies, although they
performed well on the significant bigger cluster hierarchies
on which they were originally evaluated.

The paper is structured as follows. Section II discusses
related work on cluster labeling. In Section III both algorithms
are presented. A description of the test framework and the
result of our evaluation is given in Section IV. Finally our
findings and possible future work is summarized in Section V
and VI.

A. BlogIntelligence

With a wide circulation of more than 200 million weblogs
worldwide, weblogs with good reason, are one of the most

important data streams in the World Wide Web. Therefore,
weblogs offer access to latest information discussed in the real
world. Since writing posts in weblogs goes along with a high
editorial effort, the available information is of major interest.
However, for a user it is becoming harder and harder to gain an
overview of all discussions in the blogosphere. Hence, a system
that collects information from the blogosphere and presents it
to the user in a very meaningful way would be of great use.

Therefore, mining, analyzing, modeling and presenting this
enormous amount of data is the overall aim of the project the
presented work is integrated in. This enables the user to detect
technical trends, political climates or news articles about a
specific topic. Most approaches to mining and analyzing such
a huge amount of data focus on offline algorithms which use
pre-aggregated results. This is in contrast to the continuously
growing nature of the World Wide Web. As a result, including
the latest data is one of the key aspects of data mining on the
web. This is exactly the topic covered by the BlogIntelligence
project.

The presented work in this paper is integrated into the
BlogIntelligence project. There are three main steps involved
to visualize blogs in the BlogIntelligence project:

1) Extraction: In the extraction step the blogs are basically
crawled. In order to achieve this, a purpose-built crawler
needs to be used as traditional crawlers do not fully meet the
particularities of blogs as opposed to conventional websites.

2) Analysis: The analysis step prepares the crawled data for
visualization. Each blog is analyzed by multiple Analyzers, that
process its details in certain ways. Among potentially others,
there are data analyzers that store the meta information about
the blogs into the database, content analyzers that store infor-
mation about the content which allow content-related analyses
and there are network analyzers that store information on the
relationships and links between blogs or other communities.

3) Visualization: The last step within the BlogIntelligence
framework is the visualization of the analyzed information.
The Blog IntelliTrends solution is part of this last step as it
provides the stored data via an interface and visualizes them
in client applications.

II. RELATED WORK

There are two major groups of works considering cluster
labeling.

The first one uses the statistical features of the clusters
to extract label candidates [23, 24, 6]. These labels are ex-
tracted directly from the text of the documents. Therefore the
documents often get summarized by the most relevant words
[18, 23, 15]. A naive approach is to use the most frequent word
as a label for the cluster [2]. The resulting labels are usually too
general and not a good representative for the cluster. Another
relevant area [23, 6] also considers the negative frequency of
the terms, the frequency outside of the cluster. But there are
just a few approaches considering the labeling of hierarchical
cluster hierarchies [23] instead of flat clusters [9].

The second group of works tries to find an appropriate
label using external sources like Wikipedia or other Ontology
Databases [21, 1, 8, 20, 14, 12, 3]. Usually these approaches

are preprocessing the Wikipedia dump [22, 20] or they are
using a structured version like DBpedia [13, 16]. Magatti et al.
[14] even rely on the Open Directory Project2 [4]. All are based
on the idea that an appropriate label does not have to appear in
the cluster itself. Carmen et al. [1] try to map the considered
documents to Wikipedia articles and label the clusters with the
Wikipedia Category titles of these articles. In addition of using
Wikipedia, Lau et al. [12] also queries the Google web search
engine to get label candidates. Coursey et al. [3] are building
an encyclopedic graph that represents the Wikipedia articles
and categories as nodes.

The first algorithm of our paper is based on the Descriptive
Score (DScore) algorithm from Treeatpituk and Callan [23].
They calculate multiple statistical features for each label can-
didate. To learn the significance of each feature the algorithm
is trained with manually labeled clusters. Their approach also
considers bi-grams and tri-grams as label candidates. The
results of the DScore algorithm for our binary clusters where
not satisfactory, hence we adapted it to our use-case by, among
others, using different statistical features.

The idea of our second algorithm is influenced by the work
of Hulpus et al. [8]. They are using a graph-based approach to
label clustered terms or documents. Therefore they create for a
group of words: a so-called sense graph. It consists of DBpedia
Categories, DBpedia Ontologies and the YAGO [7] vocabulary
(Wikipedia and WordNet3 [5]) that represent the sense of the
considered words. The edges between those nodes represent
the generalization between them. To extract a label candidate,
they use different measures to find a central element in their
graph. However, since their algorithms main objective it topic
labeling, it does not consider hierarchical relation between the
clusters.

Our approach differs from the mentioned work as it
uses both techniques, the statistical features and the DBpedia
Database. We have created two algorithms and combined them
to improve the results. Therefore our approach can handle
hierarchical clusters of documents and terms.

III. ALGORITHMS

The first algorithm proposed in this paper for labeling
hierarchical document clusters is derived from the Descrip-
tive Score (DScore) algorithm developed by Treeratpituk and
Callan [23]. To determine the label of a cluster node S DScore
first selects a set of label candidates from all unigram, bi-gram
and tri-gram phrases that occur in the documents of S. For
each label candidate different statistical features are calculated
with respect to the cluster node S and the parent cluster node
P . These features are then used as variables for a multiple
linear regression model. The result of the model for a phrase
p is a real value that denotes how descriptive a phrase is for
cluster S. A value of 1 means that p is a good description for
S and hence a good label, whereas a value of 0 denotes a bad
label. The weights of the regression model are learned using
labeled hierarchical document clusters extracted from the Open
Directory Project [4]. To train the model the descriptive score
of each label candidate L, in each cluster extracted from ODP,
must be estimated. Therefore the number of overlapping words

2http.dmoz.org
3http://wordnet.princeton.edu/

between each Synonym SL of L and the known correct label
CL is calculated and normalized by max(len(SL), len(CL)).
In our tests (Section IV-C) with binary document clusters the
DScore algorithm found the correct label only in 12,62% of
all cases (using only the top result and considering partial or
synonym matches as correct). The big difference between our
test result and the 53% measured by Treeratpituk and Callan
can be explained by the much smaller number of documents
per cluster node in our test clusters. Their test cluster contained
21,143 documents distributed over 165 cluster nodes with a
maximum depth of 3. Our test clusters contained in average
373 documents distributed over 15 cluster nodes with an
average maximum depth of 7. We will now describe how we
changed the DScore algorithm in order to yield better results
for our comparatively sparse binary cluster hierarchies.

A. Optimizing DScore for sparse cluster hierarchies

1) Label candidate selection:: The label candidates of a
cluster node S are selected with the following steps:

1) Unigram, bi-gram and tri-gram phrases of all doc-
uments are extracted and stemmed using Krovetz’s
stemmer [11].

2) Stopwords are removed using a fixed list. Bi-gram
and tri-gram phrases that consists of more than 50%
stopwords or that end with a stopword are also
removed.

3) Like in DScore the label candidates are selected
based on their document frequency in S. However
using a fixed threshold of 20% for unigram and
5% for bi-gram and tri-gram phrases leads to all
unigram phrases being selected when the cluster node
contains less than 6 documents. All bi-gram and tri-
gram phrases are selected when the cluster node
contains less than 21 documents which is almost
always the case in our sparse clusters. Instead of using
fixed values the thresholds depend on the number of
documents in the cluster denoted by |S|:

Unigram Threshold: 0.1 +
0.9

ln(|S|)

Bi\Tri-gram Threshold: 0.05 +
0.95

4 · ln(|S|)

The threshold decreases logarithmic with increasing
number of documents in the cluster. In general bi-
gram and tri-gram phrases occur less frequent than
unigram phrases. Hence the decrease is boosted by a
factor of 4 for these phrases.

2) Model Variables:: For each label candidate of S the
following statistical features are calculated and used as input
variables for the linear regression model:

a) Macro normalized document frequency
(MNDFC):: For leaf cluster nodes the macro normalized
document frequency is equal to the normalized document
frequency (NDFC/|C|) used in DScore which is the fraction
of documents in the cluster node that contain the phrase
p. In non leaf cluster nodes MNDFC is the mean of the

MNDFCi
for each child cluster Ci of C.

MNDFC(p) =

{ |{d∈C:p∈d}|
|C| , children(C) = ∅∑

Ci∈children(C) MNDFCi
(p)

|children(C)| , children(C) 6= ∅

Using the macro normalized document frequency instead of the
normalized document frequency in the non leaf cluster nodes
prevents a bias towards phrases from children with a lot of
documents. Consider a cluster node C with the children C1

containing 20 documents and C2 containing 10 documents. A
phrase p1 that occurs in 50% of the documents in C1 and C2

is a better label for C than a phrase p2 that occurs in 75% of
the documents in C1 and only in 10% of the documents in C2.
The normalized document frequency favors p2 (0.53) over p1

(0.5), macro normalized document frequency favors p1 (0.5)
over p2 (0.425). The MNDFC for the self cluster node S
and the sibling cluster node N of S are calculated and used
as input variables. The assumption is that a good label for S
occurs frequent in S and less frequent in the sibling cluster
node N .

b) Normalized document frequency child variance
(V arMNDFC

):: A Phrase that occurs frequent in one child
cluster but less frequent in the other is less likely to be a
good label for S. Hence the variance of the children macro
normalized document frequency is computed for each label
candidate p:

V arMNDFC
(p) =

1

|children(C)|
·∑

Ci∈children(C)

[
MNDFCi(p)− E

(
MNDFchildren(C)(p)

)]2
For leaf cluster nodes V arMNDFC

is always 0.

c) Term frequency - inverse cluster frequency (TF −
ICF):: The relevance of a term for a document from a col-
lection of documents is often determined using the TF−IDF
measure. Likewise TF − ICF computes the relevance of a
phrase p for cluster node S with respect to all other nodes in
the hierarchy.

TF − ICFS(p) = TF (p) · ICF (p)

TFS(p) =

∑
d∈S f(p, d)

max{
∑

d∈S f(w, d) : d ∈ S : w ∈ d}

ICFS(p) = ln

(
|L| − |leafs(S)|∑

C∈(L−leafs(S)) NDFC(p) + 1

)

The set containing all leaf cluster nodes is denoted by L. The
function leafs(C) returns the set of leaf cluster nodes that
are descendants of C. If C itself is a leaf node leafs(C)
returns C. The raw frequency of a phrase p in a document d
is denoted by f(p, d).

Additional to the features described above the number of
words in a phrase LEN(p) is used as an input for the model.
The following formula shows the complete linear regression
model for the DScore algorithm optimized for binary cluster

hierarchies:

OptimizedDScore(S, p) = c0

+ c1 · LEN(p)

+ c2 ·MNDFS(p)

+ c3 ·MNDFN (p)

+ c4 · V arMNDFS
(p)

+ c5 · TF − ICFS(p)

After training the algorithm with different binary document
cluster hierarchies sampled from ODP the following weights
were learned:

~ω =


c0

c1

c2

c3

c4

c5

 =


−0.033097
−0.000981
+0.008843
−0.000564
−0.054826
+0.044546


3) Labeling:: In order to label a cluster node S the label

candidates L are selected as described above. For each phrase
p in L the feature vector

~x =
(
1.0, LEN(p),MNDFS(p),MNDFN (p), V arMNDFS

(p),

TF − ICFS(p)
)T

is calculated. The dot product of the weight vector and feature
vector yields the score of p: scorep = ~ω · ~x. The label
candidates are ordered descending by their score. The first n
candidates are assigned as labels of S.

a) Fallback:: When no phrase in S satisfies the condi-
tions for a label candidate all phrases are ranked in descending
order by their document frequency. Phrases with the same
document frequency are ordered by term frequency.

b) Collapse:: If n is greater than one it may happen
that label candidates of different word length overlap with each
other. E.g.: ”Life on mars”, ”on mars”, ”mars”. In such a case
the last two labels do not add any relevant information for the
user. Hence if an assigned label p1 contains another assigned
label p2 they are collapsed into p3 = p1 the score of p3 is
max(scorep1 , scorep2).

B. Using DBpedia for hierarchical term cluster labeling

A term or a phrase can consist of multiple words. We
define a cluster node S from a hierarchical term cluster as
a set of terms S = {t1, ..., tn}. The relevance of a term with
respect to the cluster node S is given as a probability value
by relS(t) ∈ (0, 1). Two types of term cluster hierarchies are
considered. In the first type only leaf nodes can contain terms,
hence S is empty for all non leaf nodes. In the second type
every cluster node can contain terms.
The second algorithm proposed in this paper can deal with
both types. Since every cluster node consists only of a few
terms, statistical analysis as in the first algorithm will not
help finding a good label. Therefore we use the DBpedia [13]
category network as an ontology to find proper labels for each
cluster. The DBpedia project extracts structured information
from Wikipedia and makes them available in different datasets.
The core of DBpedia are ”things” which we will refer to

as DBpedia resources (DBPResource). Each DBPResource is
denoted by an URI and represents a single Wikipedia article.
DBPResources are assigned to Wikipedia Categories which
are represented using the SKOS vocabulary [17]. Together the
Categories form a directed graph. Child and parent categories
can be found following the skos:broader and skos:narrower
edges. Related categories are linked via skos:related edges.

1) Mapping DBpedia resources to cluster nodes :: The
first step of the algorithm maps to each cluster node S the
DBPResources R that are best described by the terms in S.
Therefore every term t ∈ S is compared against the most
important terms of each DBPResource. A dataset with the
most important terms for every DBPResource is provided by
the DBpedia NLP Project [16]. The terms are selected from
the Wikipedia paragraphs linking to the resource using the
tf-idf measure. We add the terms of the article titles and
apply stopword removal as well as Krovetz stemming before
comparing them with the terms in S. The following function
computes the probability that a DBPResource R is described
by a cluster node S. The DBPResource is represented by its
most important words R = {w0, ..., w1}:

match(S,R) =
|S ∩R|
|S|

·
(

1.0− |R− S|2

|R|2

)
·
∑

t∈S∩R relS(t)

|S ∩R|
= P (R|S)

If the terms of a cluster node are equal to the important terms
of a DBPResource and the relevance of all terms with respect
to the cluster node is 1, than the probability that the resource
is described by the cluster node is 1. The probability decreases
if less terms of the cluster node are terms of the resource or
if the matching terms are less important to the cluster node.
Similarly, the probability decreases if less terms of the resource
are terms of the cluster node. To prevent a bias towards
resources with fewer terms this factor is softened by squaring
the fraction of non matched terms. In our algorithm we map
the 5 DBPResources with the highest match probability to the
cluster node. Higher values may increase the precision of the
algorithm, which has to be evaluated in future tests.

2) Mapping categories to cluster nodes:: After the DBPRe-
sources for a cluster node have been selected the categories to
which the resources belong are assigned to the cluster node.
Each category is scored. Categories with a higher score are
more likely to be the real category of the cluster node. The
score of a category c with respect to cluster node S and its
DBPResources Φ is computed as follows:

score(S,Φ)(c) =
f(c,Φ)

max{f(c′,Φ) : c′ ∈ cat(Φ)}
·max{match(S,R) : R ∈ Φ ∧ c ∈ cat(R)}

In the equation f(c,Φ) denotes the number of resources in
Φ that belong to category c. The function cat(x) yields the
categories of x, where x can be a single resource or a set of
resources. The more of the resources assigned to S belong to
category c the higher is the score of c. Furthermore the score
of c depends on the maximum of the match probabilities of
all resources in Φ that belong to c.

3) Filtering categories using the category graph:: Now
that we have a set of possible categories for each cluster node,
we can use the category graph to remove categories that do

not fit into the hierarchy. We define the following notation for
the category graph:

1) c1
broad,x−−−−−→ c2 denotes a path with length x

between category c1 and c2 following only edges in
skos:broader or skos:related direction, with at least
one edge in skos:broader direction.

2) c1
narrow,x−−−−−−→ c2 denotes a path with length x be-

tween category c1 and c2 following only edges in
skos:narrower or skos:related direction, with at least
one edge in skos:narrower direction.

The goal is to find the best possible mapping of the category
graph onto the cluster hierarchy. This goal is achieved in two
bottom-up traversals over the cluster hierarchy.

a) First traversal:: In the first traversal all categories
of a cluster node are removed that do not have at least one
path to one of the categories of the child nodes. For every
non leave node S with child nodes C1 and C2 we collect the
following set of categories:

C =c : c ∈ cat(S) ∧ c
narrow,x−−−−−−→ cchild ∈

 ⋃
G∈children(S)

cat(G)


The set C only contains categories assigned to S that are
connected to at least one category of the child nodes of S. After
several tests we set the maximum path length to 5. In most
cases if no path has been found between two categories using
a maximum search distance of 5 even a higher search distance
won’t find a path. Furthermore the longer the distance between
the parent category and the child category the more unlikely
it is that both categories are good labels for their nodes. This
is also reflected by the new score of the categories in C:

newscoreS(c) = score(S,Φ)(c)

·

1.0− 1

6|children(S)|
·

∑
G∈children(S)

minDist(c,G)



minDist(c,G) =


min{x : c

narrow,x−−−−−−→ cchild ∈ cat(G)},
{c narrow,x−−−−−−→ cchild ∈ cat(G) ∧ x < 6} 6= ∅
6

The function minDist returns the length of the shortest path
between c and any category in G or 6 if there is no path with
a maximum length of five. The right term of the newscoreS is
greatest when c has a path of length one to at least one category
of each child node. C is assigned to S, so that cat(S) = C.
After the first traversal only these categories remain that are
generalizations of at least one of their child node categories.

b) Second traversal:: The second traversal is similar
to the first but this time only leaf nodes are considered. All
categories of a leaf node are removed that do not have at least
one path (in broader direction) to one of the categories of the
parent node. If the direct parent node has no categories left, the
next parent is considered until one with categories is found or

the root node is reached. In the latter case no categories will be
removed from the leaf node. The new score of the remaining
leaf node categories is computed similar to the first traversal.

c) Third traversal:: After the first two traversals only
categories remain that fit into the hierarchy of the cluster. As
a result there are cluster nodes that do not have any category
assigned. The goal of the third traversal is to close these gaps
if possible. For each cluster node S with cat(S) = ∅ we
distinguish between two types of gaps:

1) The first type is present if a direct or indirect parent
of S and at least one of the children has categories
assigned: ∃P,G : G ∈ children(S) ∧ cat(G) 6= ∅ ∧
P ∈ parents(S) ∧ cat(P) 6= ∅. To close the gap
we first collect all categories that are ancestors of the
child node categories and have a path to at least one
of the categories of the parent node.

C = {c : cparent
narrow,x−−−−−−→ c ∧ ∃cchild : cchild

broader,y−−−−−−→ c}
cparent ∈ cat(P)

cchild ∈
⋃

G∈children(S)

cat(G)

The score of each category in C is computed using
the newscore function from the first traversal. Since
the initial score of the category denoted by score(S,Φ)

is not defined it is replaced with the average score of
the category of each child node with the shortest path
to c (0 if no such path exists). This way categories
that are the common ancestor of most of the children
are favored over these that only cover some children.
If two categories cover the same number of children,
the one that has the smallest average distance
to its child categories or that is connected to the
more important child categories gets the higher score.

2) S belongs to the second type if it has no direct or
indirect parent with categories assigned, but at least
one child node with categories: ∀P ∈ parents(S) :
cat(P) = ∅ ∧ ∃G ∈ children(S) : cat(G) 6= ∅. In
this case we collect all ancestors and use the same
scoring method as before.

4) Selecting the label:: At this point each cluster node S
has a set of categories cat(S). The label of the category with
the highest score given by newscoreS is used as the label of
S, together with the label of the highest scored DBPResource
in R. If S has no categories assigned, only the highest scored
DBPResource from R is used. In the case that R is empty too,
no label is assigned.

C. Combining both algorithms

A weakness of the first algorithm is that it can find the
correct label of a cluster node S only if the label is contained
in the documents of S. However even if that is not the case
the algorithm will likely find terms that describe the topic of
the correct label. Another weakness is that the hierarchical
relation between the terms of different cluster nodes cannot
be guaranteed. Sometimes the algorithm finds the same label
for the parent cluster and a child cluster. Unfortunately it
can’t decide for which node the term is the better label. Both

Cluster Documents Leaf Nodes MaxDepth
Business 799 13 6
Computers 205 7 6
Health 510 13 6
Recreation 307 16 7
Regional 113 19 7
Science 1 101 9 5
Science 2 760 21 8
Society 30 19 7
Sports 1 182 13 8
Sports 2 730 24 8

TABLE I: Characteristics of the ODP clusters used as test data.
It shows their root category, number of documents, number of
leaf nodes and their maximal depth.

issues are addressed by the second algorithm. Since it uses an
external data source, namely DBpedia, it can find labels that
were not in the terms assigned to the cluster node. Due to the
category graph the hierarchical relationship between the labels
of different clusters can be guaranteed to a certain extend. We
propose a third algorithm for hierarchical document clusters
that is a combination of our first two algorithms. First we
use our optimized DScore algorithm to find the best label
candidates for each cluster node S. We than apply the second
algorithm that uses the label candidates as the terms of the
cluster node.

IV. EXPERIMENTAL RESULTS

In this section, we describe our experiments and the results
we gained from them. Our test data collection is proposed
in the Section IV-A. In the Section IV-B we describe our
evaluation methods and the Section IV-C presents our results.

A. Data

To test our algorithms we have randomly sampled 10
binary hierarchical document clusters from the Open Directory
Project. This clusters have ”ground truth” labels assigned by
human editors. We assured that our test clusters and our
training clusters were completely disjoint. Our selected clusters
contained in average 373 documents distributed over 15 leaf
nodes with an average maximum depth of 7 from under 9 root
categories. Table I shows the exact characterization of our test
clusters.

B. Evaluation Method

We consider a label L generated by the algorithm as correct
if L or a synonym of L exactly or partly matches the correct
ODP label CL. Therefore a synonym list was obtained from
WordNet [5].

L is an exact match of the correct label CL if L or
any synonym of L is equal to CL. For example, ”tennis
tournament” and ”tennis championship” are exact matches for
the ODP label ”tennis tournament”.

L is a partial match of CL if L or any synonym of L share
at least one word with CL that is not a stopword. For example,
”tournament” and ”championship” are partial matches for the
ODP label ”tennis tournament”.

Cluster Exact Partial Misses Hit
matches matches Rate

(%)
Business 3 0 25 10.71
Computers 2 2 9 30.77
Health 0 1 24 4.00
Recreation 2 0 31 6.06
Regional 4 3 34 17.07
Science 1 2 0 15 11.76
Science 2 2 3 37 11.90
Society 1 4 33 13.16
Sports 1 2 3 24 17.24
Sports 2 6 0 45 11.76
Total 24 16 277 12.62

TABLE II: Results of the original DScore. Exact Matches and
partial matches both count as correct label.

Cluster Exact Partial Misses Hit
matches matches Rate

(%)
Business 6 2 20 28.57
Computers 8 0 5 61.54
Health 2 1 22 12.00
Recreation 3 2 28 15.15
Regional 8 3 30 26.83
Science 1 2 0 15 11.76
Science 2 10 1 31 26.19
Society 9 3 26 31.58
Sports 1 4 3 22 24.14
Sports 2 10 0 41 19.61
Total 62 15 240 24.29

TABLE III: Results of the optimized DScore. Exact Matches
and partial matches both count as correct label.

C. Experimental Results

We evaluated our model on the ground truth ODP data.
Therefore we extracted the raw text of the linked websites
using boilerpipe [10]. The goal of our experiment was to
evaluate our optimized DScore algorithm (Section III-A) and
our combined algorithm (Section III-C) in comparison to the
original DScore algorithm [23].

Table II shows the results of the original DScore algorithm
as described in the paper. We have an average hit ratio, consid-
ering exact and partial matches of 12.62%. When comparing
this results with the results of our optimized version of the
DScore algorithm (Table III), we see major improvements. Our
hit ratio nearly doubled. The original DScore algorithm was
not constructed for binary clusters. All adaptions we made,
helped the algorithm to work with smaller clusters.

The best results had our combined algorithm (Table IV)
with an average hit ratio of 30.57%.

V. FUTURE WORK

To improve the algorithm we plan to enlarge and enhance
the category graph with other ontology databases like YAGO
[7] and SUMO [19]. Further work could go into the research
of a more sophisticated model, for mapping the category graph
onto the hierarchical cluster, that allows different disconnected
hierarchies to exist concurrently.

Cluster Exact Partial Misses Hit
matches matches Rate

(%)
Business 3 1 22 15.38
Computers 4 0 9 30.77
Health 6 2 17 32.00
Recreation 6 2 25 24.24
Regional 10 2 28 30.00
Science 1 7 1 9 47.06
Science 2 20 4 18 57.14
Society 8 0 30 21.05
Sports 1 7 3 19 34.48
Sports 2 9 1 41 19.61
Total 80 16 218 30.57

TABLE IV: Results of the combined Algorithm DScore. Exact
Matches and partial matches both count as correct label.

VI. CONCLUTION

In this paper we presented one algorithm for labeling
hierarchical documents clusters using statistical methods and
a second algorithm for labeling hierarchical term clusters
using by DBpedia as an Ontology. We made the second
algorithm applicable for hierarchical document clusters by
combining it with the first algorithm. Both were tested on
manually labeled binary document clusters obtained from the
Open Directory Project. We showed that our first algorithm
performs significantly better on binary cluster hierarchies than
the original DScore algorithm on which it is based. The results
have been further improved by our combined algorithm. The
combined algorithm has three major advantages. First it is able
to find labels that did not occur as terms in the underlying
documents. Second, since we make use of an ontology to find
labels that best match the hierarchy given by the cluster, we
can guarantee to a certain extend that the resulting labels have
a correct hierarchical relationship to each other. The usage of
the ontology also enables us to discard labels that do not fit
into the hierarchy.

REFERENCES

[1] D. Carmel, H. Roitman, and N. Zwerdling. Enhancing
cluster labeling using wikipedia. In Proceedings of the
32nd international ACM SIGIR conference on Research
and development in information retrieval, pages 139–146.
ACM, 2009.

[2] S.-L. Chuang and L.-F. Chien. A practical web-based ap-
proach to generating topic hierarchy for text segments. In
Proceedings of the thirteenth ACM international confer-
ence on Information and knowledge management, pages
127–136. ACM, 2004.

[3] K. Coursey, R. Mihalcea, and W. Moen. Using encyclope-
dic knowledge for automatic topic identification. In Pro-
ceedings of the Thirteenth Conference on Computational
Natural Language Learning, pages 210–218. Association
for Computational Linguistics, 2009.

[4] Open Directory Project. http://www.dmoz.org/, 1998.
[Online; accessed 14-Februar-2014].

[5] C. Fellbaum. WordNet. Wiley Online Library, 1999.
[6] E. Glover, D. M. Pennock, S. Lawrence, and R. Krovetz.

Inferring hierarchical descriptions. In Proceedings of
the eleventh international conference on Information and
knowledge management, pages 507–514. ACM, 2002.

[7] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum.
Yago2: A spatially and temporally enhanced knowledge
base from wikipedia. Artificial Intelligence, 194:28–61,
2013.

[8] I. Hulpus, C. Hayes, M. Karnstedt, and D. Greene.
Unsupervised graph-based topic labelling using dbpedia.
In Proceedings of the sixth ACM international conference
on Web search and data mining, pages 465–474. ACM,
2013.

[9] A. K. Jain and R. C. Dubes. Algorithms for clustering
data. Prentice-Hall, Inc., 1988.

[10] C. Kohlschtter. boilerpipe. https://code.google.com/p/
boilerpipe/, 2009. [Online; accessed 07-Februar-2014].

[11] R. Krovetz. Viewing morphology as an inference pro-
cess. In Proceedings of the 16th annual international
ACM SIGIR conference on Research and development in
information retrieval, pages 191–202. ACM, 1993.

[12] J. H. Lau, K. Grieser, D. Newman, and T. Baldwin.
Automatic labelling of topic models. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies-
Volume 1, pages 1536–1545. Association for Computa-
tional Linguistics, 2011.

[13] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kon-
tokostas, P. N. Mendes, S. Hellmann, M. Morsey, P. van
Kleef, S. Auer, et al. Dbpedia-a large-scale, multilingual
knowledge base extracted from wikipedia. Semantic Web
Journal, 2013.

[14] D. Magatti, S. Calegari, D. Ciucci, and F. Stella. Auto-
matic labeling of topics. In Intelligent Systems Design
and Applications, 2009. ISDA’09. Ninth International
Conference on, pages 1227–1232. IEEE, 2009.

[15] Q. Mei, X. Shen, and C. Zhai. Automatic labeling of
multinomial topic models. In Proceedings of the 13th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 490–499. ACM, 2007.

[16] P. N. Mendes, M. Jakob, and C. Bizer. Dbpedia for nlp: A
multilingual cross-domain knowledge base. In Proceed-
ings of the Eight International Conference on Language
Resources and Evaluation (LREC’12), Istanbul, Turkey,
May 2012.

[17] A. Miles, B. Matthews, M. Wilson, and D. Brickley. Skos
core: simple knowledge organisation for the web. In
International Conference on Dublin Core and Metadata
Applications, pages pp–3, 2005.

[18] M. Muhr, R. Kern, and M. Granitzer. Analysis of
structural relationships for hierarchical cluster labeling.
In Proceedings of the 33rd international ACM SIGIR
conference on Research and development in information
retrieval, pages 178–185. ACM, 2010.

[19] I. Niles and A. Pease. Towards a standard upper ontology.
In Proceedings of the international conference on Formal
Ontology in Information Systems-Volume 2001, pages 2–
9. ACM, 2001.

[20] T. Nomoto. Wikilabel: an encyclopedic approach to
labeling documents en masse. In Proceedings of the
20th ACM international conference on Information and
knowledge management, pages 2341–2344. ACM, 2011.

[21] P. Schönhofen. Identifying document topics using the
wikipedia category network. Web Intelligence and Agent
Systems, 7(2):195–207, 2009.

[22] Z. S. Syed, T. Finin, and A. Joshi. Wikipedia as an

ontology for describing documents. In ICWSM, 2008.
[23] P. Treeratpituk and J. Callan. Automatically labeling

hierarchical clusters. In Proceedings of the 2006 interna-
tional conference on Digital government research, pages
167–176. Digital Government Society of North America,
2006.

[24] P. Treeratpituk and J. Callan. An experimental study

on automatically labeling hierarchical clusters using sta-
tistical features. In Proceedings of the 29th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 707–708.
ACM, 2006.

