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Abstract. Analyzing data is a cost-intensive process, particularly for
organizations lacking the necessary in-house human and computational
capital. Data analytics outsourcing offers a cost-effective solution, but
data sensitivity and query response time requirements, make data
protection a necessary pre-processing step. For performance and pri-
vacy reasons, anonymization is preferred over encryption. Yet, manual
anonymization is time-intensive and error-prone. Automated anonymiza-
tion is a better alternative but requires satisfying the conflicting objec-
tives of utility and privacy. In this paper, we present an automated
anonymization scheme that extends the standard k-anonymization and
l-diversity algorithms to satisfy the dual objectives of data utility and
privacy. We use a multi-objective optimization scheme that employs a
weighting mechanism, to minimise information loss and maximize pri-
vacy. Our results show that automating l-diversity results in an added
average information loss of 7 % over automated k-anonymization, but in
a diversity of between 9–14 % in comparison to 10–30 % in k-anonymised
datasets. The lesson that emerges is that automated l-diversity offers bet-
ter privacy than k-anonymization and with negligible information loss.

Keywords: Automated data anonymization · Multi-objective
optimization · k-anonymity · l-diversity · Data outsourcing

1 Introduction

A common challenge faced by law enforcement agencies in developing world
regions is that of analyzing large volumes of crime data [7,27]. Recent statistics
from the United Nations (UN) and World Bank (WB) [28] estimate that violent
crime cost Guatemala an estimated $2.4 billion or 7.3 % of her Gross Domestic
Product (GDP) in 2007, and the Mexican government estimated the costs of
violence in 2007 at $9.6 billion, primarily from lost investment, local business
and jobs. The UN and WB also estimated that, in 2007, Jamaica and Haiti could
have increased their GDP by 5.4 % merely by bringing down their crime levels
to that of Costa Rica [28]. In South Africa for instance, it is estimated that
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more than a million of the approximately 2 million crimes reported annually, are
never resolved [17,31]. Surveys indicate that corruption and police ineffective-
ness fuel fears of disclosure and the general belief that most offenses go unre-
solved [17]. Challenges faced by the law enforcement authorities include limited
“in-house” computational processing power which makes handling large volumes
of crime data challenging and perhaps more importantly, the lack of data analyt-
ics expertise which is essential in identifying relevant data for crime resolution.
Outsourcing the data to a third-party Data Analytics Service Provider (DASP)
offers a cost effective management solution to the data analytics problem but
the sensitivity of the data makes pre-processing to protect the data a necessary
step before the data is transferred to the DASP.

Existing solutions based on encrypting the data before it is transferred to the
DASP are time-intensive in terms of query response time which is undesirable
when performance as well as data protection are a concern [4,9,11,12,18,30,33].
Data protection alternatives such as anonymization, are a better solution
from the performance perspective. Manual anonymization is however, a time-
consuming and error-prone procedure that can result in inadvertent disclosures
of information. A further concern with manual anonymization is the challenge of
preventing new releases of anonymized datasets from being adversarially com-
bined with historical data to provoke linking and inferential attacks.

In this paper, we present an automated anonymization scheme that extends
the standard k-anonymization and l-diversity algorithms to satisfy the dual
objectives of data utility and privacy. The automated scheme employs a multi-
objective optimization approach that uses a weighting mechanism to maximize
information utility (minimize information loss) and diversity to maximise pri-
vacy by circumventing linking and inference attacks. This is handled via a two
pronged approach where in the first step we maximize information utility under
a modified k-anonymity algorithm in a manner that ensures security against
linking attacks. In the second step, we extend the k-anonymity algorithm based
on the concepts of l-diversity to provide protection against inference attacks.
Our results indicate that l-diverse datasets incur an average information loss
of 7 % over k-anonymised datasets, but offer better privacy (protection against
linking and inference attacks) with a diversity of between 9–14 % in compari-
son to 10–30 % in k-anonymised datasets. The lesson that emerges is that in
automated anonymization, augmenting k-anonymization with l-diversity offers
better privacy and at a negligible cost to utility.

The outline of the paper is as follows. In Sect. 2 we provide an overview of the
literature on privacy preserving data publishing. We proceed in Sect. 3 with a
specification of our proposed multi-objective scheme to support k-anonymization
and l-diversity in automated data anonymization. In Sect. 4, we present results
from experiments conducted on a prototype implementation platform [27]. We
offer conclusions and suggestions for future work in Sect. 5.

2 Related Work

Privacy preserving data publishing combines efficient protection with availabil-
ity in data analytics [6,16,19,22,25,32,36]. There are two tenets to privacy
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preserving data publishing. The first is to anonymize and then mine the data
[2,3,6,16] and the second, to mine and then anonymize the released query results
[1–3]. The second approach is better suited to users without the adequate in-
house human-capital and computational resources. For this reason, we focus on
privacy preserving data publishing schemes where the onus is to anonymize and
then share.

Anonymization algorithms can be classified into two main groups namely,
syntactic and probabilistic models [10]. Syntactic models have a well defined
data output format, such that for small data sets privacy traits can often be con-
firmed by visually inspecting the data. Privacy violation adversarial models are
constructed based on generally available information and generalizations drawn
from the syntactic and semantic meaning of the underlying data. k-anonymity
[1,6,19], l-diversity [25], and t-closeness [22] algorithms as well as their variants
are classified under this category.

On the other hand, probabilistic privacy models employ data perturbations
based primarily on noise additions to distort the data [10,34]. Perturbation
approaches have been critiqued for being vulnerable to inferential attacks based
on adversarial knowledge of the the true underlying distributions of the data
[24]. Dwork et al. [15] proposed addressing this caveat with the notion of differ-
ential privacy. Differential privacy basically requires that the adversary learns
no more from a published data set when one record (or individual) is present
in, or removed from, the data set [34]. Attempts have also been made to com-
bine attributes from both syntactic and probabilistic models to form hybrid
anonymization approaches. Examples include probabilistic k-anonymity [2], and
differential privacy with t-closeness [10]. However, automating these approaches
for application on mixed data (categorical and numerical) in ways that minimize
information loss and maximize privacy is a challenging problem [16,20].

Since crime data includes a mix of numerical and categorical data, we have
opted to focus on syntactic anonymization models, specifically k-Anonymity
and l-Diversity. For reasons, centered around high processing costs, we decided
against considering the t-closeness scheme. Recall that one of the constraints
we mentioned, is the limitation on computational processing power that the
organizations face. Work on k-Anonymity was pioneered by Sweeney [29] as an
approach to sharing data in plain text without revealing private or sensitive
information about individuals. The principle behind k-anonymity is to use the
notion of bucketization to create k sets of data (equivalence classes) such that for
every tuple there exist at least k − 1 tuples that have the same quasi-identifier1

values. Sweeney’s work [29] triggered a plethora of schemes such as [13,14,21,23]
aimed at performance improvement and circumventing inferential attacks.

Various l-diversity schemes have been proposed to address this drawback by
considering that sensitive attributes are the main reason behind disclosures of
information used to provoke inferential attacks [8,23,26]. l-diversity requires in
addition, that the most frequent sensitive attribute occurences in an equivalence

1 Quasi-identifiers: Attributes which independently or combined can be used to
uniquely identify an individual.
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class (EC) should not appear more than 1
l times in the EC. So, at least l distinct

sensitive values must exist in each EC. As in k-anonymity schemes, efficiently
obtaining usable but privacy preserving data sets is provably NP-Hard [35] and
so, optimization heuristics have been proposed to improve on the basic l-diversity
scheme [13,14,26,35]. We note that l-diversity has the drawback of being depen-
dent on the distribution of sensitive attributes in the data set and so, sensitive
attribute values with high probability mass functions (that is some values have
a very high frequency and others a very low frequency of occurrence) are prone
to provoking high information loss in the anonymized data set. In addition l-
diversity only considers the frequency of specific values within independent ECs
and not in the dataset as a whole which can result in inadvertent inferential
disclosure. t-closeness addresses this caveat but requires a high degree of compu-
tational resources. Other issues are centered on the semantics of generalizations
and the effect these generalizations have on enabling information disclosures
[13,22,25].

In the following section, we propose augmented k-anonymity and l-diversity
schemes to support automated data anonymization. The idea is to use the notion
of Pareto optimality [5] that has the nice quality of considering that no optimal
solution exists for a given problem but rather that the solution space consists
of a set of optimal points [5]. This quality, is useful in designing an automated
anonymization scheme in that it allows the scheme select the best optimal with
respect to data utility and privacy at some given instant and to consider his-
torical data releases. As mentioned before, automated data anonymization is
a cost-effective and privacy preserving pre-processing step for data that is out-
sourced to DASPs. Application examples emerge for law enforcement authorities
in developing world countries and organizations lacking the “in-house” computa-
tional processing power as well as the data analytics expertise. We now describe
our proposed solution in the next section.

3 Multi-Objective Data Anonymization (MOA)

In this section we describe our multi-objective optimization scheme that is geared
at supporting automated data anonymization via the k-anonymization and
l-diversity algorithms. We begin by providing some basic notation to support
our subsequent discussions.

3.1 Information Loss Notation

Let A be the attribute space (columns in a data table) such that a ∈ A represents
a specific attribute (column in the data table) in A and d represents a tuple that
contains all the attributes in A.

We denote T (a) as the generalization tree for numerical attributes and K(a)
is the generalization tree for categorical attributes. Furthermore, T (a)max and
T (a)min denote the upper and lower limits respectively for numerical attribute
generalizations while td,i(a)max and td,i(a)min represent the upper and lower
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limits of the generalization of an attribute a in tuple d during the ith iteration
of the anonymization algorithm.

Finally, K(a)total is the total number of leaf nodes generated for K(a) and
P is the number of nodes created by K(a). k(a)p is a sub-tree of K(a) rooted at
a node p ∈ P and k(a)p,total is the number of leaf nodes in k(a)p.

3.2 Information Loss and Severity Weighting

Once the data has been processed and generalized, the next step is to find a suit-
able balance between information loss and privacy. Minimizing information loss
is useful in ensuring data usability while maximizing privacy ensures adequate
data protection from adversarial access. In line with our goal of multi-objective
optimization, we employ a piece-wise function to handle information loss on both
categorical and numerical data.

ILd,i(a) =

⎧
⎪⎨

⎪⎩

k(a)p,total − 1
P−1 if categorical

td,i(a)max − td,i(a)min

T (a)max − T (a)min
if numerical

(1)

where the Information Loss Metric is given by:

LMi(a) =
∑

d∈D

∑

a∈A

ILd,i(a) (2)

To minimize information loss, we employ a weighting scheme for the loss met-
ric which enables authorized end users to prioritize specific attributes during
anonymisation. By this we mean that the data owner can decide to specify the
Quasi-Identifiers (QIDs) that should contain more information without nega-
tively impacting on data privacy. The weighting scheme acts as a sort of utility
function that can be adjusted dynamically to allow the data owner decide what
levels of privacy to sacrifice in favor of query result accuracy without negatively
impacting on the overall privacy of the data. The weighted information loss
metric (ILweight,i) at the ith iteration of the algorithm is computed as follows.

ILweight,i =
∑

d∈D

∑

a∈A

wa × ILd,i(a) (3)

where wa is the weight assigned to attribute a ∈ A by the data owner. Finally, to
facilitate automated anonymization we use a sensitive attribute severity weight-
ing S(c) where c ∈ SA. SA is the list of sensitive attributes and S(·) maps the
sensitive attribute category to its weight.

Example 1. In Table 1, SA denotes the list of offences (sensitive attribute) and
S(·) maps the crime category to its weight, which in this case is simply the
guideline sentence duration (in time - months, years...) for a given crime. So,
S(Theft) = 5 indicates a sentence of 5 years. We note that following this scale,
the risk of privacy loss for a tuple containing “Robbery” is higher than for a
tuple with “Disorderly Conduct”.
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Table 1. Crime severity weightings

Crime Severity

Embezzlement 3

Disorderly conduct 3

Theft 5

Drunken driving 5

Robbery 7

We now describe our automated anonymization schemes, namely CG-Kanon
and CG-Diverse that are extensions of the k-anonymization and l-diversity algo-
rithms respectively.

3.3 CG-Kanon Scheme

Our proposed CG-Kanon scheme uses the severity weighting and bucketization,
to hide tuples with highly sensitive values in larger ECs while tuples of lower
sensitivity are classified in smaller ECs. For instance, a tuple concerning a “Rob-
bery” should be classified in a 20-anonymity EC while “theft” could be placed
in a lower level EC say, 5-anonymity. This idea of hiding more sensitive values in
larger ECs does not affect the absolute level of k-anonymity for different sensi-
tive attribute categories. It is instead a relative statement regarding the level of
k-anonymity required for different sensitive attributes in the anonymized dataset.
The severity weighting is converted to a severity penalty which is used by the
CG-Kanon scheme. To do this, we compute an absolute required minimum level
of k-anonymity (kmin) for the dataset and use kmin to guarantee a global min-
imum level of k-anonymity that all ECs must adhere to in the dataset. We
compute kmin as follows:

kmin = max (kcons,min (SD(·))) (4)

where kcons is a fixed minimum level of k and SD(·) is the set of all severities
for the dataset D. The definition of kmin shows that the global minimum level
of k-anonymity is fixed at kcons or at the lowest level of attribute sensitivity in
the dataset when min (SD(·)) > kcons. If kcons = 5 and min (SD(·)) = 3 then
kmin = 5. However if min (SD(·)) = 7 then kmin = 7 instead. The CG-Kanon
scheme uses kmin as the k-anonymity baseline when deciding on appropriate
ECs for tuples based on sensitivity.

Once kmin has been computed, we compute the severity penalty for each clas-
sification since the CG-Kanon scheme requires this information to optimize the
information loss and privacy cost-benefit trade-off. The severity penalty deter-
mines the level of loss of privacy for a single tuple d ∈ D(·) and is computed as
follows.

SPd,i =
Sd(c)
|ed,i| (5)
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where D(·) is the dataset, Sd(c) is the severity weight of sensitive attribute c ∈ d,
and E is the set of ECs such that |ed,i| is the size of the EC that a tuple d is
classified in during the ith iteration of the CG-Kanon scheme.

Example 2. From the severity penalty computation, highly sensitive attributes
in small ECs result in high penalties and vice versa. So, if a “murder” report with
a severity weighting of 25 were located in a 5-anonymity EC, a penalty of 25

5 = 5
is generated. An incident of “theft” with a severity weighting of 5 generates
a severity penalty of 1, indicating that this information is comparatively less
sensitive. The CG-Kanon scheme uses the severity penalty as a criterion besides,
information utility, to determine tuple placement in ECs to minimize the overall
sensitive information exposure risk.

Finally, the CG-Kanon scheme must compute the aggregate severity penalty,
SPtot,i, for the entire dataset, to determine whether the obtained anonymized
dataset satisfies at least the threshold goals of privacy and utility. SPtot,i is
computed as follows:

SPtot,i =
∑

d∈D

SPd,i (6)

and expresses the total severity penalty for the dataset as the summation of the
severity penalties of the individual tuples. The SPtot,i is then feed into a fitness
function to decide whether each tuple in D satisfies both objectives. We express
the fitness function as follows:

FFCG−Kanon
i =

1
max (SPtot,i, LMCG,i)

(7)

So, the result for FFCG−Kanon
i at iteration i is the inverse of the maximum

of SPtot,i and LMCG,i. Recall that a high SPtot,i indicates a strong risk of
privacy exposure, while a high LMCG,i indicates a high level of information
loss. Therefore, it is desirable that the fitness function generates results that
iteratively converge towards a high value for FFCG−Kanon

i , expressed by low
values of SPtot,i and LMCG,i respectively.

The main drawback here is that, depending on tuple distribution, the diver-
sity of the sensitive attributes in large ECs can be quite low and this negatively
impacts on privacy. As well, a large proportion of tuples are suppressed to sat-
isfy the minimum level of k-anonymity which results in high information loss.
We addressed this by limiting the size of ECs to a pre-defined threshold size
and as we discuss in Sect. 4, found that this reduces the number of suppres-
sions to satisfy kmin-anonymity. We still have the caveat of inferential attacks
and so augment our CG-Kanon scheme with the CG-Diverse scheme (l-diversity
algorithm inspired) to help circumvent these attacks.

3.4 CG-Diverse Scheme

Instead of using SPtot,i to classify tuples into ECs, the CG-Diverse scheme com-
putes the average severity, ASD, for D as well as the EC average severity weight-
ing ASe. The ASD is computed for D and is used to start the anonymization
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process to ensure that the target level of l-diversity in D is such that l = ASD.
We compute ASD as follows:

ASD =
∑

d∈D Sd(c)
|D| (8)

A high ASD implies a higher level of diversity in the entire dataset. As a stop-
ping criterion for deciding when an acceptable level of kmin and ASD has been
satisfied by all the ECs, we bound the l-diversity range with the severity weight-
ing scale and use ASD to compute the fitness of the dataset with respect to
privacy and utility. We employ the following modified fitness function, expressed
as follows:

FFCG−Diverse
i =

1
max (ASD,i, LMCG,i)

(9)

However, as mentioned before suppressing the ECs that fail to meet the required
levels of ASD and kmin would result in a high level of information loss. Therefore,
we alleviate this problem by identifying ECs with a lower average severity (but
adequate relative diversity) to avoid high suppression rates. This is achieved by
assessing the privacy of individual ECs that do not meet the global ASD-diversity
requirement. To this end the EC average severity weighting ASe is computed as
follows:

ASe =
∑

d∈D Sd(c)
|e| (10)

The ASe of an EC is compared to the relative diversity le, and if ASe > le the
tuples in the EC are generalized to the highest possible level to avoid suppression.
Alternatively, when the diversity is higher than ASe no changes are made. We
note that this procedure is computationally inexpensive since it simply requires
comparing ASe with the actual observed diversity of the EC.

Example 3. Table 2 shows the average severity measures calculated for a given
sample dataset. The ASe = 5 is calculated as follows: 5+3+7+5+5

5 using the crime
severity weightings given in Table 1. By considering Table 1, and Eqs. (8) and
(10), the l-diversity range can be restricted to between 3–25, depending on the
underlying dataset. Yet requiring ECs to satisfy the global level of ASD-diversity
might be too restrictive. We alleviate this issue by moving tuples between ECs
to minimise the information loss due to suppression. For instance, in Table 2 we
observe that in the 5-anonymity EC, “Robbery” has a severity of 7 which implies
an inference risk. CG-diverse handles such cases by using the ASe to move the
tuple to the more appropriate 7-anonymity EC as highlighted in Table 2.

We are now ready to discuss our experimental platform, results and analysis.

4 Results and Analysis

We demonstrate the feasibility of our proposed automated data anonymization
scheme with results from experiments conducted on a prototype crime data col-
lection application [27]. A host server with an Ubuntu server 12.04 operating
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Table 2. Average severity versus diversity

Age Crime Diversity ASD ASe

(Equivalence Class) (Dataset) (Equivalence Class)

18 - 22 Theft 4 11 5.0
18 - 22 Embezzlement 4 11 5.0
18 - 22 Robbery 4 11 5.0
18 - 22 Drunken Driving 4 11 5.0
18 - 22 Theft 4 11 5.0

18 - 87 Rape 8 11 7.0
18 - 87 Vandalism 8 11 7.0
18 - 87 Robbery 8 11 7.0
18 - 87 Assault 8 11 7.0
18 - 87 Murder 8 11 7.0

system running on a 64 bit machine with 8 GB RAM and a processor speed of
3.2 GHz (Intel Xeon E3-1230 Quad Core) was used. The algorithms were imple-
mented in Java 1.7.0 65 while Python 2.7.3 was used to run the web server. A
PostgreSQL 9.1 database management system and a Postfix email server were
used to store the dataset, both plain and anonymized. Our dataset consisted
of 10000 records because this is a reasonable bound for daily average crime
report rates per police station [17]. The attributes considered included “Age”,
“Suburb”, “Crime” and “Reporter”. Sensitive attributes such as “Names” and
“Date of Birth” were removed during pre-processing. Quasi-identifiers which
more closely match the k-anonymity requirement for CG-Kanon were gener-
ated before the anonymization process. This was done by generalizing attributes
to the highest node in the generalization hierarchy (tree) for ECs that do not
meet the k-anonymity requirement. We qualitatively assessed the anonymized
data produced by the CG-Kanon and the CG-Diverse algorithms, by consider-
ing aspects such as information loss, classification accuracy and the impact of
the weighting scheme on linking and inference attacks. Throughout the discus-
sion of the results we refer to an anonymization based on the weightings of the
quasi-identifiers (QIDs) used during the anonymization. This will be denoted as
AwAge

: SwSuburb
: RwReporter

. For example where equal weights were assigned
to the QIDs this will be denoted as an A1 : S1 : R1 anonymization, similarly
where we use A10 : S5 : R1 weights of 10, 5, and 1 were used for the Age,
Suburb, Reporter attributes respectively (Fig. 1). kconstant was set to 5 for all
results on CG-Kanon anonymization. Our minimum crime severity level for the
data was set to 3 and in this case, kmin = 5. For CG-Diverse, we set our lowest
diversity level to 3 for all anonymization runs as a standard minimum privacy
level. Since on average, the lower severity crimes were located in such ECs,
this was acceptable. All algorithms were allowed to run for 30 min after which
the algorithm was stopped. Pre-experiment sampling revealed that running for
shorter periods, say 15 min resulted in high severity penalties and information
loss for larger ECs, with only between 3–6 % of tuples meeting the minimum
anonymity level. Running for much longer resulted in better success rates, but
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at the price of time. Once stopped the anonymized data was checked for compli-
ance with the desired level of privacy. Tuples not satisfying the privacy criteria
on termination were processed further according to the respective CG-Kanon
and CG-Diverse algorithms (Fig. 1). Figure 2 shows the CG-Kanon algorithm
classifying data using ECs only with no severity weighting support. We note
that the crimes are clustered around smaller sized ECs which is good for protec-
tion against inference attacks, but bad for information loss. When the severity
penalty is applied, we note as shown in Fig. 3 that more severe crimes are clas-
sified in larger ECs but this has the caveat of introducing inferential disclosure.
For instance, from Fig. 3 one can see directly that more severe crime has a higher
frequency with “Murder” being as high as 31 %. We address this with the CG-
Diverse scheme. As shown in Figs. 4 and 5, based on the A1 : S1 : R1 weighting
and an average severity level of 11, the global diversity and average severity of
each EC is evaluated before suppressing the QIDs. When compared to Figs. 2
and 3, we note that the average diversity in CG-Kanon varies between 10 % and
30 % while that of CG-Diverse is much lower at 9 % to 14 % and consequently
lowers inferential risk.The desired lower frequency (i.e. higher diversity) for more

Fig. 1. Classification accuracy of CG-Kanon and CG-Diverse

Fig. 2. Severity impact on dataset (no severity weighting)
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Fig. 3. Impact of severity weighting on privacy

Fig. 4. Sensitive attributes frequency for CG-Kanon using A1:S1:R1

severe crimes is evident in CG-diverse whereas in CG-Kanon there is no such cor-
relation. More severe crimes (Rape and Murder) in this case actually have lower
average diversity and consequently less risk of inferential exposure. In addition
we see the deviation from the mean frequency for more severe crimes is lower
as severity increases. So not only does the average diversity increase as crime
severity increases but the variance decreases as well. This gives us more certainty
that more severe crimes will be less vulnerable to inference attacks. Finally, we
note that l-diversity guarantees at least k-anonymity where k = l. The lowest
diversity of 3 may appear weak from the privacy perspective when compared
to the global diversity of 11 but it is unlikely, practically speaking, that severe
crime (sensitive data) will be included in such lower diversity ECs. For instance,
if we revisit our earlier results for CG-Kanon where the most serious crime
(“Murder”) was in an EC of size 90 and still only achieved a 3-diversity. Figures 6
and 7 show the aggregated information losses for different weighting schemes
after termination of the algorithm. We selected three weighting schemes to mon-
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Fig. 5. Sensitive attributes frequency for CG-Diverse using A1:S1:R1

Fig. 6. Information loss for CG-Kanon

itor how the algorithms perform when attributes with varying granularity are
weighted differently. For instance the A10 : S5 : R1 scheme overweights the
Age attribute which is highly granular and under weighs the Reporter attribute,
while A1 : S5 : R10 test the opposite scenario and A1 : S1 : R1 is equivalent
to having no weighting scheme. The marginal increase in information loss for
CG-diverse relative to CG-Kanon seems quite acceptable given the improved
privacy provided by CG-Diverse. For our results the information loss across the
three weighting schemes was on average 7 % higher for CG-diverse. However, this
reduced data utility is acceptable given our desire for better anonymized data
privacy. One further insight relates to the number of parameters that are used
for the fitness function in selecting QIDs. We see from Figs. 8 and 9 that informa-
tion loss for CG-diverse is a much lower proportion of its starting value than for
CG-Kanon. This is attributed to the fact that CG-Kanon searches for solutions
that minimize both the information loss and the severity penalty, in addition to
satisfying k-anonymity. While CG-diverse only minimizes information loss and
endeavours to meet the diversity requirement. The additional parameter (sever-
ity penalty) for CG-Kanon increases the search space and reduces the efficiency
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Fig. 7. Information loss for CG-Diverse

Fig. 8. Information loss reduction versus time (CG-Kanon)

Fig. 9. Information loss reduction versus time (CG-Diverse)

of the algorithm. For instance, at termination the reduction in the initial infor-
mation loss for A10 : S5 : R1 in CG-diverse (Fig. 9) was 74 % compared to 55 %
for CG-Kanon (Fig. 8).

5 Conclusions

We presented two algorithms namely, CG-Kanon and CG-diverse that aug-
ment the standard k-anonymity and l-diverse algorithms to facilitate automatic
classification and anonymization of data. In particular, we considered crime data
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because it contains a large volume of sensitive data and is vulnerable to linking
and inferential attacks. To match privacy with utility, we used a random sam-
pling approach without replacement so, historical released reports were excluded
from being selected in subsequent releases. The sampling approach also offers
the advantage of reduced computational complexity and therefore runtime for
our algorithms which is a plus for use in computationally constrained environ-
ments. To reduce information loss, we also used a fitness function to improve
classification accuracy, and privacy. Our results demonstrate that CG-diverse
incurs an average information loss of 7 % over CG-Kanon, but with a diversity
of between 9–14 % in comparison to 10–30 % CG-Kanon. So, we can conclude
that, since CG-Diverse offers anonymity levels that are at least equal to CG-
Kanon’s, the percentage of information loss incurred does not significantly affect
query response accuracy and in addition, provides stronger privacy guarantees
than CG-Kanon.

Possible avenues for future work include evaluating CG-Kanon and CG-
Diverse on de facto anonymization benchmarks such as the Adult’s census
dataset from the UC Irvine machine learning repository. Additionally, eval-
uations of robustness to other known attacks against k-anonymization and
l-diversity will be useful for practical purposes. Finally, we should also consider
parametrizing the t-closeness model for better performance under constrained
conditions as an interesting candidate for overcoming the drawbacks of CG-
Kanon and CG-Diverse.
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