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Abstract: In the world of football, performance analytics about a player’s skill level and the overall tactics of a match are
supportive for the success of a team. These analytics are based on positional data on the one hand and events
about the game on the other hand. The positional data of the ball and players is tracked automatically by
cameras or via sensors. However, the events are still captured manually by human, which is time-consuming
and error-prone. Therefore, this paper introduces an approach to detect events based on the positional data
of football matches. We trained and aggregated the machine learning algorithms Support Vector Machine,
K-Nearest Neighbors and Random Forest, based on features, which were calculated on base of the positional
data. We evaluated the quality of our approach by comparing the recall and precision of the results. This
allows an assessment of how event detection in football matches can be improved by automating this process
based on spatio-temporal data. We discovered, that it is possible to detect football events from positional data.
Nevertheless, the choice of a specific algorithm has a strong influence on the quality of the predicted results.

1 INTRODUCTION

In recent years the use of spatio-temporal data in-
creased strongly in various areas. Especially in the
highly competitive sport sector new insights gained
by positional information of players – tracked by dif-
ferent systems and methods during a game – can have
a major impact on the training and tactic of a team.
For professional football clubs performance analysis
is an integral part of the coaching process [Carling
et al., 2005]. In the context of performance anal-
ysis in football, many analyses are based on manu-
ally tracked and chronological ordered lists of game
events on the one hand or the positional informa-
tion of the players on the other hand [Mackenzie and
Cushion, 2013]. For that reason, the significance and
accuracy of analysis strongly correlates with the qual-
ity of the provided data. Detecting events manually is
time-intensive and error-prone task. Based on the data
of matches of the German Bundesliga, we discovered
that the events are not time-synchronized with the po-
sitional information and sometimes associated with
the wrong player.

Therefore, in this paper we present the imple-
mentation and evaluation of algorithms to automati-
cally detect events in the positional data of football
matches. We focused on following major events:
passes, receptions, shots on target and clearances in
this paper, since these ones are basic events, which
have a high probability to occur more often during a
match. We computed different features from the raw
positional data of the ball. Based on these features,
we detected event candidates by using different ma-

chine learning approaches – the Support Vector Ma-
chine (SVM), K-Nearest Neighbors (KNN) and Ran-
dom Forest (RForest) classification. To be able to
train these supervised learning techniques, we also
created manually a gold standard based on the po-
sitional data and video data of the football matches.
Additionally, we evaluated the three machine learning
approaches by the recall and precision of the results.

The paper is organized in the following structure.
In Section 2 we take a look at related work. After-
wards, we explain the properties of the provided data
and introduce the created gold standard. In following
section, we describe how the features are computed
based on the positional data and Section 5 shows
how we used these features to train different machine
learning approaches in order to detect events. We also
provide an evaluation about the quality of our results
(see Section 6). Before we conclude the paper in Sec-
tion 8, we give an overview about future work.

2 RELATED WORK

In the past, various projects focused on the ex-
traction of spatio-temporal data out of video record-
ings [Mackenzie and Cushion, 2013, Barnard et al.,
2003, Beetz et al., 2009]. Another approach to gather
positional information during football games and ex-
ercises sessions are sensor-based systems like the
RedFir system [von der Grün et al., 2011]. Based
on this data Gal et al. [Gal et al., 2013] developed
a system to detect shots on target. Also Madsen et
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al. [Madsen et al., 2013] focused on this event in con-
nection with DEBS 2013 Grand Challenge [Christo-
pher Mutschler et al., 2013]. Jiang and Yin [Jiang
and Yin, 2015] presented an algorithms that uses deep
convolutional neural networks to recognize events in
the data provided by wearable sensors. A classifica-
tion of human activities based on support vector ma-
chines was presented by Anguita et al. [Anguita et al.,
2012]. Peterek et al. [Peterek et al., 2014] also fo-
cused on the detection of human activities, but they
used an approach based on the random forest algo-
rithm.

3 DATA FOUNDATION

As mentioned before, there are various providers
of spatio-temporal data for professional football
games. The quality, granularity, and accuracy of
the data vary between different competitors and also
strongly depend on the used tracking technology. The
provided data sets typically consist of the positional
information of the players and the ball, the manually
tracked list of game events as well as some meta data
about the teams and players. In this paper, we fo-
cus on data of games of the German Bundesliga. The
range of the two-dimensional coordinates goes from
goes from �52.5 to 52.5 for x and the data range
of y goes from �34 to 34 (for pitches of the size
of 105m ⇤ 68m). Since the pitch size is not exactly
defined, these numbers can differ for other stadiums.
The center of the pitch has the coordinates (0,0). The
position values can exceed these limits. This indicates
that the ball went out of bounds. Figure 1 shows a
football pitch and the coordinates of its bounds.
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(-52.5|-34.0)

Figure 1: Football pitch with dimensions of bounds

The list of game events includes the timestamp,
event type and involved players. All events are clas-
sified in the categories pass, shot on target, neutral
contact, clearance, duel, foul, offside, caution, and

substitution. Several events, such as fouls, cautions
or substitutions, can not be detected just by the posi-
tional data of the ball and players. They also depend
on other information, e.g. the signals of the referee.
Additionally, the events are not synchronized with the
positional information. The delay can be up to several
seconds. To evaluate and train the supervised machine
learning algorithms, we created manually a gold stan-
dard based on the video recordings of the games and
by tacking into consideration the acceleration values
of the ball. The gold standard includes the following
three game sections:

• Set A Berlin vs. Mainz
Season 2014/15, Time: 00:00 - 03:08

• Set B Berlin vs. Mainz
Season 2014/15, Time: 25:00 - 31:42

• Set C Berlin vs. Braunschweig
Season 2013/14, Time: 70:00 - 73:20

From the selected sections we excluded the times,
when the ball was out of bounds or the game was
paused. Afterwards we compared the gold standard
with the provided event list. We were able to find 121
out of 194 (62.4%) matching events, within a time
period of 2 seconds and with the same event type as
our event. These events had an average time delay
of 0.77 seconds. As a next step we examined the
assigned player for these events. For the matched
events, 18 out of 121 (14.9%) players were assigned
wrong.

Table 1: Tagged events for gold standard
Set A Set B Set C Total

Pass 49 36 50 135
Reception 17 17 12 46
Clearance 0 5 1 6
Shot on Target 2 3 2 7
Total Events 68 61 65 194
Played Time 3:08 min 6:42 min 3:20 min 13:10 min
Excluded Time 0:58 min 1:49 min 1:36 min 4:23 min
Total Time 2:10 min 4:53 min 1:44 min 8:47 min

4 FEATURE COMPUTATION

Events in football matches are characterized by
multiple features of the tracked objects. These ob-
jects move on the football pitch and influence each
other. Events occur when one or multiple features
show a specific value or change at the same time. In
this section we present the definition of the features
we implemented. All features are computed based on
the positional data described in the previous section.
The positional data is received per tracked object in



an 2-by-n matrix where n is the number of collected
data points in a time period. Each column vector rep-
resents the position of the object o at time t.

Poso,n =

✓
xo,t1 xo,t2 · · · xo,tn
yo,t1 yo,t2 · · · yo,tn

◆
(1)

For computing the features we used the Python
framework Theano [Bergstra et al., 2010]. It pro-
vides several functionalities such as transparent use of
the GPU. Theano also offers symbolic differentiation.
This allowed us to define the features in a functional
way and defer the execution. Due to the shape of the
positional data, we were able to use convolution and
other matrix operations to compute the features which
depend on multiple data points efficiently.

We used the three types of convolution kernels to
combine adjacent values. The first one computes the
difference of two consecutive values in a row vector
(kerA). The second kernel computes the sum of two
consecutive values in a row vector (kerB) and the third
kernel computes the sum of two consecutive values in
a column vector (kerC).

kerA =
�
1 �1

�
kerB =

�
1 1

�
kerC =

✓
1
1

◆

(2)

We can derive the following definitions from the
received positional data. The position of object o at
time t is defined as p(o, t). Whereas the horizontal
position of object o at time t is p1(o, t) = px(o, t) and
the vertical position of object o at time t is p2(o, t) =
py(o, t). The difference d between two consecutive
data points equals the movement of an object in 10�1

seconds. This indicates the direction of the object o at
time t1:

d(o, t1) = p(o, t2)� p(o, t1) with t2 = t1 +1 (3)

We used kerA to compute the direction of an ob-
ject. The following features will mainly focus on the
position of the ball. But they can easily be applied to
other objects.

4.1 Velocity

It is possible to reuse the direction of the object in
order to determine the velocity of an object. Due to
the provided data format we multiply the length of the
direction vector by 10 to retrieve the unit m⇤ s�1. For
velocity computation we used kerB. The velocity v of
object o at time t is defined as followed:

v(o, t) = |d(o, t)|⇤10 (4)

4.2 Acceleration

With the velocity computed, we can now take the dif-
ference of two consecutive velocity values to get the
acceleration values. The result unit will automatically
be m ⇤ s�2. For computing the acceleration kerA is
used. The acceleration a of object o at time t2 is de-
fined as followed:

a(o, t1) = v(o, t2)� v(o, t1) with t2 = t1 +1 (5)

4.3 Acceleration Peaks

Due to the sampling rate of 10 Hz it can occur that
the acceleration of an object is captured in multiple
spatial data point. Therefore, we aggregated two con-
secutive values in order to find the real acceleration.
The aggregation for maximum and minimum values
has to be done separately. We ignored negative values
for computing maximum peaks and positive peaks for
computing minimum peaks by setting them to 0. In
this way a not existing acceleration peak is represent
with the value 0. We used kerC to determine acceler-
ation peaks. The maximum and minimum peak value
- amax and amin - of object o at time t2 are defined in
the following way:

amax(o, t2) = Â
x2{t1,t2}

max(0,a(o,x)) with t2 = t1 +1

(6)

amin(o, t2) = Â
x2{t1,t2}

min(0,a(o,x)) with t2 = t1 +1

(7)

Furthermore, we prevented that acceleration peaks
are detected at two consecutive timestamps. An accel-
eration peak is considered as real if there are no higher
acceleration peaks at adjacent timestamps. Therefore,
real acceleration peaks aPreal are defined as followed:

amaxreal (o, t2) =

8
>>><

>>>:

amax(o, t2) if amax(o, t2)> amax(o, t1)
^amax(o, t2)> amax(o, t3)
with t1 +1 = t2 = t3 �1

0 else
(8)

aminreal (o, t2) =

8
>>><

>>>:

amin(o, t2) if amin(o, t2)> amin(o, t1)
^amin(o, t2)> amin(o, t3)
with t1 +1 = t2 = t3 �1

0 else
(9)



4.4 Direction Change

While objects move on the football pitch they will
eventually change their direction. A linear movement
results in no significant change of the direction fea-
ture. Whereas rapid movement tend to have a notable
change of direction. We computed the change of di-
rection as visualized in Figure 2.
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Figure 2: Direction change of object

Given the three position data points P1 = p(o, t1),
P2 = p(o, t2) and P3 = p(o, t3), the first direction vec-
tors are defined as d1 = d(o, t1) and d2 = d(o, t2). The
angle created by d1 and d2 is the change of direction
dc1. Possible values for direction changes are in the
range from 0 to 180.

To determine the direction change value, the ar-
ccos function is applied to the quotient of the scalar
product of d1 and d2 and the product of length of d1
and d2. The direction change dc of object o at time t2
is defined in the following way:

dc(o, t2) = arccos
✓

d(o, t1)⇤d(o, t2)
|d(o, t1)|⇤ |d(o, t2)|

◆
(10)

The direction change is computed by using kerA
and kerC as well as the Hadamard product.

4.5 Distance to Target

The players try to score in one of the goals on the
pitch. These goals are considered as possible targets.
While playing the object will move towards one of
the targets. The corresponding target is chosen with
regards to the horizontal movement of the object. This
is independent of the position of the object. If the
object moves to the left side, the left goal is assigned
as target and vice versa. The reference point g of a
target is located middle of the goal line and is defined
as followed:

g(o, t) =
✓

sign(dx(o, t))⇤52.5
0

◆
(11)

Figure 3 displays different situation and the dis-
tances to the target. The four position data points
P1 = p(o1, t1), P2 = p(o2, t2), P3 = p(o3, t3) and P4 =
p(o4, t4) and the two targets T1 =

��52.5
0

�
and T2 =�52.5

0
�
. The arrow at each position data point repre-

sents the approximate direction of the respective ob-
ject at the same time. The objects at P1 and P2 have
a positive horizontal movement (dx(o, t)> 0). There-
fore the corresponding target for these two point is
T2. The object P3 has a negative horizontal movement
(dx(o, t)< 0). Its target is T1. The object at P4 has no
horizontal movement (dx(o, t)== 0). This is a special
case where no target can be determined. The distance
to target feature will return in f inity.

P3

P1

P2

P4

T2
T1

Figure 3: Distance for object to target

In cases where a target can be determined, the dis-
tance to target value is equal the length of the vector
subtraction of the current point of the object and the
position of its target. We used kerA and kerC for the
distance to target computation. The distance to target
value dt for object o at time t is defined in the follow-
ing way:

dt(o, t) = |p(0, t)�g(o, t)| (12)

4.6 Cross on Target Line

As discussed in the previous subsection, the objects
on the pitch are alternately targeting one of two tar-
gets. Beside the distance of the object to the target,
another feature is the proximity of the movement to
the target. We defined this as the distance from the
target to the point where the object will cross the goal
line assumed that the object will maintain its direc-
tional movement.

Figure 4 shows the position P1 = p(o, t1) of ob-
ject o and its directional movement d1 = d(o, t1). If
the object continues its movement without changing
the direction, it will cross the goal line at C1. The dis-
tance between the target T2 and C1 is the measurement
for this feature.
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Figure 4: Cross on target line of object

To compute the cross target line feature, we had to
solve a linear equation (cf. Equation 13). A multiple
of the direction vector is added to the position of the
object until it reaches the goal line at any point. The
vertical difference to the target point is the desired dis-
tance. The cross target line feature ctl for object o at
time t is defined as followed:

✓
gx(o, t)

ctl

◆
= p(o, t)+ s⇤d(o, t) (13)

Repositioned for ctl:

ctl(o, t) = p2(o, t)+d2(o, t)
g1(o, t)� p1(o, t)

d1(o, t)
(14)

5 EVENT DETECTION

The most central object of a football match is the
ball. All players try to interact with it. The ball is
also the object that shows the most and highly rapid
movements on the pitch. Therefore, we computed all
features described in Section 4 for the ball. With all
features we created a vector for every time t contain-
ing all corresponding feature values.

Velocity and acceleration describe the current mo-
mentum. Acceleration peaks were introduced due to
the provided data schema, since they are a strong in-
dicator for interactions with the ball. The direction
change feature covers ball interactions with high in-
tensity (e.g. passes) as well as ball interactions with
little intensity (e.g. ball touches during dribblings).
The distance to target is important to distinguish be-
tween shots on target and clearances and is an indica-
tor for the likelihood of a shot on target in comparison
to a pass. The cross on target line feature represents a
measurement whether a shot will hit the target or not.
Each vector describes an instant of the football match
and can represent a certain event. Depending on the
type of the event, features become more or less impor-

tant and have characteristic values. A naive approach
to classify events would be:

• Pass: The ball has an acceleration peak with a
minimum value and/or shows a significant direc-
tion change.

• Reception: The ball shows negative acceleration
peak or direction change. Afterwards the ball
stays close to a specific player.

• Shot on target: The ball is accelerated with a
medium to high value and a direction change.
Shots on the target occurs most likely within a
short distance to target and they are aiming for tar-
get.

• Clearance: The ball has a high positive accel-
eration peak and direction change. Clearances
mostly happen to prevent risky situations near to
the own goal line. Therefore, they have a high
distance to target.

To determine a exact differentiation between
the events, we selected three supervised classifica-
tion machine learning algorithms based on related
work and common approaches: Support Vector Ma-
chine, K-Nearest Neighbors and Random Forest. We
used the implementations of the Python package
Sklearn [Pedregosa et al., 2011] to define the follow-
ing output classes: no event, pass, reception, shot on
target and clearance.

5.1 Machine Learning Algorithms

In the following section we explain the three machine
learning algorithms we used and their configuration.

The Support Vector Machine [Cortes and Vapnik,
1995] approach tries to divide the data points in a
space into categories based on the provided training
data. Thereby the dividing gap has to be as wide as
possible. SVMs are effective in a high dimensional
space, which is provided by our vector of features val-
ues. We used SVM with a linear kernel. This results
in a linear divider gap. Furthermore, we used the pro-
vided option to determine the weight of each output
class automatically. This prevents an over-weighting
of classes with a high frequency (e.g. no events). We
did not limit the number of iterations. The K-Nearest
Neighbors algorithm [Altman, 1992] determines the
output class by a majority vote of the closest neigh-
bors of a data point. Our results showed that a con-
figuration with k = 3 will return the best results. A
Random Forest approach [Breiman, 2001] consists
of multiple decision trees. These decision trees are a
very similar implementation to the naive event classi-
fication we present earlier in this section. The RForest



increases the predictive accuracy and controls over-
fitting. In order to add more over-fitting prevention,
we limited the number of decision trees to 10. Each
decision tree has a maximal depth of 4. As describe
for the SVM algorithm, we use the provided option
to automatically determine the weight of the output
class.

5.2 Event Candidate Aggregation

The three classifier algorithms return their prediction
for the test data set. In order to increase the accuracy
we allow an aggregation of these results. A customiz-
able weight is assigned to each classifier algorithm
for each event type. In addition every event type has a
minimum score. If the classifier predicted an event at
a timestamp, the weight is added to the score of this
event at this timestamp. As a final result only events
with a score equal or greater the minimum score are
considered as detected events. A possible configura-
tion for this would be the weight 0.4 for SVM and
RForest and weight 0.2 for KNN with a minimum
score of 0.8 for all event types. With this configura-
tion only events detected by the SVM and the RForest
algorithm are accepted.

This allows us to add more prediction algorithms
to our implementation and integrate their results, de-
pending on how precise or complete their results are
for certain event types.

6 EVALUATION

In the following section we show an evaluation of
the three machine learning approaches we described
in Section 5. We assessed their quality by precision
and recall, which are defined as followed:

precision =
true positives

true positives+ f alse positives
(15)

recall =
true positives

true positives+ f alse negatives
(16)

For the detailed evaluation of the results we fo-
cused on the event types to passes and receptions. We
also introduced the overall type of ball touches. Our
assumption was, that all four event types have simi-
lar aspects for their feature characteristics. Therefore,
this event type represents the ability of an algorithm to
distinguish between an event occurrence and an event
absence. The input set is the union of all four initial
event types.

We evaluated different data sets, which are de-
scribed in Section 3. On the one hand, we trained and
tested on the same data set. We learned from 90% of
the data and tested on 10% of the data. We split the
data set randomly 100 times and calculated the arith-
metic mean for the precision and recall of all itera-
tions. The repetition of the random split proceeding
should ensure that our results are statistically compre-
hensible and deviations are mitigated. On the other
hand, we trained the events from one set and tested
it on another. We wanted to examine if the results
change when time has passed during a game or when
it is another game with different players. For this vari-
ant just one iteration was needed, since no random
split was processed.

Figure 5 shows the precision and recall for passes,
receptions and ball touches tested within the same
data sets. The dashed lines inside the diagrams also
indicate the value of the f -measure ( f 1 score), which
is the harmonic mean of precision and recall:

f = 2⇤ precision⇤ recall
precision+ recall

(17)

In Table 2 we compare the algorithms quality by
the arithmetic means of the precision and recall for
the prediction within the data sets. It turns out that
the KNN algorithm offers results with a quite low
quality. The recall never exceeds 10%. The preci-
sion for passes and ball touches is between 32% and
43.8%. Both precision and recall are 0% for recep-
tions. The SVM and RForest results are close to each
other and have a noticeable higher recall than KNN.
The recalls are between 59.9% and 76.7%, except for
RForest receptions where it is 43.6%. The precisions
are between 35.1% and 38.7%. An exception is again
receptions, where the precision is between 5.9% and
8.9%.
Table 2: Algorithms quality for prediction within data sets
Algorithm Event Type Precision Recall F-Measure

KNN
pass 0.320 0.088 0.138
reception 0.000 0.000 0.000
ball touch 0.438 0.095 0.156

SVM
pass 0.387 0.641 0.483
reception 0.059 0.642 0.108
ball touch 0.305 0.716 0.428

RForest
pass 0.354 0.767 0.484
reception 0.089 0.436 0.148
ball touch 0.351 0.595 0.442

The precision and recall for the prediction across
data sets can be seen in Table 3, which is the summa-
rization of Figure 6. The magnitudes and fluctuations
of the results are similar to the prediction within data
sets results, which were explained before. In sum-
mary, the quality is just slightly lower than previously.



(a) Pass (b) Reception (c) Ball touch
Figure 5: Event recognition within data sets

(a) Pass (b) Reception (c) Ball touch
Figure 6: Event recognition across data sets

The overall precision is around 1% lower and the re-
call 9% lower. This could be caused by the already
mentioned effect, that different players show a differ-
ent skill and players also get exhausted over time.
Table 3: Algorithms quality for prediction across data sets
Algorithm Event Type Precision Recall F-Measure

KNN
pass 0.356 0.055 0.095
reception 0.000 0.000 0.000
ball touch 0.422 0.076 0.128

SVM
pass 0.398 0.666 0.498
reception 0.031 0.327 0.057
ball touch 0.272 0.651 0.383

RForest
pass 0.311 0.727 0.435
reception 0.057 0.124 0.078
ball touch 0.373 0.544 0.443

Finally, we aggregated the results for the predic-
tion across data sets, as explained in Section 5.2.
Since the precisions for the different event types are

nearly the same for the three algorithms (cf. Ta-
ble 3), we used as a configuration for the aggrega-
tion a weight of 0.4 for every algorithm and a mini-
mum score of 0.8. Therefore, two out of three algo-
rithms have to find an event at a given timestamp, in
order to confirm this event. Table 4 shows that we
increased the f -measure for passes and ball touches
compared to all three algorithms between 1.6% and
41.9% (17.1% average). We also increased the f -
measure for receptions compared to the KNN (6.7%)
and SVM (1%) algorithm, but decreased it about 1%
for RForest.

To summarize, our results show that it is possi-
ble to detect football events from positional data with
our approach based on machine learning. Also the
choice of a specific algorithm can have an extensive
impact on the quality of the predicted results. The



Table 4: Aggregation quality for prediction across data sets

Event Type Precision Recall F-Measure
pass 0.426 0.647 0.514
reception 0.047 0.119 0.067
ball touch 0.372 0.713 0.489

SVM and RForest algorithms showed reasonable re-
sults, whereas the KNN algorithm failed to convince
us for this use case. With the aggregation of the differ-
ent algorithms the results could be further improved.
Therefore, a valuable configuration of the weights and
the minimum score is needed. Nevertheless, there is
still potential for optimizations.

7 FUTURE WORK

In this section we face discovered issues and sug-
gest proceedings to further improve and extend our
work. The missing z coordinate (height information)
is necessary to calculate features such as velocity, ac-
celeration and direction change correctly, since the
ball is moving in a three-dimensional space. When
the ball is out of bounds or the game is stopped the
positional data should be ignored, because the data is
inappropriate to draw conclusions about that. We also
discovered problems with the distinction of receptions
that occur directly before a pass, which happens when
a player receives the ball and immediately shoots it to
another player.

To extend our approach it would be possible to
train the features for every player separately, since ev-
ery player has a different skill and shows its own be-
havior. It is also possible that a player changes its
behavior between matches or even during a match,
when a player gets exhausted. This would make it
even more challenging to classify the different event
types. To validate an event candidate it would be an
extension to integrate what is happening before and
after the event time and what the players around the
event position are doing. We focused mainly on the
moment of an event identified by the features of the
ball, but probably more information can be gathered
this way.

8 CONCLUSION

In this paper, we proposed to detect events from
positional data of football matches, in order to replace
the error-prone and time-consuming task of captur-
ing these events manually. We presented a supervised

machine learning approach that classifies compound
football on base of different features, which are com-
puted from positional data. To calculate those features
efficiently for over one million tracking events per
match, we used matrix operations, particularly convo-
lution, and optional GPU features. We used the Sup-
port Vector Machine, K-Nearest Neighbors and Ran-
dom Forest classification algorithms to recognize the
event classes of passes, receptions, shots on target and
clearances in our self-captured gold standard. Addi-
tionally, we enhanced the approach with a customiz-
able aggregation algorithm, to be able to weight the
outcome of the algorithms for different event types.

We evaluated the three algorithms by their qual-
ity of precision and recall. Compared to KNN algo-
rithm, the SVM and RForest algorithms showed rea-
sonable results with a precision of 31.1% up to 39.8%
and a recall of 66.6% up to 72.7% for passes. Recep-
tions seemed to be difficult to distinguish from passes
for the classification algorithms, which is why we re-
ceived lower results for them. We further improved
the results with the aggregation of the different algo-
rithms and increased the f -measures with an average
of 12.1% for all event types compared to the three
algorithms. To improve our approach for a practi-
cal use, we showed different ideas for future work.
In conclusion, our results showed that it is possible
to detect football events from positional data, but the
choice of a specific algorithm can have an extensive
impact on the quality of the predicted results.
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