
MalRank: A Measure of Maliciousness in
SIEM-based Knowledge Graphs

Pejman Najafi
Hasso Plattner Institute
pejman.najafi@hpi.de

Alexander Mühle
Hasso Plattner Institute
alexander.muehle@hpi.de

Wenzel Pünter
Hasso Plattner Institute

wenzel.puenter@student.hpi.de

Feng Cheng
Hasso Plattner Institute
feng.cheng@hpi.de

Christoph Meinel
Hasso Plattner Institute
christoph.meinel@hpi.de

ABSTRACT
In this paper, we formulate threat detection in SIEM environments
as a large-scale graph inference problem. We introduce a SIEM-
based knowledge graph which models global associations among
entities observed in proxy and DNS logs, enriched with related
open source intelligence (OSINT) and cyber threat intelligence
(CTI). Next, we propose MalRank, a graph-based inference algo-
rithm designed to infer a node maliciousness score based on its
associations to other entities presented in the knowledge graph,
e.g., shared IP ranges or name servers.

After a series of experiments on real-world data captured from
a global enterprise’s SIEM (spanning over 3TB of disk space), we
show that MalRank maintains a high detection rate (AUC = 96%)
outperforming its predecessor, Belief Propagation, both in terms of
accuracy and efficiency. Furthermore, we show that this approach
is effective in identifying previously unknown malicious entities
such as malicious domain names and IP addresses. The system
proposed in this research can be implemented in conjunction with
an organization’s SIEM, providing a maliciousness score for all
observed entities, hence aiding SOC investigations.

CCS CONCEPTS
• Security and privacy → Intrusion detection systems; Malware
and its mitigation; • Information systems→ Data mining.

KEYWORDS
Big data analytics in security, graph inference, graph mining, mali-
cious domain detection, SIEM

ACM Reference Format:
PejmanNajafi, AlexanderMühle,Wenzel Pünter, Feng Cheng, and Christoph
Meinel. 2019. MalRank: A Measure of Maliciousness in SIEM-based Knowl-
edge Graphs. In 2019 Annual Computer Security Applications Conference
(ACSAC ’19), December 9–13, 2019, San Juan, PR, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3359789.3359791

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’19, December 9–13, 2019, San Juan, PR, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7628-0/19/12. . . $15.00
https://doi.org/10.1145/3359789.3359791

1 INTRODUCTION
The majority of today’s medium to large sized organizations collect
event logs generated by different components on the organization’s
premises. These event logs are shipped to a centralized system
known as Security Information and Event Management (SIEM).
Traditionally, this collection and storage has been mostly done for
compliance. However, nowadays, the organizations monitor these
events within their Security Operations Center (SOC), constantly
seeking indicators of compromise such as a sudden spike in the
number of requests made to a server, or access to an unknown port.
More and more organizations are starting to realize the value and
the potential of monitoring and analyzing these data.

SIEMs are expected to be the centralized repository for all events
and information. If there is a threat that has managed to success-
fully bypass the perimeters of defense such as firewall, intrusion
detection system, anti-virus, etc., it is quite likely that there are
traces of its activities somewhere in these log-data shipped to the
SIEM system.

There are numerous works introduced over the last decade that
explore these dark data stored within SIEMs to derive security
value, thus introducing concepts such as big data analytics, machine
learning, data mining and pattern matching into cybersecurity [9].

The majority of those works study the application of machine
learning and data mining for log analysis. Whilst machine learn-
ing has been successfully adopted in other domains, it has been
extremely challenging to utilize it successfully in the cybersecurity
domain. This is mostly due to the nature of security data. In con-
trast to other domains, there are no public, unbiased and up-to-date
datasets that can be used to train a successful and realistic ML al-
gorithm. Even if there exists such a perfectly labeled and unbiased
dataset, there are still serious challenges in building a successful
ML algorithm.

ML-based techniques such as anomaly detection assume that
malicious events have a set of features that are distinguishable from
those of legitimate events. However, this is a strong assumption as
the majority of the features within these data are extremely volatile
and temporal. All it takes is for the adversary to change a few
lines to create a new set of values for a particular feature [17, 44].
Consider an ML algorithm that has learned to distinguish between
legitimate and malicious URLs using number of subdomains and
URL’s entropy as distinct features. While this might work at first
within its training set, it is wrong to assume it can classify under
different circumstances, as all it takes, is to replace the URL string
with a slightly altered string to defeat theML classifier. Furthermore,

https://doi.org/10.1145/3359789.3359791
https://doi.org/10.1145/3359789.3359791

if the ML algorithm tries to include broader patterns, the false
positive rates will increase drastically as legitimate events will end
up posing as malicious from the ML algorithm point of view. That
is the biggest challenge in the application of generic data mining
and machine learning algorithms in the security domain. In other
words, ignoring the existence of an adversary that can constantly
adapt to defeat the detection algorithm.

While the features utilized by the majority of previous efforts are
relatively easy to change, there are other features that are harder to
change. Meaningful associations among entities are such features,
we would like to refer to those as global features. Local features
in contrast are those that adhere to a single entity. For instance,
in malicious domain detection, while URL structure as a feature
is local to a single entity, IP address resolution or the ASNs/IP
range mapping are global as they investigate the association among
different entities. This concept of local/global features in regards
to security analytics has been introduced by Khalil et al. [23] and
Najafi et al. [35].

The hypothesis here is that an adversary’s resources are limited.
Therefore reuse of infrastructure is inevitable, e.g., usage of the
same X.509 certificate, pool of IPs for domains, or even Tactics,
Techniques and Procedures (TTPs). The other key intuition is that
an external entity is less likely to be malicious when it is associated
with a large number of benign entities, e.g., if a domain is visited
by the majority of the workstations in a company, it is less likely to
be a malicious domain [11][46]. Unsurprisingly, this reasoning (i.e.,
guilt-by-association [25]) is also adopted in SOC or forensic inves-
tigation. For example, investigating a potential malicious domain
involves the investigation of open source intelligence and threat
intelligence related to that domain, e.g., its registrar, subdomains,
connected domains, TI feed observation, etc. In this regard, while
an association with malicious entities does not necessarily imply
maliciousness, it could be an indicator of a higher risk.

Ultimately, our approach is expected to utilize a small seed of
threat intelligence to detect previously unknown malicious entities,
therefore allowing us to increase the quality and quantity of our
threat intelligence. It is also an effective threat detection techniques
combating: malvertising, exploit kits’ landing pages, rogue ASNs
or registrars, fast-flux networks, domain shadowing, infrastructure
reuse, malicious entities (e.g., malicious domains/IPs, rogue X.509
certificates).

The main distinct contributions of this paper can be summarized
as follows:

• We propose the blueprint for a SIEM-based knowledge graph
(section 2), emphasizing on the most important entities and
relationships observed in DNS and proxy logs and the rel-
evant Open-Source Intelligence (OSINT) as well as Cyber
Threat Intelligence (CTI).

• We introduce, MalRank, a large-scale graph-based inference
algorithm designed to infer maliciousness using the associa-
tions presented in the knowledge graph (section 3).

• We evaluate MalRank on a SIEM-based knowledge graph
constucted from data collected by an international enter-
prise’s SIEM (2-days of proxy, DNS, DHCP logs) enriched
with related OSINT/CTI (IP ranges, ASN, DNS RRs, X.509
certificates) (section 4).

• We provide a comprehensive overview of all related graph-
based inference algorithms particularly in the context of
cybersecurity (section 5 and 3).

2 SIEM-BASED KNOWLEDGE GRAPH
2.1 Event Logs of Interest
SIEM systems within organizations are centralized repositories that
are expected to hold all relevant security-related data. However, the
amount and the variety of the data ingested into these SIEM systems
vary drastically depending on the organization and its dedication
to security practices, regulatory compliance, and analytics. These
can include events and alerts generated by Intrusion Detection
Systems (IDSs), firewalls, proxy servers, VPN servers, mail servers,
workstations, authentication logs, NetFlow, HTTP/HTTPS traffic,
DNS traffic, inventory, etc. Thus, it is important to determine a
scope in which our knowledge graph is bound to.

In this regard for the purpose of this research, we are going to
only focus on proxy, DNS, and DHCP logs.

Due to the fact that web traffic is typically allowed by the most
of firewalls, HTTP, HTTPS, and DNS traffic are extensively abused
by cybercriminals [1, 14] (e.g., bots communication with command-
and-control servers), hence leading to the popularity of proxy and
DNS log analysis in the security domain.

Oprea et al. [36] discuss the set of features extractable from
proxy logs (e.g., domain connectivity, the referrer string, the user-
agent string) that aid in the detection of malicious domains. Ma
et al. [28, 29] address the same problem using URL’ lexical and
host-based features (e.g., number of dots) with the intuition that
malicious URLs exhibit certain common distinguishing features.
Zhang et al. [49] use term frequency/inverse document frequency
(TF-IDF) algorithm to tackle malicious URL detection. Bilge et al. [7]
introduce EXPOSURE, a system that employs large-scale passive
DNS analysis to detect malicious domains using features such as
the number of distinct IP addresses per domain, average TLL, the
percentage of numerical characters, and etc. Antonakakis et al. [4]
propose Notos, a similar system to EXPOSURE while distinguishing
itself by incorporating complementary information such as the
registration, DNS zones, BGP prefixes, and AS information. In a
later research [5] Kopis is introduced, which separates itself from
previous work by analyzing the DNS traffic at the upper level of
DNS hierarchy rather than local recursive DNS servers.

Unlike these efforts which mostly target local features, we focus
on global features extracted from proxy and DNS logs correlated
with DHCP. Figure 1 shows the nodes and relationships extracted,
and table 1 described each relationship.

2.2 OSINT and CTI
We would like to define Open Source Intelligence (OSINT) as any
type of information gathered from publicly available sources (i.e.,
open-source) that provide context to those observed entities ex-
tracted from our SIEM-based data. OSINT has the potential to im-
prove the inference and reasoning about maliciousness of an entity
(e.g., IP range or ASN for an IP). Furthermore would like define
Cyber Threat Intelligence (CTI) as subset of OSINT that can aid
particularly with the threat detection tasks (e.g., list of Indicators
of Compromise such as malicious domains) [12].

RequestedAccessTo

SubDomainOf

(D)omain
fqdn
tiObserved: mal, ben

(M)ac
macAddr:

(U)serAgent
userAgentString

USes

(I)P
ipAddr:
version: ipv4, ipv6

RequestedAccessTo
ResolvesTo

(X)509Cert
fingerprint: md5, sh1, sh256
serialNumber

AssociatedWith

AssociatedWith

Ip(R)ange
cidrRange

(A)S
asNumber

(O)rganization
name: fullText, DN

IssuedBy IssuedFor

AssignedTo BelongsTo

isInRange

NameServerFor MailServerFor

AliasFor

REferedTo

SignedBy

tiObserved: mal, ben

isInRange

Figure 1: Knowledge graph schema, showing the extracted entities and relationships.

Table 1: The Description and the intuition behind the importance of each relationship used in the knowledge graph, as well as the data source
used to extract such relationship.

Relationship Description Intuition Data Source

subDomainOf Dependency between different levels of a Fully Qual-
ified Domain Name (FQDN), e.g., x.example.com, is a
subdomain of example.com

Subdomain abusement (e.g., domain shadowing) is one of the simplest yet effective techniques
utilized by cybercriminals to evade detection [35]

Proxy, DNS

requestedAccessTo HTTP/HTTPS request or a DNS query from a client
work station (MAC address) to/for domain/IP

Infected hosts are more likely to visit various malicious domains whereas user behavior on
benign hosts should result in benign domain access [33]

Proxy, DNS
(correlated with
DHCP)

referedTo Relationship between two domain/IP if one has referred
to the other

The majority of the malware serving networks (e.g., exploit kits, drive-by-download, malvertis-
ing) are composed of a tree-like structure in which the victims are usually redirected through
various hops before landing on the main distribution site [33]

Proxy

uses The user agent used by an endpoint (MAC) for a specific
HTTP/HTTPS query

If malware is trying to disguise itself as an innocent application (e.g., a browser) to reach out
using HTTP, the user agent string might still differ from the major UA used by the workstation

Proxy

resolvesTo DNS resolution of a domain name to an IPv4 address
(DNS A records) or reverse DNS lookups for an IPv4
address (DNS PTR record)

In many cases, if a domain is listed as a malicious, intuitively we could assume that the IP
address it resolves to is also malicious for the duration of that resolution [20, 23, 35, 50]

Proxy, DNS

nameServerFor and
mailServerFor

Delegation of a domain name to a set of name servers
(NS) or mail server (MX)

Infrastructure reuse by cybercriminals DNS

aliasFor Canonical names (CNAME) for a domain domains connected by CNAME records share intrinsic relation and are likely to be in a ho-
mophilic state [39]

DNS

isInRange Relationship between an IP and its IP address space Cybercriminals tend to utilize almost an entire address range for their malicious purpose [30] OSINT: IPR/ASN

assignedTo Relationship between an IP range and its associated
autonomous system (AS)

Malicious domains tend to be hosted on a pool of IPs hosted by specific hosting providers (i.e,
ASs) [4, 23, 30]

OSINT: IPR/ASN

belongsTo Relationship between an AS and the organization re-
sponsible for it

Same organization could be responsible for multiple ASs OSINT: IPR/ASN

associatedWith Association between an X.509 certificate and a DNS
domain/IP, extraxtable from Subject Alternative Name,
or Subject Common [13]

X.509 certificates reuse by cybercriminals. It could be costly and inefficient to register a cer-
tificate for each domain/IP under the attackers’ control, and it is easier to reuse a pool of
certificates

OSINT: X.509

signedBy The validity of the certificate chain extractable from the
chain’s certificates fingerprints

Intended to counter malicious self-signed certificates and rogue intermediate certificates OSINT: X.509

issuedFor Relationship between the subject name (organization)
and the X.509 certificate

Although the Subject’s Distinguished Name (DN) can be a bogus name, it might still be useful
to utilize with the intuition that a rogue organization might have more than one certificate

OSINT: X.509

issuedBy Captures the issuer DN for a X.509 certificate Set of issuer might be preferred by a group of cybercriminals due to an easier validation process
[3], or a compromise [40]

OSING: X.509

Similar to event logs, OSINT and CTI could also pivot endlessly,
therefore, it is important to also define a scope for the related OS-
INT. OSINT Framework1 provides a good overview of all available
OSINT sources, Enaqx2 provides a comprehensive collection of OS-
INT tools and Slatman3 provides a curated list of CTI. Furthermore,
due to the fact that our event logs can reach up to 10 terabyte (TB)
gernerated per day, it is also important to select those OSINT and
CTI which can be collected/crawled at scale. Lastly, we would like
to also distinguish between passive and active collection. We define
active as those that require an active engagement with a server or
an API for the collection, e.g., DNS RRs. While passives are those
that can be collected as bulk without an active engagement (e.g.,
ASN).

Thus for the purpose of this research we limit our OSINT/CTI
to IPRanges, ASN, X.509 certificates, DNS Resource Records, and our
CTI to malicious domains and IPs. Please refer to Figure 1 for the
related nodes and relationships extracted from those OSINT, and
table 1 for the description and importance of each relationship.

3 MALRANK
3.1 Problem Definition and Requirements
At high level, we would like to reason about an entity based on its
association with other entities, with the intuition that malicious
entities tend to share some global properties. In this regard, graphs
are ideal for this task due to their capability to preserve the cor-
relation and association among different entities. That is why we
formulate our problem as a graph-based inference problem. More
specifically,

Given:
• A directed weighted graph G(V ,E) where V corresponds to
the collection of entities (e.g., domains, IPs), and E corre-
sponds to the set of relationships between those entities (e.g.,
resolvesTo).

• A Prior p (label) and prior confidence c defined over V, where
p ∈ {0, 1} and c ∈ [0, 1]. Where p = 0 represents a neutral
node andp = 1 indicates a knownmalicious node. c represent
the confidence in the label, 0 being no confidence ,and 1
absolute confidence in trustworthiness of that label (expected
to be set according to the TI source).

Find:
• Maliciousness score s (MalRank) of a node x , i.e., s(x) ∈ [0, 1].
Higher MalRank score indicates a higher risk.

Graph-based inference has been studied widely in a variety of
domains. Although it is referred to differently depending on the
domain (e.g., influence, diffusion, propagation, classification), at
the core, the problem can be simplified to the inference of nodes’
properties based on their neighbors. In our case, inferring the ma-
liciousness of a node based on the maliciousness of its neighbors.
This is also known as guilt-by-association throughout the literature
[46]. Before providing an overview of the most related algorithms,
it is important to first define our main requirements for our use

1http://osintframework.com/
2https://github.com/enaqx/awesome-pentest#osint-tools
3https://github.com/hslatman/awesome-threat-intelligence/

case that would allow us to better reason about the limitations of
the previous algorithms.

3.1.1 Single Diffused Label. Due to the fact that our graph (de-
scribed in the previous section) is constructed from entities and
relationships observed in an enterprise’s SIEM, it is quite unlikely
that the number of benign and malicious entities are proportional,
i.e., majority of the entities are expected to be benign. This is due to
the fact that the most traffic within an organization is expected to be
benign. That is why it is important for us to consider only one label
(maliciousness). Therefore the algorithm should be able to infer a
maliciousness score for any given node based on the maliciousness
scores of its neighbours while taking into consideration the number
of neutral neighbours to reduce the maliciousness, i.e., if a node
has a high degree with a large number of neutral neighbours, it is
less likely to be malicious The intuition here is that, if an entity is
observed many times, it is less likely to be a malicious entity (e.g.,
a malicious domain is more likely to be accessed by a few number
of enterprise’s workstations rather than the majority of them [32]).
This requirement would also allow us to eliminate the super node
issues (nodes with a high degree, e.g., content delivery networks,
web hosting services, or advertising networks).

3.1.2 Directed Weighted Propagation. The next important require-
ment is the ability to define edge weights. Since the knowledge
graph is expected to consist of various types of nodes and edges,
it is important that the algorithm is capable of considering how
maliciousness should be propagated through a particular associ-
ation. For instance, a resolvesTo edge should have a much higher
influence than requestedAccessTo. Furthermore, although the ma-
jority of the relationships described in the previous section can be
treated as bidirectional edges, the algorithm should be able to not
only incorporate edge directions but also different edge weights
on different directions. This would allow one to have much more
control over not only the influence weights but also its directions.
This is important as it can stop an adversary from defeating the
algorithm by connecting to a large number of neutral nodes (e.g.,
referring to large number of benign domains, or adding CNAME
record pointing to other legitimate domain). Although it’s quite un-
likely that this is happening at the moment, one must also consider
this as part of the threat modeling.

3.1.3 Maliciousness Influence Maximization. Maliciousness should
be treated like a disease, i.e., the more malicious a node is, the higher
its influence. This ensures that the maliciousness does not disap-
pear within a graph of extreme bias towards benignness. Thus, the
algorithm should have a mechanism to adjust the edge weights de-
pending on the source’s maliciousness score, i.e., if a node gets more
malicious, the edge weights on the edges connecting that node to
others should be increased accordingly thus allowing maliciousness
to be propagated more effectively, and the opposite.

3.2 Background: Graph-based Inference
Algorithms

As mentioned, there are various graph-based inference algorithms
applied in different domains. While investigating all related graph-
based inference algorithms in details is beyond the scope of this
paper, it is still important to mention the influential related work

https://github.com/enaqx/awesome-pentest##osint-tools

Table 2: Related graph-based inference algorithms and their shortcomings for the purpose of threat detection.

Algorithm Description Shortcomings

Belief Propagation (BP) Also known as sum-product, one of the most popular and successful
applications of label propagation used in probabilistic graphical
models, e.g., Bayesian Networks and Markov Random Field. BP
infers a node’s label from some prior knowledge about that node and
other neighboring nodes by iteratively passing messages between
all pairs of nodes in the graph [38, 48]. BP is themost widely adopted
graph based inference algorithm used for threat detection (further
described in section 5).

First, BP is designed to work best with probabilistic graphical models which do
not generally take into consideration the type of nodes/edges nor directions [16].
Second, BP expects a balance among labels which is not the case for us (i.e., extreme
bias toward benignness). Hence, due to the numerical instability of multiplication,
maliciousness ends up disappearing for the majority of the nodes that has a con-
nection to a large number of benign nodes. Consider a node having 3 connection to
neutral nodes with P(xunknown) = 0.5 and 1 connection to a malicious node with
P(xmal) = 1, running BP until convergence will change the score of the node from
originally 0.5 (P(xmal) = P(xben) = 0.5) to P(xmal) = 0.508 , which is clearly, a
low score for such a structure.

Random Walk with Restart
(RWR)

RW-based algorithms emulate random walkers taking steps within
a graph while having a small probability of teleporting to a random
node, rather than following an out-edge. RWR has been successfully
utilized in numerous related setting, e.g., Google’s classic PageRank
[8, 37], TrustRank [26], Distrust Rank [15] and SybilRank [10].

Inability to define different types of nodes and edges, or the ability to introduce
weights on the edges. Although there have been a number of works tackling those
specific issues, e.g., Personalized PageRank [6] and Topic-Sensitive PageRank [19] to
incorporate the node’s context (types), Biased Random Walks, Weighted PageRank
[47] introducing the concept of edge weights, yet RWR are not adaptable for threat
detection. RWR algorithms are designed to be a measure of importance and not
beliefs, and importance is a relative measure which means, in the most of RWR-
based algorithms the values are never created nor destroyed, rather it is passed from
one node to another. This works great to measure importance, but not maliciousness.
Maliciousness needs to be treated like a disease. Lastly, RWR-based algorithms
assume a connected graph whereas our knowledge graph is extremely sparse [25].

Influence and Diffusion Designed to study the influence and diffusion in social networks
such as how a group of people might adopt an idea, or how informa-
tion might spread. Linear Threshold (LT), and Independent Cascade
(IC) [22] are among the most notable algorithms in this field.

These algorithms are extremely simple and require a major adjustment to support
our main requirements, i.e., directional and weighted edges, echo cancelation, and
influence maximization.

SimRank A graph-based structural context similarity measure with the in-
tuition that two objects are similar if they are related to similar
objects, which intuitively can be adapted to measure influence [21].

Computational complexity, which makes it impossible to use considering the scale
of our knowledge graph

Graph-based Semi-
Supervised Learning

Also known as label propagation tackles the problem of unlabeled
data with the principle idea that unlabeled data can be utilized
to decide the metric between data points and improve models’
performance [45]

Require a major adjustment to support our main requirements.

GraphSAGE A node embedding algorithm that uses neural networks to learn em-
beddings for nodes in the graph structure while taking aggregated
features from a node’s local neighborhood [18]

Implementation challenges for the scale of our knowledge graph (i.e., challenges in
parallel and scalable neural network).

and their shortcomings, hence leading us to the introduction of our
MalRank algorithm, and how it is designed to fit our requirements
the best. Table 2 provides a brief overview of the most relevant
graph-based inference algorithms on their shortcomings. We would
like to refer the reader to the references provided to learn more
about the details of each algorithm.

3.3 MalRank Formulation
Let us denote the maliciousness score of a node x ∈ V as s(x),
following our earlier intuition and definition, s(x) can be calculated
with:

s(x) = cso (x)s
o (x) + (1 − cso (x))

∑
y∈N (x)

∑
t ∈Txy

ω̂yx (t) .s(y)∑
y∈N (x)

∑
t ∈Txy

ω̂yx (t)
(1)

where so (x) ∈ [0, 1] refer to the prior of node x . If x is knownma-
licious node so (x) = 1, and 0 otherwise (usually set if x is observed
in a TI source). cso (x) ∈ [0, 1] is the prior strength of so (x). This
indicates the trust level of the prior. The value is decided according
to the trust level for the corresponding TI source. This is introduced
to control low quality threat intelligence, we shall discuss this later.

N (x) is the set of nodes neighboring node x , Txy is the set of edge
types between x and y. ω̂xy (t) is the maximized/minimized edge
weight on the edge type t directed from x to y.

3.3.1 Maximized/Minimized Edge Weight, ω̂xy (t) . As discussed pre-
viously, there are three main requirements to control the propaga-
tion and influence: first, the ability to decay the influence differ-
ently on different edge types. This is achieved by introducing edge
weights, ωxy (t) denoting the weight on the edge of type t between
x and y. Second, the ability to have different weights on different
directions of the edges. This is achieved by distinguishing the di-
rection of the weight. i.e., ωxy (t) , ωyx (t) . It is worth to mention
that this is how the algorithm sees the directions. Although our
knowledge graph is a directed graph, from the algorithm perspec-
tive all edges are bidirectional, but the influence can be different
on each direction. This way, one could define the ωxy (t) = 0 and
ωyx (t) = k if the edge type t between x and y is directed from y to
x only. Lastly, the ability to adjust this decay based on the score of
the influencer. Thus, introducing the maximized/minimized edge
weight (ω̂xy (t)). This value is calculated by taking the weighted
average of the original edge weight and the source maliciousness
score:

ω̂xy (t) =


0, if ωo

xy (t) = 0

ks(x) + (1 − k).ωo
xy (t) , otherwise

(2)

where ωo
xy (t) is the original edge weight on edge type t directed

from node x to y and k is the maximizer factor which is expected
to take a value between 0.5 and 0.8. The higher k values enforce
a higher maximization for the new weight (ω̂) according to the
influencer’s score.

3.3.2 Iterative MalRank. MalRank can also be calculated iteratively
as follows:

si+1(x) = cso (x)s
o (x) + (1 − cso (x))

∑
y∈N (x)

∑
t ∈Txy

mi
yx (t)∑

y∈N (x)

∑
t ∈Txy

ω̂i
yx (t)

(3)

mi+1
yx (t) = [si (y) − (1 − cso (x))

∑
t ∈Txy

mi
xy (t)∑

z∈N (x)

∑
t ∈Tzx

ωi
zx (t)︸ ︷︷ ︸

echo cancellation

].ω̂i+1yx (t) (4)

ω̂i+1yx (t) =


0, if ωo

xy (t) = 0

ksi (y) + (1 − k).ωo
yx (t) , otherwise

(5)

wheremi+1
yx (t) is the MalRank score sent from node y to node x in

iteration i + 1 over edge type t . si (x) is the MalRank score of node
x in iteration i .

4 EXPERIMENT: SIEM-BASED KNOWLEDGE
GRAPH AND MALRANK

In this section, we present the details of our experiments running
MalRank on a real-world SIEM-based knowledge graph.

4.1 Experiment Setup
4.1.1 Dataset Description. For the purpose of this research, we
used two days of proxy, DNS, and DHCP logs (almost 3 billion
events) collected by a large international enterprise SIEM, spanning
over 3 TB. For details refer to appendix A.1 table 5.

The described event logs were later enriched with related OSINT
as described in Section 2, i.e., ASN, X.509 certificates, and DNS RRs.
In this regard, we used the sanitized version of the BGP prefixes,
origin ASNs4, and ASN to organization name mapping5 available at
thyme.apnic.net. These files span to approximately 20 MB total. For
X.509 certificates we used censys6 IPv4 snapshot which consists of
the entire IPv4 address space scanned for all ports. This data spans
over 1.2 TB of disk space. Note that, we were only interested in port
443 scans. Due to the enterprise’s configuration for DNS servers
to not log the DNS responses (DNS RRs), we had to pass all the
DNS queries (logged by the DNS server) to our active OSINT-DNS

4http://thyme.apnic.net/current/data-raw-table
5http://thyme.apnic.net/current/data-used-autnums
6https://censys.io/

enricher (scalable implementation of Gieben DNS library7) and log
the responses ourselves.

Lastly, we utilized various sources (e.g., Google’s Safe brows-
ing, malwaredomains.com, etc.8) to collect our threat intelligence
that was used as the ground truth trough out our experiments.
Ultimately, we managed to passively collect a total of 1.5 million
malicious indicators (domains and IPs) and 1 million benign do-
mains (from Cisco’s top 1 million domains, one can also use Alexa’s
tom 1 million domains). Note that our algorithm does not rely
on benignness, and this list was collected only for the purpose of
evaluation.

4.1.2 Hardware Setup. For the purpose of this research, we set up a
big data processing cluster consisting of two Dell PowerEdge (R730,
R820) and five Fujitsu Primergy RX600 with a total of 1,864 GB
RAM, 24 CPUs (200 total cores), and 4 TB storage interconnected
via 10 Gb optical fiber. In addition, the data was initially stored
on an external Network Attached Storage (NAS) connected to the
cluster via 3x 10Gb optical fiber. While the detailed description of
the cluster setup is beyond the scope of this paper, we would like to
mention that this cluster is backed by Kubernetes9 for orchestration,
Apache Spark10 for distributed processing, and Apache Kafka11 for
distributed queueing. This allows us to scale our implementations
both vertically and horizontally.

4.2 Implementation
Themajority of graph algorithm libraries are designed for single ma-
chine use, thus making large-scale graph processing an extremely
challenging task for today’s big data. Pregel originally introduced
byMalewicz et al. [31] brings graph algorithms into the map-reduce
world by expressing graph algorithms as a sequence of iterations,
in each of which a vertex can receive messages sent in the previous
iteration, send messages to other vertices, and modify its own state
and that of its outgoing edges or mutate graph topology. Using this
vertex-centric intuition ("think like a vertex"), one can express a
broad set of algorithms while parallelizing its computation across
any number of nodes. GraphX is Apache Spark’s API for paral-
lel and fault-tolerant graph computation at scale. In this regard,
we decided to implement the whole system (the knowledge graph
and MalRank algorithm) with Pregel’s computational model using
Apache Spark GraphX. It is worth mentioning that throughout our
experiments Apache Spark was configured to utilize a maximum of
72 CPU cores and 1.4TB of memory from the described hardware
setup.

Figure 2, shows the high-level architectural design for the system
implemented for the purpose of this research. As shown there
are four main layers within the system: Event logs PET , OSINT
Enrichment, Loading, and MalRank.

4.2.1 Event Logs PET. This layer is responsible to first, preprocess
(e.g., prepare, clean, deduplicate, parse, validate, etc.) the raw event
logs. Second, to extract entities and relationships of interest (as
described in the Section 2 and Figure 1), and finally, transform
7https://github.com/miekg/dns
8https://github.com/hslatman/awesome-threat-intelligence/
9https://kubernetes.io/
10https://spark.apache.org/
11https://kafka.apache.org/

Proxy Logs
(csv.gz)

DNS Logs
(csv.gz)

DHCP Logs
(csv.gz)

Raw Event Logs

D,I

Preprocess
Extract
Transform

Proxy PET

DHCP PET

DNS PET

Loader

MalRank Runner

TI
Enricher

OSINT Enrichment

D, I
RT, NS, MS, AF, SD

I,R,A,O IR, AT, BT

I,D,O,X, IF, IB, SB, AW, SD

DNS
Enricher

IPR/ASN
Enricher

X.509
Enricher

BGP Routes
ASN Names

X.509
Certificates

Collected
OSINT/TI

TI Observables
(Mal & Ben)

Vertices: M,D,I,U

Edges: RA,SD,RT,RE,US

Graph Loader

RA

US
RA RT AW

IR

AT

AW

IF IB
BT

M D

U
I

R A O

X

SD NS
MSRF
AF

SB

MalRank

D,I

 I

 I

RAW Data

Figure 2: System architecture for the SIEM-based knowledge graph
and MalRank algorithm implemented for the purpose of this re-
search.

those into graph vertices and edges. The output of this layer is a
set of independent vertices and edges which is then passed to the
loading and the enrichment modules (as expressed in the Figure 2,
where D represents a vertex type Domain and RA represents the
relationship RequestedAccessTo, and so on).

Each vertex object has a vid (vertex identifier), name, type, tiOb-
servation, and mrScore. Each edge has a srcId, dstId, srcV (the whole
source vertex object), dstV, and eType (edge type). The intuition
behind this specific design is to embrace micro service, stateless,
and distributed design patterns. In this regard, despite, duplicating
each vertex within each edge object, the system can scale-out more
efficiently. This is due to the fact that the loading module can pro-
cess the received vertices and edges independently no matter the
order or distibution.

4.2.2 OSINT Enrichment. This layer consists of various enricher
modules. Upon initialization, each enricher first loads and prepare
the previously collected OSINT data (e.g., ASN mapping). Then, it
subscribes to a repository (either a message queue or a file system
directory) waiting for a batch of vertices. These vertices are pro-
vided as part of PET layer’s output. Finally, the enrichers enrich
those observed entities with their corresponding OSINT. For in-
stance, ASN enricher listens for a batch of IPv4 vertices to enrich
with IP range and ASN. The output of the OSINT enrichment layer
is also a set of entities (vertices) and relationships (edges) which is
passed to not only the loading module but also other enrichers for
further enrichment as shown in Figure 2.

4.2.3 Loading. All extracted and processed entities and relation-
ships arrive independently at the loading module. This module is
responsible for de-duplicating, indexing, cleaning and combining
all the vertices and edges. It is also responsible for labeling all ver-
tices according to the TI collected previously while marking some
for the purpose of evaluation. The output of this layer is the final
labeled and processed distributed graph.

4.2.4 MalRank Runner. The output of the loading module is then
passed to this layer which runs a distributed and iterative imple-
mentation of the MalRank algorithm. In each iteration for every
edge in the graph, a map function calculates the MalRank msg to
be sent to the destination vertex (according to MalRank Eq. (4)).
Intuitively by the end of this mapper round, each vertex is going to
receive a message for every incoming edge (from other vertices).
Then the reduce function is used to combine all msgs at each vertex
(MalRank Eq. 3). The reduce function itself is written to handle
only two messages at a time, but it will be repeated until all of the
messages have collapsed into a single message.

The described system is designed to work both in streaming and
batch mode. However, in this research, we only utilized its batch
mode. The current implementation of the MalRank does not sup-
port incremental updates. Therefore, one must re-run the MalRank
algorithm to score newly added vertices. We would like to leave this
to our future work, to implement the temporal incremental mode
of MalRank which not only operates on streams but also takes time
(first-seen and last-seen) into consideration.

4.3 Graph Structure
Before presenting our results it is important to understand some
key characteristics of our final knowledge graph.

After passing the described data set through the event logs PET
layer, 13 million vertices and 122 million edges were extracted.
This process took approximately 4 hours on the described setup.
Next, after passing through the enrichment layer an extra 6 million
vertices and 12million edgeswere addedmaking a total of 19million
vertices and 134 million edges being passed to the loading module.
The enrichment layer processing time was about 2 hours. After the
loading module stage, the final graph was created with 15 million
unique vertices and 132 million unique edges.

Figure 3 shows the degree and component distribution of the
created knowledge graph. The distribution follows a power-law
distribution which indicates an extremely sparse graph with very
few edges between the majority of the node and minority with
high degree connected clusters. This is understandable since the
majority of our relationships enforce low degree when we have no
global view of the association rather an enterprise-level view of only
observed entities. The majority of high degree nodes were entities
associated with the enterprise itself, e.g., enterprise domains, and
workstations. For the details of vertex and edge types and their
corresponding counts refer to table 7 in appendix A.3.

As mentioned before, the loading module is also responsible for
labeling the nodes according to the collected TI as well as marking
some for the purpose of evaluation. In this regard, out of 1.5 million
combined TI collected in our experiment we had only 10 thousand
matches (within 15 million vertices).

The loading module took almost 3 hours to complete, with the
final graph spanning over 100 GB in memory across the cluster.

4.4 Evaluation
The evaluation in this section has two main objectives, first, eval-
uating the effectiveness of our approach and intuition as a threat
detection technique. Second, evaluating the MalRank algorithm as
a graph-based inference algorithm.

Figure 3: Node degree distribution and connected component size
of the final graph in log-log scale.

Figure 4: Pseudo-random sampling for the purpose of evaluation.
In this regard to select the testing set we only consider connected
nodes such as A and B.

4.4.1 Previously KnownMalicious. Those are nodes that were known
to be malicious at first (e.g., indicated by a TI source), however, they
were marked as unknown when passed to the algorithm so that
later they can be utilized to evaluate the algorithm detection capa-
bility (i.e., the testing set). Following the standard practices, in order
to evaluate the detection capability of our approach, we decided to
utilize a Receiver Operating Characteristic (ROC) curve as well as
Precision and Recall (PR) curve.

It is worth to remember the testing set could only be derived from
the 20K labeled data points that are connected. This is due to the fact
that, first, the rest of the data points did not have any label in the
first place that could be used for evaluation. Second, taking random
samples in a sparse graph with low degree distribution could result
in samples that have no connection to any other labeled nodes, thus
eliminating the ability to evaluate the inference. Figure 4 illustrate
this idea. If black nodes are previously known malicious nodes and
white node are unknown (unlabeled) nodes, we only consider nodes
such as A and B for our test samples as choosing X or Y will give
us no value considering the fact that they are not connected to any
other labeled nodes to allow effective maliciousness propagation.

More specifically, to select the testing samples for a class (e.g.,
maliciousness) in an evaluation run, the loading module, first, calcu-
lates the connected components (clusters) for that class, next, from
each of those clusters that have more than one member, selects

√
k

nodes at random (where k is the number of labeled nodes in each
cluster). For instance, if Figure 4 is our knowledge graph we would
take only A or B at random. In our experiment this process led to
the random selection of approximately 2, 000 nodes (1, 000 known
malicious and 1, 000 known benign nodes) in each evaluation run.

Figure 5 shows the ROC and PR plot for 9 iterations of MalRank
with configuration described in Table 3 on the described data set
with the described testing set. Note that the whole experiment
(including the sampling) was repeated 4 times to flatten out the
outliers. The results show a high accuracy (AUC = 96%, with the

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

1st Run (AUC = 0.96)
2nd Run (AUC = 0.96)
3rd Run (AUC = 0.96)
4th Run (AUC = 0.96)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

1st Run
2nd Run
3rd Run
4th Run

Figure 5: Receiver Operating Characteristic and Precision Recall
curves of 9 iterations of MalRank ran 4 times.

peak F1-score = 0.905, and Accuracy = 0.900). Please refer to ap-
pendix A.4 figure 7 for the details of the experiment on different
number of iterations.

In order to better understand the algorithm’s results we inves-
tigated the false positives (FPs) and false negatives (FNs). In this
regard, we had the following observations; first, in contrast to our
original intuition and the common practice used in past efforts,
top-ranked domains by Cisco Umbrella or Alexa did not necessarily
reflect benign domains. In this regard, there were multiple instances
of domains being marked as malicious after MR due to association
with multiple malicious entities despite appearing on Umbrella top
1 million domains (therefore FP). This was also confirmed by [42].
A good example of this was world.rickstudio.ru, which appeared
among the top 1 million domains under the umbrella while being
malicious. This was also due to our random selection of benign
samples from the entire 1 million, one should at least ensure that
the samples are from the top k thousand.

Other legitimate false positives were due to the association of
malicious IPs to benign domains, this could be explained by the
web hosters that might share IPs among domains.

Majority of the false negativeswere also due to bad quality Threat
Intelligence. For instance, ingesting a TI source where github.com
and google.de were marked as malicious by the TI. These were later
marked as non-malicious by our algorithm due to their association
with major neutral nodes. Other FNs were also due to content
delivery network (CDN) in which a TI was reporting an IP malicious
while it was also associated with a couple of legitimate domains
through a proxy server.

4.4.2 Comparison with Belief Propagation. In order to evaluate
MalRank’s efficiency and accuracy, we decided to compare it with
the Hewlett Packard’s implementation of Belief Propagation imple-
mented in Apache Spark [2]. BP is the most popular algorithm used
throughout the literature as a graph-based inference algorithm in
the context of security, See Section 5.

Figure 6 shows the ROC plot for 9 iterations of MR vs. 9 iterations
of BP on the same knowledge graph with the same testing set.

Table 4 and 3 shows BP and MR algorithm configuration for this
experiment respectively. It is also worth to note that due to the fact
that MalRank utilizes only one class label (maliciousness) whereas
BP requires at least two class labels (maliciousness and benignness),
we decided to configure BP by initializing all unknown and benign
nodes with 0.5 as the probability of maliciousness (i.e., P(xmal) =

Table 3: MalRank configuration for the experiment

MR Parameter Description
∀t ∈ Txy : ωo

xy (t) = ω
o
yx (t) = 0.5 All edge weights initialized

with 0.5 in both directions
∀x , smo (x) = 0.8 Prior strength (TI source trust

score) for all sources initial-
ized with 0.8

k = 0.7 Maximizer factor for ω̂(t)

Mo (x) =

{
0.9, if x ∈ {Xmal }

0.0001, otherwise
Node x initial score depend-
ing on whether it was ob-
served in TI

Table 4: Node and edge Potential configuration for Belief Propaga-
tion experiment.

Edge Potential Node Potential
ψi j (xi ,x j) x j = ben x j =mal Node P(mal) P(ben)

xi = ben 0.5 + ϵ 0.5 − ϵ Malicious 0.99 0.01
xi =mal 0.5 − ϵ 0.5 + ϵ Benign 0.5 0.5

Figure 6: ROC curve for 9 iterations of MalRank vs. Belief Propaga-
tion.

P(xben) = 0.5) and 1 for those previously known malicious nodes
(i.e., P(xmal) = 1, P(xben) = 0.5) .

As shown in the Figure 6, MR is outperforming BP not only
in terms of accuracy but also the run-time. In this regard with
almost an identical implementation in GraphX, MalRank finishes
9 iterations within 20 minutes, whereas BP takes about 2 hours.
It is worth to mention that BP memory utilization was almost 6
times higher than MalRank. It is also important to note that while
BP shows high accuracy, this is not true in all cases. The main
reason for this accuracy in this experiment is that the majority of
the testing set were nodes with a low-degree. Due to numerical
instability of multiplication, BP starts introducing errors when a
node’s degree increases. This was observed mostly in our next
experiment when investigating previously unknown threats.

4.5 Case Studies of Previously Unknown
Malicious

ROC and PR curves are useful to evaluate a threat detection tech-
nique. Nevertheless, plotting such curves requires a testing set, and
as mentioned before the choice of the testing set for our approach is
a challenging task. More specifically, our approach is not a generic
classifier that can classify any arbitrarily given entity as malicious
or non-malicious. Instead, it is an inference model designed to in-
crease the quantity and the quality of our threat intelligence by dis-
covering new malicious entities associated with previously known
malicious entities. Therefore, the most relevant validation for us is
the evaluation of previously unknown and inferred maliciousness.
In this regard, we decided to manually investigate top high Mal-
Rank scored nodes which did not have a prior (not observed in our
TI). For this manual investigation, we utilized ThreatCrowd, Virus-
Total, ThreatMiner, URLVoid, AlienVault, Robtex and MXToolBox. We
categorized our investigation depending on the type of the entity.

When investigating the top 200 Domains/IP, we were able to
find an indicator for 67% of those. While the majority of those
were result of maliciousness inference on resolvesTo relationship,
there were those high degree nodes that were scored mostly due
to mailServerFor, isInRange, and referedTo. As a result we were
able to identify large number of previously unknown malicious
domains and IPs. We were also able to identify surprising number
of pornographic domains that were ranked high. We assume this
is due to malvertising, clickjacking techniques widely adopted by
such domains.

When investigating the top high scored X.509 certificates we
were mostly capable of identifying parking domains (i.e., domains
registered solely for the purpose of displaying web advertisements
with typically no real content [27]) and rogue web hosters (e.g.,
*.000webhostapp.com whom its subdomains are regularly misused
by cybercriminals to host scams). Hence allowing us to capture
further potentially unknown malicious Domains/IPs.

We had the same observation when investigating top malicious
organization, as one of the top MalRanks scored ones, was the
organization responsible for *.000webhostapp.com. We were also
able to identify number of self signed certificates associated with an
organization which lead us to find associated Domains/IPs which
were in fact classified as malicious by VirusTotal.

We didn’t investigate MAC address, ASN nor User Agent (UA) as
the majority of nodes did not come up with high scores (less than
0.2). This was reasonable considering we had only access to two
days of data (i.e., low chance of major outliers)

Lastly, we investigated a set of malicious domains which was
identified by the enterprise’s SOC analysts to be associatedwithmal-
ware beaconing on a number of clients. More specifically these were
domain startingwith imp (i.e., ^imp\\..+) such as imp.searchlff.com12.
When we checked the MalRank score of these previously unknown
malicious domain, we noticed that the algorithm scored them as
malicious (0.6 - 0.7) due to association with TI (through IP address
and range sharing).

Interestingly, when we investigated the BP score for the above
findings, we could verify our initial intuition, i.e., BP’s limitation
to infer maliciousness for high-degree nodes with unbiased labeled
12https://www.threatcrowd.org/domain.php?domain=imp.searchlff.com

neighbours. In this regard, the majority above previously unknown
malicious entities were scored between 0.51-0.56 which makes it
susceptible to missclassification by BP.

In summary, although we were unable to validate all high score
nodes, according to our investigations MalRank proved to be an
effective method to increase the quality and the quantity of threat
intelligence. While one could argue, that these were low-hanging-
fruits, we still see the value in our approach. Furthermore, It is
also worth to note that the SIEM logs used within this research
were from an international enterprise that already utilizes various
security measures and practices (e.g., IDS, AV, Proxy/DNS black-
listing, signature checking, and etc.) therefore making it rare to
encounter various threats, yet MalRank was capable of detecting
valuable previously unknown malicious entity, i.e., the detection of
a potential malware beaconing case.

It is worth to note that, throughout our investigation, we came
across a number of nodes and cases in which the nodes were scored
high (malicious) but we could not validate the maliciousness as it
seemed harmless (e.g., parked domains, link farms, and other dubi-
ous domains/IPs). Even though such entities seemed non-malicious
(FPs), we argue that blocking them at the enterprise level should not
have a drastic effect, as the main reason for their false classification
was having a number of association with high scored nodes.

5 RELATEDWORK
This section provides an overview of the most relevant and influen-
tial work in the context of graph-based inference for cybersecurity.

Chau et al. [11] introduce Polonium as one of the first and ar-
guably the most successful works that tackles the problem of mal-
ware detection using large-scale graph inference with the intuition
that good applications are typically used by many users, whereas,
unknown (i.e., potentially malicious) applications tend to only ap-
pear on few computers. The authors achieve this by running an
adopted version of belief propagation on an undirected, unweighted
bipartite machine-file graph. In similar research, Tamersoy et al.
[46] propose Aesop, which tackles the same problem using locality
sensitive hashing to measure the similarity between files to even-
tually construct a file-file bipartite graph and running BP to infer
files’ goodness based on its neighbors.

Manadhata et al. [32] address the problem of detecting mali-
cious domains by using enterprise HTTP proxy logs to construct a
host-domain bipartite graph capturing workstations’ connection
to external domains, then running BP to discover malicious do-
mains based on a set of seed malicious nodes. The intuition in this
research is that infected hosts are more likely to visit various mali-
cious domains whereas user behavior on benign hosts should result
in benign domain access.

Khalil et al. [23] address the same problem using passive DNS
data focusing on a domain-IP bipartite graph with the intuition
that a domain/IP is malicious if it has strong association to a pre-
viously known malicious domain/IP. While the authors evaluate
BP as part of their evaluation, their main proposal takes a differ-
ent approach. In this regard, the authors formulate the problem
as a similarity measure between a pair of domains based on the
number of IPs shared to derive a domain-domain similarity graph
and use a path-based algorithm to infer a maliciousness score for

each domain according to their topological connection to known
malicious domains. In a later research Khalil et al. [24] discuss the
limitations of their previous work [23] which is the computational
complexity leading them to adopt belief propagation again on an
adjusted graph while emphasizing on ASN.

Zou et al. [50] takes a similar approach focusing on DNS logs.
In this regard, the authors focus on three main relationships ex-
tractable from DNS logs: 1) connection request from an enterprise’s
workstation to a domain, 2) resolves to relationship (DNS record
type A) which indicates a domain resolving to an IPv4 address, and
3) CNAME DNS RRs which indicates a domain being an alias for
another domain.

Najafi et al. [35] also tackle the problem of malicious domain/IP
detection using BP on a property graph focusing on domain to IP
resolution (DNS record type A), domain to domain referral (proxy
log referer header) and sub-domain relationship.

Other works include, Huang et al. [20] investigating the con-
nection between domain, IP, and URL. Oprea et al. [36] addressing
the early-stage APT detection using BP on host-domain graph ex-
tracted from proxy logs. Rahbarinia et al. [41] proposing Segugio
to detect new malware-control domains based on DNS traffic anal-
ysis with a very similar intuition to Manadhata et al. [32]. Mishsky
et al. [34] explore the same issues with the slightly different an-
gle. Simeonovski et al. [43] approach the problem using taint-style
techniques for propagation of labels in a property graph built from
nodes consisting of domains, organizations, and ASNs. Finally, Peng
et al. [39] build a domain-domain graph using DNS CNAME RRs
with the intuition that domains connected by DNS CNAME RRs
share intrinsic relations and are likely to be in a homophilic state.

While the majority of the previous works focus on single edge
type isolated (i.e., a bipartite graph), we construct a comprehensive
knowledge graph which incorporates various types of nodes and
edges. To the best of our knowledge, this is the first work exploring
knowledge graphs at this scale within the security domain. Fur-
thermore, in contrast to other works, while we evaluate BP, we
introduce a much more effective and efficient algorithm that allows
us to better infer maliciousness in knowledge graphs.

6 LIMITATION AND FUTUREWORK
The biggest limiting factor in our work was the quality of the
threat intelligence which was also the main factor for the high false
positive rate. MalRank is designed to infer maliciousness using
a small set of previously known malicious nodes as seeds. These
seeds are expected to be validated TI. However, the majority of the
publicly available TI sources are low quality with a large number of
false positives, and inference based on false TI results in further false
positives. Although MalRank has a mechanism to incorporate the
quality of threat intelligence, throughout our experiments we did
not have any approach to rate the sources of the TI. In this regard,
the majority of our false positives were due to bad TI ingestion
from a source. In our future work, we would like to utilize a better
quality TI (perhaps at the cost of API limitation) and introduce an
approach to evaluate our TI sources to derive trust scores for each
source.

Despite the algorithms capability to support directional edge
weights, throughout our experiments, we decided to rely on naive

expert knowledge for edge weights by specifying all edges as bidi-
rectional with 0.5 as their weight on each direction. Although,
MalRank has a mechanism to adjust the weights within each it-
eration (depending on the source maliciousness score), therefore
allowing us to not worry too much about the exact weights, it is
expected that one defines the initial edge weights with more pre-
cision. However. deciding the initial edge weights is an extremely
challenging task which we would like to explore in our future work.

We would also like to explore MalRank algorithmic improve-
ments. More specifically, first, finding the closed formula in terms
of matrix operation which should improve its efficiency and better
reason about its convergence. Second, expansion to support incre-
mental updates in streaming mode. Last experimenting with other
aggregator functions such as LSTM and Pooling [18] as opposed to
weighted average.

It is also interesting to combine our approach with previous
works that focused on local features. In this regard, one can utilize
those local features to derive a prior (initial score) for each node
(e.g., 0.5) and then run MalRank and look back at the nodes. If the
MR score was increased further, one can conclude maliciousness
with a higher confidence as the node was marked malicious based
on not only its local features but also global. Alternatively, one can
also use MalRank score as a local feature to combine with other
features to train another ML classifier to further improve detection
accuracy. We expect that one could drastically reduce the false
positive rate by ensembling MalRank with other approaches.

Lastly, we only covered three sources of event logs within SIEMs,
however, today’s SIEMs collect much more than just proxy, DNS,
and DHCP. It would be also interesting to extend our knowledge
graph with more event logs and perhaps more OSINT (e.g., regis-
trar). In that case, it would also be interesting to experiment with
different graph schemas.

7 CONCLUSION
In this paper, we first introduced the intuition behind global features
for threat detection. Next, we presented the SIEM-based knowledge
graph which is constructed from entities and relationships observed
within data captured by an enterprise’s SIEM. We also covered the
most relevant OSINT and TI that can be collected at scale. We for-
mulated threat detection as a large-scale graph inference problem.
This led us to the introduction of our proposed algorithm named
MalRank, a scalable graph-based inference algorithm designed to
infer a node’s maliciousness score based on its association to other
nodes. We also discussed MalRank’s unique characteristics that sets
it apart from other graph-based inference algorithms.

For the purpose of evaluation, we implemented the proposed
knowledge graph, as well as MalRank algorithm on a big data clus-
ter consisting of 7 physical servers (on top of Apache Spark). We
used two days of proxy and DNS logs collected from a large inter-
national organization’s SIEM to construct the proposed knowledge
graph. Next, we used publicly available OSINT to enrich entities ob-
served, and TI to label small set of nodes as malicious. After running
MalRank on the generated knowledge graph, we showed that our
approach can achieve a high accuracy (AUC = 96%). Furthermore,
proving effective to increase threat intelligence by discovering a
large number of new malicious entities.

REFERENCES
[1] 2018. ATT&CK: Standard Application Layer Protocol. https://attack.mitre.org/

wiki/Technique/T1071
[2] 2018. Loopy Belief Propagation. https://github.com/HewlettPackard/sandpiper.

Accessed: 2018-08-10.
[3] Osama Almanna. 2016. StartSSL Domain validation (Vulnerability discovered).

http://oalmanna.blogspot.com/2016/03/startssl-domain-validation.html
[4] Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feam-

ster. 2010. Building a Dynamic Reputation System for DNS. In USENIX security
symposium. 273–290.

[5] Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou, and
David Dagon. 2011. Detecting Malware Domains at the Upper DNS Hierarchy.
In USENIX security symposium, Vol. 11. 1–16.

[6] Bahman Bahmani, Abdur Chowdhury, and Ashish Goel. 2010. Fast incremental
and personalized pagerank. Proceedings of the VLDB Endowment 4, 3 (2010),
173–184.

[7] Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. 2011. EXPO-
SURE: Finding Malicious Domains Using Passive DNS Analysis. In Ndss.

[8] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual
web search engine. Computer networks and ISDN systems 30, 1-7 (1998), 107–117.

[9] Anna L Buczak and Erhan Guven. 2016. A survey of data mining and machine
learning methods for cyber security intrusion detection. IEEE Communications
Surveys & Tutorials 18, 2 (2016), 1153–1176.

[10] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. 2012. Aiding
the detection of fake accounts in large scale social online services. In Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 15–15.

[11] Duen Horng "Polo" Chau, Carey Nachenberg, Jeffrey Wilhelm, Adam Wright,
and Christos Faloutsos. 2011. Polonium: Tera-scale graph mining and inference
for malware detection. In Proceedings of the 2011 SIAM International Conference
on Data Mining. SIAM, 131–142.

[12] D Chismon and M Ruks. 2015. Threat intelligence: Collecting, analysing, evalu-
ating. MWR InfoSecurity Ltd (2015).

[13] David Cooper, Stefan Santesson, Stephen Farrell, Sharon Boeyen, Russell Housley,
and William Polk. 2008. Internet X. 509 public key infrastructure certificate and
certificate revocation list (CRL) profile. Technical Report.

[14] MITRE Corporation. 2018. ATT&CK: Commonly Used Port. https://attack.mitre.
org/wiki/Technique/T1043

[15] Brian Davison. 2006. Propagating trust and distrust to demote web spam. (2006).
[16] Dhivya Eswaran, Stephan Günnemann, Christos Faloutsos, Disha Makhija, and

Mohit Kumar. 2017. Zoobp: Belief propagation for heterogeneous networks.
Proceedings of the VLDB Endowment 10, 5 (2017), 625–636.

[17] Maryam Feily, Alireza Shahrestani, and Sureswaran Ramadass. 2009. A survey
of botnet and botnet detection. In Emerging Security Information, Systems and
Technologies, 2009. SECURWARE’09. Third International Conference on. IEEE, 268–
273.

[18] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
1024–1034.

[19] Taher H Haveliwala. 2003. Topic-sensitive pagerank: A context-sensitive ranking
algorithm for web search. IEEE transactions on knowledge and data engineering
15, 4 (2003), 784–796.

[20] Yonghong Huang and Paula Greve. 2015. Large scale graph mining for web
reputation inference. In Machine Learning for Signal Processing (MLSP), 2015 IEEE
25th International Workshop on. IEEE, 1–6.

[21] Glen Jeh and Jennifer Widom. 2002. SimRank: a measure of structural-context
similarity. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 538–543.

[22] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of
influence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 137–146.

[23] Issa Khalil, Ting Yu, and Bei Guan. 2016. Discovering malicious domains through
passive DNS data graph analysis. In Proceedings of the 11th ACM on Asia Confer-
ence on Computer and Communications Security. ACM, 663–674.

[24] Issa M Khalil, Bei Guan, Mohamed Nabeel, and Ting Yu. 2018. A Domain is
only as Good as its Buddies: Detecting Stealthy Malicious Domains via Graph
Inference. In Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy. ACM, 330–341.

[25] Danai Koutra, Tai-You Ke, U Kang, Duen Horng Polo Chau, Hsing-Kuo Kenneth
Pao, and Christos Faloutsos. 2011. Unifying guilt-by-association approaches:
Theorems and fast algorithms. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer, 245–260.

[26] Vijay Krishnan and Rashmi Raj. 2006. Web spam detection with anti-trust rank..
In AIRWeb, Vol. 6. 37–40.

[27] Marc Kührer, Christian Rossow, and Thorsten Holz. 2014. Paint it black: Evaluat-
ing the effectiveness of malware blacklists. In International Workshop on Recent
Advances in Intrusion Detection. Springer, 1–21.

https://attack.mitre.org/wiki/Technique/T1071
https://attack.mitre.org/wiki/Technique/T1071
http://oalmanna.blogspot.com/2016/03/startssl-domain-validation.html
https://attack.mitre.org/wiki/Technique/T1043
https://attack.mitre.org/wiki/Technique/T1043

[28] Justin Ma, Lawrence K Saul, Stefan Savage, and Geoffrey M Voelker. 2009. Be-
yond blacklists: learning to detect malicious web sites from suspicious URLs.
In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 1245–1254.

[29] JustinMa, Lawrence K Saul, Stefan Savage, and GeoffreyMVoelker. 2009. Identify-
ing suspicious URLs: an application of large-scale online learning. In Proceedings
of the 26th annual international conference on machine learning. ACM, 681–688.

[30] Dhia Mahjoub. 2013. Monitoring a fast flux botnet using recursive and passive
DNS: A case study. In eCrime Researchers Summit (eCRS), 2013. IEEE, 1–9.

[31] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-
scale graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, 135–146.

[32] Pratyusa K Manadhata, Sandeep Yadav, Prasad Rao, and William Horne. 2014.
Detecting malicious domains via graph inference. In European Symposium on
Research in Computer Security. Springer, 1–18.

[33] Niels Provos Panayiotis Mavrommatis and Moheeb Abu Rajab Fabian Monrose.
2008. All your iframes point to us. In USENIX Security Symposium. USENIX. 1–16.

[34] Igor Mishsky, Nurit Gal-Oz, and Ehud Gudes. 2015. A topology based flow
model for computing domain reputation. In IFIP Annual Conference on Data and
Applications Security and Privacy. Springer, 277–292.

[35] Pejman Najafi, Andrey Sapegin, Feng Cheng, and Christoph Meinel. 2017. Guilt-
by-Association: Detecting Malicious Entities via Graph Mining. In International
Conference on Security and Privacy in Communication Systems. Springer, 88–107.

[36] Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H Chin, and Sumayah Alrwais. 2015.
Detection of early-stage enterprise infection by mining large-scale log data. In
Dependable Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP International
Conference on. IEEE, 45–56.

[37] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[38] Judea Pearl. 2014. Probabilistic reasoning in intelligent systems: networks of plausi-
ble inference. Elsevier.

[39] Chengwei Peng, Xiaochun Yun, Yongzheng Zhang, Shuhao Li, and Jun Xiao.
2017. Discovering Malicious Domains through Alias-Canonical Graph. In Trust-
com/BigDataSE/ICESS, 2017 IEEE. IEEE, 225–232.

[40] J Ronald Prins and Business Unit Cybercrime. 2011. DigiNotar Certifi-
cate Authority breach ’Operation Black Tulip’. Fox-IT, November (2011).
https://www.rijksoverheid.nl/ministeries/ministerie-van-binnenlandse-zaken-
en-koninkrijksrelaties/documenten/rapporten/2011/09/05/diginotar-public-
report-version-1

[41] Babak Rahbarinia, Roberto Perdisci, and Manos Antonakakis. 2015. Segugio:
Efficient behavior-based tracking of malware-control domains in large ISP net-
works. In Dependable Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP
International Conference on. IEEE, 403–414.

[42] Paul Royal. 2012. Maliciousness in top-ranked alexa domains. Online].
https://www. barracudanetworks. com/blogs/labsblog (2012).

[43] Milivoj Simeonovski, Giancarlo Pellegrino, Christian Rossow, andMichael Backes.
2017. Who controls the internet?: Analyzing global threats using property graph
traversals. In Proceedings of the 26th International Conference on World Wide Web.
International World Wide Web Conferences Steering Committee, 647–656.

[44] Elizabeth Stinson and John C Mitchell. 2008. Towards Systematic Evaluation of
the Evadability of Bot/Botnet Detection Methods. WOOT 8 (2008), 1–9.

[45] Amarnag Subramanya and Partha Pratim Talukdar. 2014. Graph-based semi-
supervised learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning 8, 4 (2014), 1–125.

[46] Acar Tamersoy, Kevin Roundy, and Duen Horng Chau. 2014. Guilt by association:
large scale malware detection by mining file-relation graphs. In Proceedings of
the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM, 1524–1533.

[47] Wenpu Xing and Ali Ghorbani. 2004. Weighted pagerank algorithm. In Com-
munication Networks and Services Research, 2004. Proceedings. Second Annual
Conference on. IEEE, 305–314.

[48] Jonathan S Yedidia, William T Freeman, and Yair Weiss. 2003. Understanding
belief propagation and its generalizations. Exploring artificial intelligence in the
new millennium 8 (2003), 236–239.

[49] Yue Zhang, Jason I Hong, and Lorrie F Cranor. 2007. Cantina: a content-based
approach to detecting phishing web sites. In Proceedings of the 16th international
conference on World Wide Web. ACM, 639–648.

[50] Futai Zou, Siyu Zhang, Weixiong Rao, and Ping Yi. 2015. Detecting malware
based on DNS graph mining. International Journal of Distributed Sensor Networks
11, 10 (2015), 102687.

A EXPERIMENT DETAILS
A.1 SIEM Logs
The statistics of SIEM logs used for the purpose of this research

Table 5: The statistics of our SIEM logs for the experiment

Source Size #Events

DNS Logs 2TB (120GB gzip compressed) 2 billion
Prxy Logs 1TB (100GB gzip compressed) 755 million
DHCP Logs 12GB (800MB gzip compressed) 4m

A.2 Hardware Setup

Table 6: Description of the hardware used in this research

Server Details #Servers
Dell PowerEdge R730 2x Intel Xeon E5-2690 @ 2.6GHz

(14 cores each), 768GB RAM, 1TB
SSD

1x

Dell PowerEdge R820 2x Intel Xeon E5-4617 @ 2.90GHz
(6 cores each), 328GB RAM, 540GB
HDD

1x

Fujitsu Primergy RX600 4x Intel Xeon E7-4820 @ 2.60GHz
(8 cores each), 256GB RAM, 2TB
SSD

1x

Fujitsu Primergy RX600 4x Intel Xeon E7-4820 @ 2.60GHz
(8 cores each), 128GB RAM and
1TB SSD

4x

A.3 Vertices and Edges

Table 7: The count of each vertex and edge type loaded into the final
knowledge graph.

Edges Vertices
Type # Type #
requestedAccessTo 103 million Domain 12.4m
subDomainOf 10m Ipv4 1.8m
resolvedTo 7m Organization 0.28m
uses 3m X509cert 0.27m
aliasFor 2.5m Mac 0.12m
referedTo 2m ipRange 0.08m
associatedWith 1.7m Useragent 0.07m
isInRange 1.3m Asn 0.02m
mailServerFor 1m
issuedBy 0.26m
issuedFor 0.26m
signedBy 0.23m
nameServerFor 0.12m
assignedTo 0.08m
belongsTo 0.03m

https://www.rijksoverheid.nl/ministeries/ministerie-van-binnenlandse-zaken-en-koninkrijksrelaties/documenten/rapporten/2011/09/05/diginotar-public-report-version-1
https://www.rijksoverheid.nl/ministeries/ministerie-van-binnenlandse-zaken-en-koninkrijksrelaties/documenten/rapporten/2011/09/05/diginotar-public-report-version-1
https://www.rijksoverheid.nl/ministeries/ministerie-van-binnenlandse-zaken-en-koninkrijksrelaties/documenten/rapporten/2011/09/05/diginotar-public-report-version-1

Figure 7: ROC Curve for different number of MalRank iteration based on the same testing/evaluation set and their corresponding run-time.

A.4 Number of Iterations
In the majority of our experiments, we chose 9 as maximum number
of iterations. The main reason for this choice is that; within our
knowledge graph, the inference from more than 4 hops aways does
not make much sense. Consider the requestedAccessTo edge isolated
from all the others. This edge captures the relationship between
a MAC address and a set of domain/IP nodes (shaping a bipartite
graph). In order to decide the label for a domain, it makes sense to
traverse back to the MAC address that requested this domain and
check the score for all other domains visited by that MAC (perhaps

an indication of a malware trying to reach out to malicious IPs
or Domain for C&C), i.e., inference from two hops away. It also
makes sense to check another two hops, i.e., check whether there
exist other workstations which connect to similar known malicious
nodes. However, going deeper than that loses the intuition entirely.
This could also be observed in Figure 7 which shows the ROC curve
for a different number of iterations. As shown in the figure, while
the results do not vary drastically after 7 iterations, the algorithm
runtime increases drastically. For instance, when we change from 9
to 18 iterations we increase the accuracy by 0.2% and the run-time
by 50%.

	Abstract
	1 Introduction
	2 SIEM-based Knowledge Graph
	2.1 Event Logs of Interest
	2.2 OSINT and CTI

	3 MalRank
	3.1 Problem Definition and Requirements
	3.2 Background: Graph-based Inference Algorithms
	3.3 MalRank Formulation

	4 Experiment: SIEM-based Knowledge Graph and MalRank
	4.1 Experiment Setup
	4.2 Implementation
	4.3 Graph Structure
	4.4 Evaluation
	4.5 Case Studies of Previously Unknown Malicious

	5 Related Work
	6 Limitation and Future Work
	7 Conclusion
	References
	A Experiment Details
	A.1 SIEM Logs
	A.2 Hardware Setup
	A.3 Vertices and Edges
	A.4 Number of Iterations

