Guilt-by-Association: Detecting Malicious
Entities via Graph Mining

Pejman Najafi, Andrey Sapegin, Feng Cheng, Christoph Meinel

Hasso Plattner Institute (HPI),
Prof.-Dr.-Helmert-Strae 2-3, 14482 Potsdam, Germany
{pejman.najafi, andrey.sapegin, feng.cheng, christoph.meinel}@hpi.de

Abstract. In this paper, we tackle the problem of detecting malicious
domains and IP addresses using graph inference. In this regard, we mine
proxy and DNS logs to construct an undirected graph in which vertices
represent domain and IP address nodes, and the edges represent relation-
ships describing an association between those nodes. More specifically,
we investigate three main relationships: subdomainOf, referredTo, and
resolvedTo. We show that by providing minimal ground truth informa-
tion, it is possible to estimate the marginal probability of a domain or
IP node being malicious based on its association with other malicious
nodes. This is achieved by adopting belief propagation, i.e., an efficient
and popular inference algorithm used in probabilistic graphical models.
We have implemented our system in Apache Spark and evaluated us-
ing one day of proxy and DNS logs collected from a global enterprise
spanning over 2 terabytes of disk space. In this regard, we show that our
approach is not only efficient but also capable of achieving high detec-
tion rate (96% TPR) with reasonably low false positive rates (8% FPR).
Furthermore, it is also capable of fixing errors in the ground truth as well
as identifying previously unknown malicious domains and IP addresses.
Our proposal can be adopted by enterprises to increase both the quality
and the quantity of their threat intelligence and blacklists using only
proxy and DNS logs.

Key words: Belief propagation, big data analysis for security, graph
inference, malicious domain and IP detection, guilt-by-association, graph
mining.

1 Introduction

In the case of both targeted threats (e.g., social engineering, spear-phishing, Ad-
vanced Persistent Threats, etc.) and mainstream threats (e.g., drive-by down-
load, exploit-kits, malvertising, etc.), there exists an external malicious entity
administered by an adversary that successfully reaches the end client (victim).
The ability to block these entities from reaching the end client is considered
to be an optimum cyber security solution. That’s why so many organizations
heavily invest in blocking these by deploying various security solutions such as
web application firewalls, proxy servers, email and web security appliance, etc.

2 Pejman Najafi et al.

The majority of these solutions try to detect the maliciousness by analyzing the
local features of those entities (e.g., URL structure or content of a web page).
However, the problem is that the majority of these features are volatile, hence
giving an advantage to cybercriminals to evade detection.

Consider Exploit-Kits (EK), e.g., Angler and Neutrino[14][11][29]. At high
level internet users are first deceived to visit a previously compromised domain
using techniques such as malvertising or malicious iFrames. Next using tech-
niques such as HTTP POST redirection, domain generation algorithm (DGA),
and HTTP redirects (302 cushioning) the victims are passed through various
gateway pages to finally get to the landing page of the exploit kit. Next the EK
tries to identify any potential vulnerabilities within the visitors browser and plu-
gins. Lastly, upon successful exploitation of a vulnerability, the client browser is
silently forced to either download and run a malicious payload (Drive-by down-
loads) or execute shellcodes.

These tools go above and beyond to make it extremely difficult to detect
the malicious entities involved (i.e., domains and IP addresses). For instance, to
evade blacklisting exploit-kits use techniques such as domain shadowing [11], fast
fluxing domains [10], and domain generation algorithm (DGA). In order to evade
static and dynamic analysis of code or content, they use various anti-emulation,
anti-sandbox, obfuscation and encoding techniques and dynamically build unique
content and code for each request. In this regard, neither the maintenance of
blacklists nor dynamic/static analysis of web pages is effective. This is due to
the fact that there is no guarantee that next time the same landing page would
have any local features shared with the previous observation of the landing page
(i.e., different domain name, IP address, content, code, URL structure, etc).
However, despite the fact that these tools are capable of mutating the entire
local features, it is extremely challenging and sometimes costly to change global
features (i.e., attributes shared between different malicious entities), for instance,
the authoritative domain responsible for serving fast fluxing domains, the paths
leading to two different landing page, or the registrar information.

This observation is not limited to exploit kits. Investigating the correlation
between the global features of the previously known indicators of compromise
(IOCs) could potentially allow us to better reason about new entities. In this
paper, we formulate big data analysis for threat detection as a graph inference
problem, with the intuition that malicious entities tend to have homophilic rela-
tionships with other malicious entities. More specifically, we focus on the analysis
of proxy and DNS logs for the purpose of detecting malicious IP addresses and
Domain names based on the relationships observed in those logs and minimal
prior knowledge collected from threat intelligence (TT) sources. We achieve this
by adopting Loopy Belief Propagation from probabilistic graphical models which
allows to propagate the labels from labeled data to unlabeled data using rela-
tionships extracted from proxy and DNS logs.

1.1 Contribution and Road Map

The contributions of this paper are as follows:

Guilt-by-Association: Detecting Malicious Entities via Graph Mining 3

— Proposal of an alternative approach to proxy and DNS log analysis for the
purpose of threat detection using only the information available in those logs.
This approach could be used by enterprises to increase both the quality and
the quantity of their threat intelligence and blacklists.

— The successful adaptation of belief propagation as a graph based inference
algorithm to propagate malicious labels using minimal ground truth to detect
other malicious domains and IP addresses.

— Evaluation of the proposed approach on one day of proxy and DNS logs col-
lected from a global enterprise, and demonstrating its capability to correct the
inaccuracy in the original ground truth but also detect previously unknown
malicious domains and IP addresses.

The rest of this paper is organized as follows. First, we provide some necessary
background information while covering the most influential literature. In section
3, we introduce our approach for detecting malicious entities. Section 4 provides
an overview of our implementation. Section 5 describes our dataset and the
experimental setup. Section 6 focuses on the evaluation and discussion. Section
7 discusses the limitation of our work and the potential directions for the future
work, and finally, we conclude this paper in Section 8.

2 Background and Related work

2.1 Proxy and DNS Logs

Nowadays, the majority of organizations, collect and store event logs generated
by different components in the organization’s premises such as firewalls, operat-
ing systems, proxy and DNS servers. Although traditionally the primary usage
of these event logs was troubleshooting problems, nowadays they are collected
due to mostly regulatory compliances and posthoc analysis. Two most valuable
sources of event logs collected by many enterprises are DNS and proxy logs.
While grasping the functionalities of proxy and DNS servers are beyond the
scope of this paper, we will briefly cover the value of the logged events in the
context of security analytics, and we would like to refer the reader to [13] and
[22][23] to learn more about proxy servers and Domain Name System (DNS)
respectively.

Due to the fact that web traffic is typically allowed by most of firewalls,
HTTP, HTTPS, and DNS traffic is extensively abused by cybercriminals to
reach the end users (e.g drive-by download, phishing website, bots communica-
tion with command-and-control servers , infrastructure management using fast
fluxing [10], etc.), hence leading to the popularity of proxy and DNS log analysis
in the security domain.

In this regard, Manners [19] discusses how it is possible to detect malicious
entities based on abnormal or rare user agent string. Oprea et al. [25] address
the problem of detecting suspicious domains (associated with C & C) using fea-
tures extractable from proxy logs. These features include domain connectivity

4 Pejman Najafi et al.

(the number of hosts contacting to a domain), the referrer string, the user-agent
string, access time correlation (domain visited by the same client within a rela-
tively short time period), and IP space proximity. Ma et al. [17] [16] discuss the
detection of malicious websites based on lexical and host-based features of their
URL (e.g., number of dots) with the intuition that malicious URLs exhibit cer-
tain common distinguishing features. Zhang et al. [36] use term frequency /inverse
document frequency (TF-IDF) algorithm to tackle malicious URL detection, and
Zhao et al. in [37] tackle the same problem using Cost-Sensitive Online Active
Learning (CSOAL).

One of the first studies that explore DNS traffic analysis is [31] which pro-
poses the construction of a passive DNS database by aggregating and collect-
ing all unique, and successfully resolved DNS queries. This database is widely
referred to as pDNS and is greatly adopted and researched in the security com-
munity. In this regard, Bilge et al. [3] introduce EXPOSURE, a system that
employs large-scale, passive DNS analysis to detect malicious domains using
features such as the number of distinct IP addresses per domain, number of the
domains sharing an IP, average TLL, the percentage of numerical characters. In
a similar research, Antonakakis et al. [1], propose Notos by focusing on the de-
tection of agile malicious usage of DNS (e.g., fast-flux, disposable domains) using
pDNS analysis. Notos distinguish itself by not only analyzing those features used
in EXPOSURE, but also harvesting and analyzing complementary information
such as the registration, DNS zones, BGP prefixes, and AS information. Later
Antonakakis et al. [2] propose another system called Kopise. In contrast to Notos
and EXPOSURE which analyze the traffic captured from local recursive DNS
servers, Kopis monitor the traffic at the upper level of DNS hierarchy which pose
its advantages and disadvantages. Perdisci et al. [27] investigate the detection of
malicious flux service networks, and Yadav et al. address the problem of detect-
ing algorithmically generated domain names used in domain and IP fluxes by
looking at distribution of alphanumeric characters as well as bigrams of domains
that are mapped to the same set of IP-addresses [34].

Our approach is fundamentally different to those mentioned above as those
mostly target local features presented in proxy and DNS logs whereas we are
interested in global features. We focus on identifying connected malicious entities
based on their traces presented in those logs. We shall discuss our approach
further in Section 3.

2.2 Graph-Based Inference

Inference refers to the process of reasoning about a variable based on a set of
observations and evidence related to that variable. In this regard, graphs are
ideal for capturing the correlation and dependency among different variables.
That is the main reason why graph-based inference has been widely adopted in
different research areas to tackle various inference problem with the intuition
that neighboring nodes influence each other and this influence can be either
homophily (i.e., nearby nodes should have similar labels) or heterophily (i.e.,
nearby nodes should have different labels).

Guilt-by-Association: Detecting Malicious Entities via Graph Mining 5

The most notable and popular graph based inference techniques are graph-
based Semi-Supervised Learning, Random Walk with Restart, and Belief Propa-
gation.

Random Walk with Restarts (RWR) is initially introduced as the underlying
algorithm for Google’s famous PageRank [4]. At high level, PageRank algorithm
uses link information to assign global importance scores to all pages on the web
(a web page can be considered as important if other important pages point to it).
Similarly, TrustRank introduced by [9] adopts PageRank with different random
walks to detect web spams by propagating trust label rather than importance.
Other researchers have also built on top of TrustRank with minor changes in-
troducing Distrust Rank and SybilRank [32] [5]

Semi-Supervised Learning (SSL) techniques adopt the inference problem in
machine learning to utilize unlabeled data with the intuition that similar data
points connected by edges which represent their similarity should have same
labels (also known as label propagation). Zhu et al. [38] introduce one of the
pioneer works in graph-based SSL. The authors formulate the learning problem
in terms of a gaussian random field on a graph in which vertices are labeled
and unlabeled data and the edges are weighted similarities between vertices.
Understanding the graph-based SSL is beyond the scope of this paper, to learn
more, we refer the reader to [39]

Finally, Belief Propagation (BP) originally proposed by Judea Pearl [26] also
known as sum-product is one of the most efficient and popular inference algo-
rithm used in probabilistic graphical models such as Bayesian Networks and
Markov Random Fields. BP has been successfully applied to various domains
such as image restoration (8], error-correcting [21], fraud detection, and malware
detection [6].

For the purpose of this research, we have adopted BP due to its scalability
and its success in other fields. In this regard, although there are still several
important literature to cover for other graph inference techniques, the rest of
this paper we will focus only on BP and the most influential literature that
have adopted BP for the purpose of threat detection. To better understand
the difference between the described graph-based inference techniques we would
like to refer the reader to [15] where Koutra et al. compare graph-based Semi-
Supervised Learning, Random Walk with Restart, and Belief Propagation, as this
task is also beyond the scope of this paper and perhaps left to our future work.

2.3 Belief Propagation

Marginal probability estimation in graphs is known to be NP-complete, however,
belief propagation provides a fast approximate technique to estimate marginal
probabilities with time complexity and space complexity linear to the number
of edges in a graph.

At the high level, BP infers a node’s label from some prior knowledge about
that node and other neighboring nodes by iteratively passing messages between
all pairs of nodes in the graph. In this regard, in each iteration ¢ every node i
generates its outgoing messages based on its incoming messages from neighbors

6 Pejman Najafi et al.

in iteration ¢t — 1. Given that all messages are passed in every iteration, the order
of passing can be arbitrary.

Let m;; denote the message sent from ¢ to j which intuitively represents 4’s
opinion about j’s likelihood of being in state x;. This message is a vector of
messages for each possible class, i.e., m;; (x; = malicious) and m;; (z; =
benign). Mathematical determined as follows:

mi;(x;) Z d(xs) Yij(xi, x;) H M (x;) (1)

z;€X keEN(i)\Jj

where N (i) is the set of nodes neighboring node 4, and (x;,z;) is the edge
potential which indicates the probability of a node i being in class z; given that
its neighbor j is in class x;. ¢(z;) is called the node potential function which
denotes the prior knowledge about a node, i.e., the prior probability of node i
being in each possible class (in our case malicious and benign classes). And z;
represents a state from state space X.

The message passing phase terminates when messages do not change sig-
nificantly between iterations, i.e., given a similarity threshold, the difference
between the message sent from node i to node j at the iteration ¢ and ¢ — 1 is
less than the threshold, or when the algorithm reaches a predefined maximum
number of iteration. At the end, each node will calculate its belief which is an
estimated marginal probability, or formally b;(z;)(= P(x;)) which represented
the likelihood of random variable X; to take value z; € {Zmai, Tpen + determined
as follows:

bi(x;) = ko(x;) H mji(2;) (2)
x;EN(3)
where k is a normalizing constant to ensure the node’s beliefs add up to 1 [35].

The original belief propagation algorithm proposed by Pearl [26] was designed
to operate on singly connected networks (tree-structured graphical models), and
provides an exact inference with all nodes’ beliefs converging to the correct
marginal in a number of iterations equal to the diameter of the graph (at most
the length of the longest path in the graph). Although the presence of loops will
cause the messages to circulate indefinitely hence not allowing the convergence to
a stable equilibrium, it is possible to apply the algorithm to arbitrary graphical
models by ignoring the presence of any potential cycles in the graph. This is
typically referred to as loopy belief propagation (LBP) [24]. The convergence of
loopy belief propagation is not guaranteed and the results are considered to be
approximate, however, in practice, it often arrives at a reasonable approximation
to the correct marginal distribution.

We shall later describe how we have adopted and tailored LBP to incorporate
our domain knowledge which through the remainder of this paper will be referred
to as BP algorithm.

2.4 Threat Detection via Belief Propagation

Malware detection is one of the areas that have successfully adopted BP. In this
regard Polonium [6] is one of the first works tackling the problem of malware

Guilt-by-Association: Detecting Malicious Entities via Graph Mining 7

detection using large-scale graph inference with the intuition that good appli-
cations are typically used by many users, whereas, unknown (i.e., potentially
malicious) applications tend to only appear on few computers. To test this hy-
pothesis, the authors generated an undirected, unweighted bipartite machine-file
graph, with almost 1 billion nodes and 37 billion edges. The graph vertices are
of two types: machine and file vertices and the edges indicate the observation
of a file on a machine. Polonium was not only evaluated using a prepared vali-
dation set but also tested in the-field by Symantec. In this regard according to
Symantec’s experts, Polonium has significantly lifted the detection rate by 10
absolute percentage points while maintaining 1% false positive rate when com-
pared to other existing methods. This is arguably one of the most successful
research adaptation of BP and graph inference in the security domain showing
the potentials of this approach.

In a similar research, Tamersoy et al. [30] propose Aesop, a very similar
system, that tackles the same problem. In this regard, Aesop utilizes locality
sensitive hashing to measure the similarity between files to eventually construct
a file to file graph to infer the files’ goodness based on belief propagation. while
Polonium is more concerned with the observation of malicious files on malicious a
machine (i.e., file to machine relationship), Aesop is concerned with the similarity
of files (file to file relationship).

Manadhata et al. [18] adopt BP and graph inference to detect malicious do-
mains using enterprise’s HTTP proxy logs. This is achieved by running BP on
a host-domain graph which captures the enterprise’s host connection to exter-
nal domains. The authors estimate the marginal probability of a domain being
malicious based on minimal ground truth. The intuition in this research is that
infected hosts are more likely to visit various malicious domains whereas user
behavior on benign hosts should result in benign domain access. The authors
run BP on a constructed host-domain graph showing their approach capability
to classify malicious domains with 95.2% TPR with a 0.68% FPR using 1.45%
ground truth (blacklisted and whitelisted entities).

Our approach described in the next section is very similar to the one described
by Manadhata et al., however, while Manadhata et al. are interested in machine
to domain relationship, we are interested in domain to domain, domain to IP, and
IP to IP relationships. More specifically while they mine proxy logs to construct
a graph based on the relationship between internal entities and external entities
(i.e., connections from client machine to external domains), we mine both proxy
and DNS logs to construct a graph based on the relationships between external
entities themselves (e.g., domain resolving to an IP address, or domain name
referring to another domain name).

Other similar research includes [40] which takes a similar approach to [18]
while focusing on DNS logs rather than proxy logs. In his regard, the authors fo-
cus on three main relationships extractable from DNS logs: 1) connectsTo which
indicates enterprise’s host connected to a domain, 2) resolvedTo (DNS record
type A) which indicates a domain resolving to an IPv4 address, and 3) CNAME
which indicates a domain being an alias for another domain. [12] investigates the

8 Pejman Najafi et al.

connection between domain, IP and URL. Opera et al. [25] address early-stage
APT detection using BP on host-domain graph extracted from proxy logs. And
Rahbarinia et al. [28] propose Segugio to detect new malware-control domains
based on DNS traffic analysis with a very similar intuition to [18].

3 Our Approach

3.1 Problem Description

Formally we formulate our inference problem as follows:

Given:

— An undirected graph G = (V, E) where V corresponds to the collection of
domain names and IP addresses, and F corresponds to the set of relationships
between those domain and IP nodes. V and E are extracted from events in
proxy and DNS Logs.

— Binay class labels X € {41, Then} defined over V| where 2,,q; represents
malicious label, and P(x,,q;) the probability of belonging to class malicious.
Note that P(zq;) and P(Zpen) sums to one.

Find: The marginal probability P(X; = Zmai), i-€., the probability of node i
belonging to class malicious.

3.2 Graph Construction

The graph G = (V, E) is constructed from events in the proxy and DNS logs.

The set of vertices V consists of two types of nodes: domain names and IP ad-
dresses. Domain names are valid parts of a fully qualified domain name (FQDN)
excluding the top-level domain (TLD). For instance, considering x.example.com
as a given FQDN, we then take example.com as the second-level domain and
x.example.com as the third-level domain. Domain names are extracted from des-
tination URLs in proxy logs, and the query section of A records presented in
DNS logs. IP addresses are validated IP version 4 addresses observed in DNS
logs (A records), and occasionally in proxy logs (sometimes the URL contains
an IP address rather than a FQDN, also some proxy servers log the resolved IP
address).

The set of edges E expresses three distinct relationships: subdomainOf, re-
ferredTo, and resolved To. In this regard, the subDomainOf relationship captures
the dependency between different level of a FQDN, e.g., x.example.com is a sub-
DomainOf example.com. This relationship is extracted from any valid FQDN
logged in DNS or proxy logs. referredTo captures the connection between two
domain/IP nodes if one has referred to the other one. This feature is extracted
from the referer field in HTTP request-header logged in proxy logs. And finally,
resolvedTo captures the DNS resolution of a domain name to an IPv4 address,
which is presented in DNS logs and occasionally in proxy logs. Figure 1 shows

Guilt-by-Association: Detecting Malicious Entities via Graph Mining 9

the graph constructed from raw events presented in DNS and proxy logs, and
illustrates different type of nodes and relationships used in graph G.

IP_1
(93.184.216.34)

Proxy Log

2017-05-20 23:59:58 14X55 10.XXX.XXX.X 200 TCP_MISS
5XXX5 5XXX7 GET http x.example.com 80
/some/path/someFile.extension - - -

sDomain_1

(x.example.com)

resolvedTo referredTo

http://example2.ru/some/otherPath/X.html "Mozilla/5.0
(iPhone; CPU iPhone 0S X_X X like Mac 0S X)
AppleWebKit/X (KHTML, like Gecko) Mobile/13G36 [XXX]"
777777777 XX XX - - - -

Domain_2/IP_2
(example2.ru)

subdomainOf

DNS Log

May 20 23:59:59 192.XXX.XXX.XXX named[XXX]: client
10.XXX. XXX, X#XXX (example.com): view 2:
query:example.com IN A + (93.184.216.34)

Domain_1

(example.com)

Fig. 1. domain-ip graph constructed from a sample of raw events in DNS and proxy logs
showing the association between domain and IP nodes using subdomainOf, referredTo,
and resolvedTo relationships

Our intuition for these three relationships is: First, the usage of subdomains is
one of the simplest yet effective techniques used by cyber criminals (e.g., DGA
and domain shadowing) to evade blacklisting. Intuitively, different levels of a
FQDN should belong to the same class. For instance, if x.example.com is listed
as a malicious entity by a threat intelligence feed, it is likely that example.com
and any other k-level domain under example.com (e.g., y.example.com) is also
malicious. Second, the majority of the malware serving networks are composed of
a tree-like structure in which the victims are usually redirected through various
hops before landing on the main distribution site [20]. Although different victims
might land on totally different sites, the redirection paths are usually overlapped.
Furthermore, the HTTP referrer is also set while a domain (e.g., a website)
is loading its modules from potentially different servers, therefore, indicating
association among different domains. In this regard, the HTTP referrer can be
used to infer the probability of a node being malicious based on the neighboring
malicious nodes that have referred to it or it has referred to. One could also
expand the referrer list by implying ”referring” based on the correlation among
different requests presented in proxy logs (e.g., requests from the same client in a
short period of time) And finally, if a domain is listed as a malicious, intuitively
we could assume that the resolved IPv4 address of that domain should also be
labeled malicious at least for the duration of that resolution and vice versa.

3.3 Adaptation of BP

In this section, we describe our adaptation of BP algorithm described in section
2 while incorporating domain knowledge, ground truth, and relationship weights

Node Potential: As previously explained the node potential represents the
prior knowledge about the state of each node. In this regard, we will assign
different node potential to domain and IP nodes based on the ground truth. For
example, we assign a prior P(X; = Zyq) = 0.99 to the node i, if i is presented

10 Pejman Najafi et al.

in the collected malicious domain /TP list, or assigning P(X; = Z,q1) = P(X; =
Zpen) = 0.5 for the nodes that are neither in the malicious list nor in the benign
list (i.e., they are equally likely to be malicious or benign). Note that we avoid
assigning a probability of 1 to any nodes to account for possible errors in the
ground truth. Table 1 shows the node potentials assigned to each vertex on the
graph, based on the prior knowledge (belief).

Table 1. Node potential based on the original state

Node P(malicious)|P (benign)
Malicious|0.99 0.01
Benign |0.01 0.99
Unknown|0.5 0.5

Edge Potential: We will adjust the edge potential matrices to capture the
intuition that neighboring nodes are more likely to have the same state due to
a homophilic relationship.

Moreover, due to the fact that our graph consists of three unique edge types
(referredTo, resolvedTo, subDomainOf) it is important to introduce a way to
incorporate edge weight (importance). For example, two neighboring nodes that
are connected via resolvedTo relationship should influence each other more than
two nodes that are connected via referredTo. This edge weight is also incorpo-
rated in the edge potential. Table 2 shows the adjusted edge potential matrices.

Table 2. Edge potentials matrices

Vij (X, x5) x; = benign|z; = malicious
r; = benign 0.5 + we 0.5 — we
z; = malicious|0.5 — we 0.5 + we

We experimented with different edge potential (adjusting €) and although we
noticed changes in final probability distributions, the end results were compa-
rable as long as the weights captured the importance of different relationships.
After experimenting with different w and e¢ and we appointed them as follows:
WreferredTo = 055 WresolvedTo — 1.5 y WsubdomainOf — 15, and € = 0.1. It is
worth to mention that although the edge weights seem trivial in this research,
they will have a much higher impact when adding more edge types, therefore we
will investigate them further in our future work.

Message Passing There are two variants of message updating and passing
protocol in BP: asynchronous and synchronous. At high level, in asynchronous
BP, also known as sequential updating scheme, messages are updated and passed
one at a time, whereas, in synchronous BP, also known as parallel updating
scheme, messages are updated and passed in parallel.

Guilt-by-Association: Detecting Malicious Entities via Graph Mining 11

Although BP is computationally efficient, i.e., the running time scales linearly
with the number of edges in the graph, it is not sufficient to run it in the
asynchronous mode for a graph of billion nodes and edges. Therefore, for large
graphs, it is crucial to adopt parallel BP which can utilize multi-core architecture
and parallelly execute the message updates and beliefs calculations.

4 Implementation

Due to the scalability requirements, we have implemented the BP algorithm
with parallel updating scheme using Apache Spark framework. Apache Spark,
the successor to Hadoop MapReduce is one of Apache’s open-source projects
that has gained so much momentum in both industry and academic due to its
power of handling big data analytics. We have not only implemented the BP
algorithm in Spark but also the extract, transform, load (ETL) modules as well
as the graph itself. This design makes it possible to not only scale up (i.e., take
advantage of more powerful hardware) but also scale out (i.e., distributing all
modules to different machines).

Our implemented system is composed of five modules: 1) Extraction, 2) Trans-
formation, 3) Ground Truth Construction (GTC), 4) Loading, and 5) BP as shown
in figured 2. In summary, the extraction module, preprocesses the DNS and proxy
logs by extracting, parsing, and validating the fields of interest as described in the
previous sections. Then the transformation module converts the extracted values
into unique vertices and edges. The ground truth construction (GTC) module
is respounsible for combining and adjusting the collected list of malicious/benign
domain and IPv4 addresses, removing duplicate and the unmatched entities (ma-
licious and benign entities that are in ground truth but not observed in the event
logs). This module is also responsible for carefully selecting the validation set.
The loading module receives the output of the transformation and GTC modules
to construct a property graph and labeling each vertex based on ground truth
(malicious, benign, unknown). And finally, BP module converts the constructed
graph to Markov Random Field with the provided node and edge potentials,
then runs the implemented BP algorithm to compute the beliefs following the
procedure described in the previous section. In order to avoid numerical under-
flow (zeroing-out values), the whole math performed by BP module is carried in
the log domain.

5 Exprimental Setup

5.1 Dataset description

For the purpose of this research, we had access to one-day proxy and DNS logs
collected from a large global enterprise. More specifically, 0.74TB (terabytes) of
proxy logs and 1.2TB of DNS logs containing DNS requests and responses.

12 Pejman Najafi et al.

on HDFS

Raw Data K Spark Jobs \ Output

>

Extraction ‘ iTransformalion ‘ : \ :
> — h ' . :
' Module ¢+ Module : ! .
: Pl ; ! Loading | BP
””””””””””” ! Module > Module

Fig. 2. System Architecture Diagram

There is a total of 0.91B (billion), and 0.35B events in DNS and proxy logs
respectively. After running ETL modules on those events we were capable of ex-
tracting approximately 1.89M (million) unique vertices and 4.29M unique edges

5.2 Ground Truth description

To assign priors to domain and IP vertices, a ground truth set was prepared by
collecting a list of known malicious domain and IP addresses from both a com-
mercial threat intelligence platform and various freely available sources including
(but not limited) to Google Safe Browsing, AlienVault Open Threat Exchange,
malwaredomainlist.com, malwaredomains.com. Similarly, we obtained a list of
known benign domains from Cisco Umbrella (top one million most popular do-
mains).

Ultimately, we were capable of collecting approximately 1M (million) unique
malicious domains, 1M unique malicious IP addresses, and 1M unique benign
domains. Once we checked those against our event logs we had a total of 2.12K
(thousand) matched malicious entities and 0.29M (million) matched benign en-
tities. This large gap and bias in the ground truth are due to the fact that it is
quite unlikely for the enterprise hosts to be massively infected, i.e., the domains
visited by the client were more likely to be benign rather than malicious. There-
fore we had to adjust the benign data set to hold a balance between malicious
and benign entities.

5.3 Hardware Setup and Runtime

Due to the fact that the entire modules are implemented in Apache Spark, it
is possible to run the proposed approach on any configuration of hardware. In
this regard, for the purpose of this research, we ran our experiment on a Spark
cluster configured with 28-core 2.00 GHz linux machine with 100GB of RAM.
Although, investigating the efficiency and the performance of the modules
is beyond the scope of this research, to get a grasp of its performance, using
the dataset and the hardware described above , the Extraction, Transformation,
Ground Truth Construction, and Loading Modules all together take almost 50

Guilt-by-Association: Detecting Malicious Entities via Graph Mining 13

minutes. In other words, 50 minutes to read the raw proxy and DNS logs as well
as the collected GT, preprocess them, and write a parquet file containing the
prepared unique vertices and unique edges. Then the BP module takes almost
90 minutes to read that parquet file, construct the Markov network and run 7
iterations of the described BP.

As discussed before, since there is no guarantee of BP convergence, it is
important to introduce a convergence threshold. During our experiments, we
noticed that 7 to 10 iterations were sufficient to get a reliable estimate. That
means after 10 iterations the difference between the messages sent from i to
J in iteration ¢t compared to t — 1 was negligible. It is worth to mention that
the definition of negligible (i.e., convergence threshold) must be proportional
to the edge potential matrices. In this regard, trying to spot small convergence
threshold while assigning large values to w, or € will produce many unnecessary
iterations. In our experiment we set it to 0.01. This is due to the fact that our
choice for the edge potential metrics forced a high influence.

It also worth to mention that despite our effort to adopt various techniques
and design patterns to increase the performance of our modules, we noticed some
idle time in the BP module which we suspect is due to our setup. In this regard
our hardware setup with 100GB of memory seems to be insufficient to hold the
whole graph while running the BP and therefore causing SWAPs, 10s, as well
as heavy garbage collection. It is possible to greatly improve the above numbers
using various techniques suggested by Apache Spark! to tune the performance
even on the same hardware setup.

6 Results and Discussion

In this section, we describe the evaluation of our approach based on the data
set, ground truth and the experimental setup described above.

6.1 Validation

As mentioned before, one the GTC module’s tasks is to carefully select a list
of samples for the purpose of validation. In this regard, after constructing the
ground truth which consists of a balanced number of matched malicious and
benign entities (i.e., domains and TP addresses), the GTC module carefully marks
n samples for validation and the rest for training. Then the BP module uses the
training set to set up the priors and assigns an unknown prior to nodes marked
for the validation.

This validation set must be chosen carefully as it is quite likely that a node
presented in the validation set would have no path to any node presented in the
training set therefore not allowing us to properly evaluate our system. This is
due to the fact that it is quite rare to find two connected malicious entities both
presented in a blacklist or a TI feed (e.g., finding a domain and its resolved IP

! http:/ /spark.apache.org/docs/latest /tuning.html

14 Pejman Najafi et al.

address both listed in a retrievable list). The majority of these feeds, only list
the malicious entities they have observed (e.g., the IP address of the phishing
site, or the domain name for a malware hosting domain).

Hence, before taking the samples, we had to calculate the connected com-
ponents in our GT and choose the validation samples from those. For example,
if we take node i as a malicious node for validation, it must have a path to
at least another malicious node within the constructed graph. Furthermore, to
hold a balance between benign and malicious nodes, we took half of the samples
from malicious connected components and the other half from benign connected
components.

We present our detection capability as Receiver Operating Characteristic
(ROC) plot as shown in figure 3. This is achieved by thresholding malicious
belief of nodes presented in the validation set. For instance, given a threshold
t, and a node 1, if i’s malicious belief, P(X; = ma) > t, then we predict i as
malicious; else benign. This prediction is then compared to the ¢’s original label
to determine this detection as false positive, true positive, false negative, or true
negative. After repeating this procedure for all the nodes in the validation set,
it is possible to compute FPR and TPR for a given threshold ¢. And finally, plot
the ROC based on different selections of ¢ in the range of [0,1].

As we can see the area under the ROC curve (AUC) is 91% (the higher the
AUC, the better the classification), while we achieve 96% TPR with an 8% FPR.

@ -
10}
@
w
Z o
=
,‘6
[
2 <
(=]
™ -
(=]
o | |
o
T T T T T T
0.0 02 04 06 08 10
1- specificity

Fig. 3. Receiver Operating Characteristics (ROC) Plot

Guilt-by-Association: Detecting Malicious Entities via Graph Mining 15
6.2 Analysis of False Positives and False Negatives

To better understand the classification accuracy and the reason for the high
FPR, we investigated the false positives (FPs) and the false negatives (FNs), i.e.,
benign domains that were wrongly classified as malicious and malicious entities
that were wrongly classified as benign. We noticed the following observation
when investigating these entities.

The majority of the FNs were entities associated with either cloud-based
or online advertising services which introduce a significant challenge to our ap-
proach. For instance, we noticed that although some services were marked ma-
licious in our ground truth, after running BP they were classified as benign due
to their association with more benign entities. This decision making is reason-
able as it does not fully make sense to mark an advertising platform completely
malicious due to one malicious ad. Other FNs were malicious IP addresses that
our system classified as benign, once investigated, we realized that although they
may have been malicious at some point, that was no longer true. This classifica-
tion can also be explained as these IP addresses were managed by cloud-based
services that have reassigned those IP address.

FPs fell into two groups, first, entities that were classified wrongly due to
a bad report from a TI source. For example, we noticed that there were some
sub-domains that had their top-level domain wrongly blacklisted by Cisco Web
Security Appliance 2 and therefore propagated to one of the threat intelligence
sources we consumed, causing the subDomainOf relationship to overpower all the
other referredTo relationships and eventually be classified as malicious. Second,
entities that system correctly identified as malicious despite the fact that they
were labeled benign in GT. For instance, we were able to identify 6 entities that
had turned malicious just recently and the system was capable of detecting those
based the referredTo relationship to other malicious entities.

In summary, the FNs and FPs were mostly the result of bad GT (inaccurate
threat intelligence), and the attempt of the system to correct that inaccuracy.
This investigation shows that although it is better to validate the crawled and
consumed threat intelligence, it is not crucial as such system with more paths
could potentially correct the TI inaccuracy.

6.3 Previously Unknown Malicious Entities

We also investigated the ability of our approach to detect new malicious entities
(i.e., entities that were not presented in the ground truth). After running the
BP, we selected the top 100 entities that were assigned a high probability of
belonging to class malicious and did not exist in the GT.

Although validating these entities is a challenging task (i.e., how one decides
maliciousness), for the purpose of this research we manually validated those en-
tities and concluded maliciousness if we observed a reputable threat intelligence

2 https://www.cisco.com/c/en/us/products/security /web-security-
appliance/index.html

16 Pejman Najafi et al.

source (e.g., VirusTotal®, URLVoid?, AlienVault Open Threat Exchange®) re-
porting on that entity. It is also worth to mention that for this task, we discarded
the indicator’s time stamp (i.e., the time in which that entity was seen). This
is due to the fact that, investigating and validating the maliciousness period, is
itself an extremely challenging task.

74% of those entities were, in fact, malicious entities that did not exist in
our GT, but have been reported as malicious by several other TI sources. These
entities were mostly domains and IP addresses associated with services running
on CloudFront®. 9% were entities that we could not find any information about.
They seem to be either services that were active for a short period of time
and detected to be malicious based on their previous association with malicious
entities, or the result of DGA. However, we could not validate those intuitions
as there was no trace of them on the internet. And the rest were entities that
were classified wrongly.

In summary, investigating previously unknown malicious entities showed that
our approach was capable of detecting new malicious entities that were not pre-
sented in our ground truth. And despite the fact that there were some misclas-
sified entities (FPs), this approach is still extremely effective as blocking these
FPs would not have a drastic effect, due to the fact that the main reason for
classifying them as malicious, was, not being associated with major benign en-
tities.

7 Future Work

One of the limitations of our work is the experimental setup. In this regard, we
only had access to one day of proxy and DNS logs. It could be interesting to
investigate how increasing the volume of the event logs will affect the detection.
One could expect to have a better detection accuracy, as there will be more
paths within the graph.

Next, there was a time gap of 6 months between our ground truth preparation
and events collected by the enterprise’s servers, i.e., the event logs were already 6
months old by the time we got access to them. This could potentially introduce
various errors into our detection capabilities as usually threat intelligence feeds
are time sensitive. It would be interesting to evaluate this system on live event
logs and based on more accurate ground truth.

The next limitation of this system as in its current status is the fact that a
malicious entity (e.g., a malicious domain) is capable of defeating the system by
referring to many benign entities. Although it is quite unlikely that this is cur-
rently happening, to prevent such scenario, one could adjust the edge potential
to only allow propagation in one direction. We plan to investigate this behavior
in our future work.

3 https://www.virustotal.com

* http://www.urlvoid.com

® https://otx.alienvault.com/

5 https://aws.amazon.com/cloudfront

Guilt-by-Association: Detecting Malicious Entities via Graph Mining 17

Furthermore, in this paper, we only focused on three main relationships that
directly connect domain names and IPv4 addresses. However, one could investi-
gate indirect relationships such as nameServerFor, mailServerFor, aliasFor, with
the intuition that cyber criminals tend to reuse infrastructure for their malicious
entities. Additionally, it is also possible to take other host-based relationships
into consideration (e.g., user agent, IP address, MAC address), thus enabling
the propagation of the client machines’ reputation to domains and IP addresses
(a similar approach to [18][40]).

In addition, it is also possible to look into enriched relationships such as
registrar information, IP ranges, ASN, and BPG in order to construct a larger
graph with a higher connectivity. Antonakakis, et al. [1] make use of BGP, AS,
and registration features as part of their feature set to detect malicious domains.
[25] uses IP space proximity to measure the similarity between domains, [33]
and [7] investigate features such as name servers, and registrant information to
detect malicious domains. In this regard, the investigation of these combined
relationships pose an interesting direction for the future work.

Finally, one could combine the global features (i.e., the features that would
allow us to either directly or indirectly connect two entities) together with local
features, such as, URL structure, port number, request/response length, and
etc. This combination of global and local features should, in theory, improve the
accuracy.

8 Conclusion

In this paper, we tackled the problem of detecting malicious domains and IP
addresses by transforming it into a large-scale graph mining and inference prob-
lem. In this regard, we proposed an adaptation of belief propagation to infer
maliciousness based on the concept of guilt-by-association using subdomainOYf,
referredTo, and resolved To relationships between IP and domain nodes. We eval-
uated our approach by running an adaptation of loopy belief propagation on a
graph constructed from 2TB of proxy and DNS logs collected from a global en-
terprise. The results showed that our system attained a TPR of 96% at 8% FPR.
While investigating the FP and FN we noticed the mistakes in the GT which
was corrected by our system. We also investigated the system’s ability to detect
previously unknown malicious entities and demonstrated its capability to extend
threat intelligence and blacklist by detecting new malicious entities.

References

1. Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., Feamster, N.: Building a dy-
namic reputation system for dns. In: USENIX security symposium. pp. 273-290
(2010)

2. Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou II, N., Dagon, D.: Detecting
malware domains at the upper dns hierarchy. In: USENIX security symposium.
vol. 11, pp. 1-16 (2011)

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

Pejman Najafi et al.

Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: Exposure: Finding malicious do-
mains using passive dns analysis. In: Ndss (2011)

Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer networks and ISDN systems 30(1), 107-117 (1998)

Cao, Q., Sirivianos, M., Yang, X., Pregueiro, T.: Aiding the detection of fake
accounts in large scale social online services. In: Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation. pp. 15-15. USENIX
Association (2012)

Chau, D.H.P., Nachenberg, C., Wilhelm, J., Wright, A., Faloutsos, C.: Polonium:
Tera-scale graph mining and inference for malware detection. In: Proceedings of the
2011 SIAM International Conference on Data Mining. pp. 131-142. SIAM (2011)
Felegyhazi, M., Kreibich, C., Paxson, V.: On the potential of proactive domain
blacklisting. LEET 10, 6-6 (2010)

Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Inter-
national journal of computer vision 40(1), 25-47 (2000)

Gyongyi, Z., Garcia-Molina, H., Pedersen, J.: Combating web spam with trustrank.
In: Proceedings of the Thirtieth international conference on Very large data bases-
Volume 30. pp. 576-587. VLDB Endowment (2004)

Holz, T., Gorecki, C., Rieck, K., Freiling, F.C.: Measuring and detecting fast-flux
service networks. In: NDSS (2008)

Howard, F.: A closer look at the Angler exploit kit. https://news.sophos.com/
en-us/2015/07/21/a-closer-look-at-the-angler-exploit-kit/ (2015)
Huang, Y., Greve, P.: Large scale graph mining for web reputation inference. In:
Machine Learning for Signal Processing (MLSP), 2015 IEEE 25th International
Workshop on. pp. 1-6. IEEE (2015)

Karen A. Scarfone, P.H.: Guidelines on firewalls and firewall policy. https://wuw.
nist.gov/publications/guidelines-firewalls-and-firewall-policy (2009)
Kotov, V., Massacci, F.: Anatomy of exploit kits: Preliminary analysis of exploit
kits as software artefacts. In: Proceedings of the 5th International Conference on
Engineering Secure Software and Systems. pp. 181-196. ESS0S’13, Springer-Verlag,
Berlin, Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-36563-8_13
Koutra, D., Ke, T.Y., Kang, U., Chau, D., Pao, H.K., Faloutsos, C.: Unifying guilt-
by-association approaches: Theorems and fast algorithms. Machine Learning and
Knowledge Discovery in Databases pp. 245-260 (2011)

Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect
malicious web sites from suspicious urls. In: Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining. pp. 1245-1254.
ACM (2009)

Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Identifying suspicious urls: an applica-
tion of large-scale online learning. In: Proceedings of the 26th annual international
conference on machine learning. pp. 681-688. ACM (2009)

Manadhata, P.K., Yadav, S., Rao, P., Horne, W.: Detecting malicious domains via
graph inference. In: European Symposium on Research in Computer Security. pp.
1-18. Springer (2014)

Manners, D.: The user agent field: Analyzing and detecting the abnormal or ma-
licious in your organization (2011)

Mavrommatis, N.P.P., Monrose, M.A.R.F.: All your iframes point to us (2008)
McEliece, R.J., MacKay, D.J.C., Cheng, J.F.: Turbo decoding as an instance of
pearl’s” belief propagation” algorithm. IEEE Journal on selected areas in commu-
nications 16(2), 140-152 (1998)

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Guilt-by-Association: Detecting Malicious Entities via Graph Mining 19

Mockapetris, P.: Domain names - concepts and facilities. https://www.ietf.org/

rfc/rfc1034.txt (1987)

Mockapetris, P.: Domain names - implementation and specification. https://wuw.
ietf.org/rfc/rfc1034.txt (1987)

Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate
inference: An empirical study. In: Proceedings of the Fifteenth conference on Un-
certainty in artificial intelligence. pp. 467-475. Morgan Kaufmann Publishers Inc.
1999

(Oprea%, A., Li, Z., Yen, T.F., Chin, S.H., Alrwais, S.: Detection of early-stage en-

terprise infection by mining large-scale log data. In: Dependable Systems and Net-

works (DSN), 2015 45th Annual IEEE/IFIP International Conference on. pp. 45—
56. IEEE (2015)

Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann (2014)

Perdisci, R., Corona, 1., Dagon, D., Lee, W.: Detecting malicious flux service net-

works through passive analysis of recursive dns traces. In: Computer Security Ap-

plications Conference, 2009. ACSAC’09. Annual. pp. 311-320. IEEE (2009)
Rahbarinia, B., Perdisci, R., Antonakakis, M.: Segugio: Efficient behavior-based

tracking of malware-control domains in large isp networks. In: Dependable Systems
and Networks (DSN), 2015 45th Annual IEEE/IFIP International Conference on.
pp. 403-414. IEEE (2015)

Rocha, L.: Neutrino exploit kit analysis and threat indicator (2016)

Tamersoy, A., Roundy, K., Chau, D.H.: Guilt by association: large scale malware
detection by mining file-relation graphs. In: Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. pp. 1524—1533.
ACM (2014)

Weimer, F.: Passive dns replication. In: FIRST conference on computer security

incident. p. 98 (2005)

Wu, B., Goel, V., Davison, B.D.: Propagating trust and distrust to demote web

spam. MTW 190 (2006)

Xu, W., Sanders, K., Zhang, Y.: We know it before you do: predicting malicious

domains. In: Proc. of the 2014 Virus Bulletin Intl. Conf. pp. 73-77 (2014)

Yadav, S., Reddy, A.K.K., Reddy, A.N., Ranjan, S.: Detecting algorithmically gen-

erated domain-flux attacks with dns traffic analysis. IEEE/Acm Transactions on

Networking 20(5), 1663-1677 (2012)

Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its

generalizations. Exploring artificial intelligence in the new millennium 8, 236-239
2003

(Zhang), Y., Hong, J.I., Cranor, L.F.: Cantina: a content-based approach to detecting

phishing web sites. In: Proceedings of the 16th international conference on World

Wide Web. pp. 639-648. ACM (2007)

Zhao, P., Hoi, S.C.: Cost-sensitive online active learning with application to ma-

licious url detection. In: Proceedings of the 19th ACM SIGKDD international

conference on Knowledge discovery and data mining. pp. 919-927. ACM (2013)

Zhu, X., Ghahramani, Z., Lafferty, J., et al.: Semi-supervised learning using gaus-

sian fields and harmonic functions. In: ICML. vol. 3, pp. 912-919 (2003)

Zhu, X., Lafferty, J., Rosenfeld, R.: Semi-supervised learning with graphs. Carnegie

Mellon University, language technologies institute, school of computer science
2005

(Zou, F)‘., Zhang, S., Rao, W., Yi, P.: Detecting malware based on dns graph mining.

International Journal of Distributed Sensor Networks (2015)

