
An Automated Analysis and Indexing

Framework for Lecture Video Portal

Haojin Yang, Christoph Oehlke, and Christoph Meinel

Hasso Plattner Institute (HPI), University of Potsdam, Germany
{Haojin.Yang,Meinel}@hpi.uni-potsdam.de,

Christoph.Oehlke@student.hpi.uni-potsdam.de

Abstract. This paper presents an automated framework for lecture
video indexing in the tele-teaching context. The major issues involved
in our approach are content-based lecture video analysis and integration
of proposed analysis engine into a lecture video portal. In video visual
analysis, we apply automated video segmentation, video OCR (Opti-
cal Character Recognition) technologies for extracting lecture structural
and textual metadata. Concerning ASR (Automated Speech Recognition)
analysis, we have optimized the workflow for the creation of a German
speech corpus from raw lecture audio data. This enables us to minimize
the time and effort required for extending the speech corpus and thus
improving the recognition rate. Both, OCR and ASR results have been
applied for the further video indexing. In order to integrate the analysis
engine into the lecture video portal, we have developed an architecture
for the corresponding tasks such as, e.g., data transmission, analysis man-
agement, and result visualization etc. The accuracy of each individual
analysis method has been evaluated by using publicly available test data
sets.

Keywords: Lecture videos, video indexing, ASR, video OCR, video seg-
mentation, lecture video portal.

1 Introduction

Multimedia based education has become more and more popular in the past
several years. Therefore, structuring, retrieval and indexing of multimedia lecture
data has become an especially useful and challenging task.

Nowadays, the state-of-the-art lecture recording systems normally record two
video streams synchronously: the main scene of lecturers which is recorded by
using a video camera, and the second that captures the presentation slide frames
projected onto the computer screen through a frame grabber card (as e.g., cf.
Fig. 1(a)). Since two video streams can be synchronized automatically during
the recording, the indexing task can be performed by using slide video only.

Text in lecture video is directly related to the lecture content. In our previous
work [7], we have developed a novel video segmenter for key frames extraction
from the slide video stream. Having adopted text detection and recognition algo-
rithms on each slide shot in order to recognize the indexable texts. Furthermore,

E. Popescu et al. (Eds.): ICWL 2012, LNCS 7558, pp. 285–294, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

286 H. Yang, C. Oehlke, and C. Meinel

(a) (b)

Fig. 1. (a) An example lecture video. Video 2 shows the speaker giving his lecture,
whereas his presentation is played in video 1. (b) Management page of the lecture video
portal for the video analysis

unlike most of the existing OCR-based lecture video indexing approaches [2,1]
we utilize the geometrical information and the stroke width value of detected
text bounding boxes for extracting lecture structure from the slide video frames.
In this paper, we have integrated and adapted our visual analysis engines in an
automated framework of the lecture video portal.

Speech is the most natural way of communication and also the main carrier of
information in nearly all lectures. Therefore, it is of distinct advantage that the
speech information can be used for automated indexing of lecture videos. How-
ever, most of existing lecture speech recognition systems have only low recogni-
tion accuracy, the WERs (Word Error Rates) having been reported from [6,5,3,4]
are approximately 40%–85%. The poor recognition results limit the quality of
the later indexing process. In this paper, we propose a solution that enables a
continued improvement of recognition rate by creating and refining new speech
training data. It is important that the involved tasks can be performed efficiently
and even fully automated, if possible. For this reason, we have implemented an
automated procedure for generating a phonetic dictionary and a method for
splitting raw audio lecture data into small pieces.

In order to make the analysis engine applicable for our lecture video portal, we
have designed and implemented an architecture so that the analysis process could
be easily handled and the efficient indexing functionalities could be provided to
the users.

The rest of the paper is organized as follows: section 2 describes our automated
analysis architecture. Section 3 and section 4 details the proposed analysis meth-
ods. Section 5 concludes the paper with an outlook on future work.

2 An Automated Analysis Framework

The major components of the framework are the analysis management engine,
video analysis engine and result storage/visualization engine. The analysis man-
agement and result storage/visualization engines are associated with the video

An Automated Analysis and Indexing Framework for Lecture Video Portal 287

Fig. 2. Architecture of our multimedia analysis framework

portal server, while the video analysis engine is associated with the multimedia
analysis server. Fig. 2 shows the framework architecture.

2.1 System Workflow

The analysis management engine handles the start of the analysis and reports
the processing status. As shown in Fig. 1(b), we can start both, the OCR and
ASR analysis for each video in the staff page of the lecture video portal. In order
to manage each analysis request efficiently, we have defined a class ”analysis job
object” with the following properties: media id, date time, media URL, analysis
type and language. Once the analysis for a lecture video is started, a job object
will be created and encoded in the XML format. The XML request will then be
sent to the analysis engine on the multimedia analysis server.

The analysis engine manages four major processes: media download, video
transcoding, video analysis for each request, and analysis result transmission to
the video portal server. Since the analysis engine is designed fully configurable,
it is therefore suitable to be extended and work with a multi-process workflow
or a distributed computing system. Once a video is downloaded, a transcoder
will convert it to a predefined format with an uniform resolution which is most
appropriate for the video segmentation and OCR analysis. For ASR, we extract
the audio track with a format of 16KHz and 16 Bit which meets the requirements
of the speech recognition software.

After the analysis, the results will be automatically sent to the destination place
on the portal server. Subsequently, we send HTTP-POST requests for saving the
corresponding results to the portal database. Thanks to the plugin architecture
of our video portal, once the analysis result data is saved, the corresponding GUI
elements will be created automatically by refreshing the web page.

For our purpose, we apply this framework to analyze the lecture videos from our
institute. However, using it for the videos from other sources (as e.g., Youtube1,

1 http://www.youtube.com

http://www.youtube.com

288 H. Yang, C. Oehlke, and C. Meinel

Berkeley2 etc.), we would only need to adapt the configuration file of the analysis
engine.

3 Visual Analysis for Lecture Videos

Our video visual analysis system consists of two parts: unique slide shots detec-
tion and video OCR.

In [7], we have proposed a novel CC-based (Connected Component) video
segmenter to capture the real slide transitions in the lecture video. The video
OCR system is applied on each slide shot. It consists of the following steps:

– Text detection: this process determines whether a single frame of a video file
contains text lines, for which a tight bounding box is returned (cf. Fig. 3(a)).
We have developed a two-stages approach that consists of a fast edge based
detector for coarse detection and a Stroke Width Transform (SWT) based
verification procedure to remove the false alarms.

– Text segmentation: in this step, the text pixels are separated from their
background. This work is normally done by using a binarization algorithm.
Fig. 3(b) shows the text binarization results of our dynamic contrast and
brightness adaption method. The adapted text line images are converted to
an acceptable format for a standard OCR engine.

– Text recognition: we applied a multi-hypotheses framework to recognize texts
from extracted text line images. The subsequent spell-checking process will
further filter out incorrect words from the recognition results.

(a) (b)

Fig. 3. (a) Text detection results. All detected text regions are identified by bounding
boxes. (b)Text binarization results of our dynamic contrast-brightness adaption method.

After the text recognition process, the detected text line objects and their
texts are further utilized in the lecture outline extraction method. Unlike other
approaches, we observe the geometrical characteristics of detected text line ob-
jects, and apply size, position and average stroke width information of them to
classify the recognized OCR text resources. In this way, the lecture outline can
be extracted based on the classified OCR texts. Which can provide an overview
about the lecture content, and help the user with a navigation within the lecture
video as well (cf. Fig. 4).

More technical details as well as the evaluation results of proposed visual
analysis methods can be found in [7].

2 http://webcast.berkeley.edu

http://webcast.berkeley.edu

An Automated Analysis and Indexing Framework for Lecture Video Portal 289

Fig. 4. Visualization of the segmenter slide shots and extracted outline (lecture struc-
ture) of the lecture video underneath the video player

4 Speech Recognition for Lecture Videos

In addition to OCR, ASR is an effective method for gathering semantic informa-
tion about lecture videos. Combining both OCR and ASR offers the chance to
improve the quality of automatically generated metadata dramatically. For that
reason, we decided to build a speech model with the help of the CMU Sphinx
Toolkit 3 and the German Speech Corpus by Voxforge4 as a baseline. We col-
lected hours of speech data from our lecturers and the corresponding transcripts
in order to improve speech recognition rates for our special use case. Using a
random assortment of speech segments from our lecturers as a test corpus, Ta-
ble. 1 shows how the WER decreases when adding 7.2 hours of speech data from
our lecturers to the training set.

However, manually collecting appropriate speech segments and transcripts is
rather time consuming and costly. There is a number of steps to be performed
to acquire high quality input data for SphinxTrain, as shown in Fig. 5(a). This
entire process is described more detailed in the following subsections.

3 http://cmusphinx.sourceforge.net/
4 http://www.voxforge.org/

http://cmusphinx.sourceforge.net/
http://www.voxforge.org/

290 H. Yang, C. Oehlke, and C. Meinel

4.1 Creating the Speech Training Data

A recorded lecture audio stream yields approximately 90 minutes of speech data,
which is far too long to be processed by SphinxTrain or the decoder at once.
Several shorter speech segments are not only easier to manage by ASR tools,
they also enable us to perform tasks like speech model training and decoding on
highly parallelized hardware.

Table 1. Current progress of our speech model training. The WER results have been
measured through a random set of 708 short speech segments from 7 lecturers.

Training Corpus WER

Voxforge (23.3h) 82.5%

Voxforge (23.3h) + Transcribed Lectures (7.2h) 62.6%

Therefore, we looked for efficient methods to split the long audio stream into
manageable pieces. The commonly used methods are described as follows:

– Combine segmentation and selection processes by using an audio file editor
like Audacity5. Both steps are performed manually by selecting parts with a
length of 2–5 seconds from the audio stream and save them as separate audio
files. This approach results in high quality segments without any cropped
words, but the required time and effort (50+ minutes real time/1 minute
transcription) is not acceptable.

– Split the input audio stream uniformly every n seconds, where n is a constant
between 5–30. This method is fast, but it yields a significant disadvantage:
a regular subdivision of speech often results in spoken words being partly
cropped, which makes a lot of segments useless in the ASR context. Se-
lection of bad segments has to be performed manually in order to achieve
adequate database quality. For 1 minute of transcribed speech data, we need
approximately 35 minutes in real time.

Compared to these rather inefficient methods, our current approach is to fully
automate segmentation and partly automate selection without suffering from
quality drawbacks like dropped word endings. Fig. 5(b) describes the fundamen-
tal steps of the segmentation algorithm. The audio curve is first down-sampled,
then blurred and split according to a loudness threshold. Too short or too long
sentences are sorted out automatically. The effort to transcribe 1 minute of
speech decreases to 15–20 minutes in real time.

In order to obtain the best recognition rates in the long run, we have to ensure
that all speech segments used for speech model training meet certain quality
requirements. Experience has shown that approximately 50% of the generated
audio segments have to be sorted out due to one of the following reasons:

– The segment contains acoustical noise created by objects and humans in
the environment around the speaker, as e.g., doors closing, chairs moving,
students talking.

5 http://audacity.sourceforge.net

http://audacity.sourceforge.net

An Automated Analysis and Indexing Framework for Lecture Video Portal 291

Segmentation

Selection

Transcription

-> transcribed text …
-> lorem ipsum dolor…

dolor
lorem
ipsum

word list

Analyse
Pronunciation

dolor -> d o l o: r
lorem -> l o: r e m
ipsum -> i p z u m

phonetic dictionary

transcript file

Extract Vocabulary

 fully automated partly automated not automated

1

2

3

4

5

6

7

8

(a) (b)

Fig. 5. (a) Workflow for extending our speech corpus. First, the recorded audio file
(1) is segmented into smaller pieces (2) and improper segments are sorted out (3). For
each remaining segment, the spoken text is transcribed manually (4), and in doing so, a
line of text is added to the transcript file (5). As an intermediate step, a list of all used
words in the transcript file is created (6). In order to obtain the phonetic dictionary
(7), the pronunciation of each word has to be represented as phonetics (8).
(b) General idea of the algorithm used in our automatic audio stream segmenter. Phase
1: compute the absolute values of the input samples to get a loudness curve, which is
then down-sampled (e.g. by factor 100). Phase 2: a blur filter (e.g. radius=3) is applied
to eliminate outliers. Phase 3: a threshold (red horizontal line) determines which areas
are considered quiet. Every connected area which is not quiet is a potential utterance
(highlighted with green). Phase 4: all those green areas that are longer than a specified
maximum length (e.g. 5 seconds) are dropped. Finally, the computed borders for each
remaining block are remapped to the original WAVE samples and form a segment.

– The lecturer misspeaks some words, so that they are completely invalid from
an objective point of view.

– The speaker’s language is clear, but the segmentation algorithm cut off parts
of a spoken word so that it turns invalid.

The classification of audio segments in good/bad quality is not yet solvable
automatically, as the term ’good quality’ is very subjective and strongly bound
to the human perception.

Subsequently, the manual transcription process is performed. By definition,
this step has to be done by a human, which is the reason why it is not perfectly
optimizable. However, we speed up this process with the help of our transcription
software. It provides a simple GUI where the user can play the audio segments
and type the transcription with very few key presses and without doing anything

292 H. Yang, C. Oehlke, and C. Meinel

unnecessary. File playing, naming, and saving is completely managed by the
software. Furthermore, it provides a Sphinx compatible output format.

4.2 Creating the Phonetic Dictionary

The phonetic dictionary is an essential part of every ASR software. For every
word occurring in the transcripts, it defines one or more phonetic representa-
tions. To build them, we use a customized phonetic alphabet which contains 45
phonemes used in German pronunciation.

As our speech corpus is still growing continuously, the extension and mainte-
nance of the dictionary is a common task. Experience has shown that for each
transcribed lecture, there are about 100 new words which have to be added
to the vocabulary. The Voxforge community proposes to use eSpeak6 to create
the phonetic representation for each word. This method works fine, but yields
some striking disadvantages: first, the output generated by eSpeak is only partly
usable. For almost every word, corrections have to be made manually. eSpeak
uses its own format for phonetic spelling. The conversion into a representation
accepted by Sphinx is complex and error-prone. In addition, dictionary man-
agement is inflexible. Discarding the dictionary and regenerating it with new
parameters or changed transcripts is expensive, because all manual corrections
will be discarded. For these reasons we have built an own phonetics generator. In
order to maximize the output quality, our approach operates on three different
layers of abstraction while successively generating the phonetic representation
string P .

On word level, our so-called exemption dictionary is checked whether it con-
tains the input word as a whole. If so, the phonetic representation P is com-
pletely read from this dictionary and no further steps have to be performed.
Otherwise, we have to scale down to syllable level by applying an extern hy-
phenation algorithm7. The exemption dictionary particularly contains foreign
words or names whose pronunciation cannot be generalized by German rules, as
e.g., byte, phänomen, and ipv6 etc.

On syllable level, we examine the result of the hyphenation algorithm, as e.g.,
com-pu-ter for the input word computer. For a lot of single syllables (and also
pairs of syllables), the syllable mapping describes the corresponding phonetic
representation, e.g. au f for the German prefix auf and n i: d er for the di-
syllabic German prefix nieder. If there is such a representation for our input
syllable, it is added to the phonetic result P immediately and we succeed with
the next part. Otherwise, we have to split the syllable even further into its char-
acters and proceed on character level.

On character level, a lot of German pronunciation rules are utilized to deter-
mine how the current single character is pronounced. Typical metrics are:

– Character type (consonant/vowel).
– Neighboring characters.

6 An open source speech synthesizer (cf. http://espeak.sourceforge.net)
7 http://swolter.sdf1.org/software/libhyphenate.html

http://espeak.sourceforge.net)
http://swolter.sdf1.org/software/libhyphenate.html

An Automated Analysis and Indexing Framework for Lecture Video Portal 293

– Relative position inside the containing syllable.
– Absolute position inside the whole word.

First and foremost, a heuristic checks if the current and the next 1–2 characters
can be pronounced natively. If not, or the word is only one character long, the
character(s) is/are pronounced as if they were spelled letter by letter such as,
e.g., the abbreviations abc (for alphabet) and zdf (a German TV channel).

Next, we determine the character type (consonant/vowel) in order to apply
the correct pronunciation rules. The conditions of each of these rules are checked,
until one is true or all conditions are checked and turned out to be false. If the
latter is the case, the standard pronunciation is applied, which assumes closed
vowels. This is an example for the rules we use in our heuristic:

– A vowel is always open if followed by a double consonant, e.g. affe, wetter,
bitte.

– A vowel is always closed if followed by the German consonant ß, e.g. straße,
größe, fußball.

– If the consonant b is the last character of a syllable and the next syllable
does not begin with another b, then it is pronounced like the consonant p.
Examples: hubschrauber, lebkuchen, grab.

An evaluation with 20000 words from transcripts shows that 98.1% of all input
words where processed correctly, without the need of any manual amendments.
The 1.9% of words where application of the pronunciation rules failed mostly
have an English pronunciation. They are corrected manually and added to a
special ’exemption dictionary’. Besides the striking advantage of saving a lot of
time for dictionary maintenance, Table. 2 shows that our automatic dictionary
generation algorithm does not result in worse WER. The recognized ASR texts
are further used by search and key-word extraction functions.

Table 2. Comparison of the Voxforge dictionary and our automatically generated
dictionary with an optimized phone-set for the German language. The used speech
corpus is a smaller version of the German Voxforge Corpus which contains 4.5 hours
of audio from 13 different speakers. It is directly available from the Voxforge website
including a ready-to-use dictionary. Replacing this with our automatically generated
dictionary results in a slightly better recognition rate.

Phonetic Dictionary WER

Voxforge German dictionary 22.2%

Our dictionary with optimized phoneset 21.4%

5 Conclusion and Future Work

In this paper, we have presented an automated framework for the analysis and
indexing of lecture videos. The proposed video analysis methods consist of video
segmentation, video OCR, and automated speech recognition. In order to inte-
grate the analysis engine into our lecture video portal, we have designed and

294 H. Yang, C. Oehlke, and C. Meinel

implemented an architecture which enables an efficient processing of analysis
management, multimedia analysis, data transmission, and result visualization.

As the upcoming improvement, we plan to implement an automated method
for the extraction of indexable key words from ASR transcripts. In [4], the course-
related text books have been used as the context reference for refining ASR re-
sults. In our case, the high accurate OCR texts from each video segment can be
considered as a hint for the correct speech context. In this way, a more accurate
refinement and key word extraction from ASR transcript could take place. It may
solve the issue of building search indices for imperfect ASR transcripts. Further-
more, our research will also address the following issues: search-index ranking for
hybrid information resources (as e.g., OCR, ASR, user-tagging etc.); usability
and utility evaluation for our indexing and video navigation functionalities in
the lecture video portal.

References

1. Adcock, J., Cooper, M., Denoue, L., Pirsiavash, H.: Talkminer: A lecture webcast
search engine. In: Proc. of the ACM International Conference on Multimedia, MM
2010, Firenze, Italy, pp. 241–250. ACM (2010)

2. Wang, T.-C.P.F., Ngo, C.-W.: Structuring low-quality videotaped lectures for cross-
reference browsing by video text analysis. Journal of Pattern Recognition 41(10),
3257–3269 (2008)

3. Glass, J., Hazen, T.J., Hetherington, L., Wang, C.: Analysis and processing of lecture
audio data: Preliminary investigations. In: Proc. of the HLT-NAACL Workshop on
Interdisciplinary Approaches to Speech Indexing and Retrieval (2004)

4. Haubold, A., Kender, J.R.: Augmented segmentation and visualization for presen-
tation videos. In: Proc. of the 13th Annual ACM International Conference on Mul-
timedia, pp. 51–60. ACM (2005)

5. Lee, D., Lee, G.G.: A korean spoken document retrieval system for lecture search.
In: Proc. of the SSCS Speech Search Workshop at SIGIR (2008)

6. Leeuwis, E., Federico, M., Cettolo, M.: Language modeling and transcription of the
ted corpus lectures. In: Proc. of the IEEE ICASSP, pp. 232–235. IEEE (2003)

7. Yang, H., Siebert, M., Lühne, P., Sack, H., Meinel, C.: Lecture video indexing and
analysis using video ocr technology. In: Proc. of 7th International Conference on
Signal Image Technology and Internet Based Systems (SITIS 2011), Dijon, France
(2011)

	Lecture Notes in Computer Science
	Introduction
	An Automated Analysis Framework
	System Workflow

	Visual Analysis for Lecture Videos
	Speech Recognition for Lecture Videos
	Creating the Speech Training Data
	Creating the Phonetic Dictionary

	Conclusion and Future Work

