published as: Martin Lowis, Thomas Staubitz, Ralf Teusner, Jan Renz,

Susanne Tannert,
Christoph Meinel:

Scaling Youth Development Training in IT Using an xMOOC Platform, In

Proceedings of 45th Annual Frontiers in Education Conference (FiE2015), 21-24 October,
2015, El1 Paso, TX

IEEE 45th Annual Frontiers in Education Conference

Scaling Youth Development Training in I'T Using an
xMOOC Platform

Martin Lowis*, Thomas Staubitz!, Ralf Teusner!, Jan Renz!, Christoph Meinel’ and Susanne Tannert!
*Beuth Hochschule
Berlin, Germany
Email: loewis@beuth-hochschule.de
THasso Plattner Institute
Potsdam, Germany
Email: firstname.lastname @hpi.de

Abstract—The paper at hand evaluates the Massive Open On-
line Course (MOOC) Spielend Programmieren Lernen (Playfully
learning to program), an effort to scale the youth development
program at the Hasso Plattner Institute (HPI) for a larger
audience. The HPI has a strong tradition in attracting children
and adolescents to take their first steps towards a career in
IT at an early age. The Schiilerakademie, the Schiilerkolleg, the
Schiilerklub, and the support for the CoderDojo in Potsdam are
some of the regular activities in this context to take youngsters
by the hand and supply them with material and guidance in
their mother tongue. With the emergence of MOOCs and the
success of HPI’s own MOOC Platform—openHPI—it was a
natural step to develop a course to address an audience that
is only marginally represented in openHPI’s regular courses:
school children and adolescents. A further novelty for openHPI
in this course was the focus on teaching programming with a
high percentage of obligatory hands-on tasks. Particularly for
this course, a standalone tool allowing participants to write and
evaluate code directly in the browser—without the need to install
additional software—has been developed. We will compare this
tool to a small selection of similar approaches on other platforms.
As it will be shown, the course attracted a far more diverse
audience than expected, and therefore, also needs to be seen
in the context of spreading digital literacy amongst wider parts
of society. In this context we also will discuss the significant
differences in the usage of the forum between the course Spielend
Programmieren Lernen and the course In-Memory Databases, a
more traditional openHPI course.

Keywords—K-12; openHPI; Automated Assessment; E-
Learning; Online Learning; Programming; Python; MOOC K-12;
openHPI; Automated Assessment; E-Learning; Online Learning;
Programming; Python; MOOC ;

I. INTRODUCTION

The Hasso Plattner Institute (HPI) in Potsdam, Germany
is a university-level institute offering study programs in IT-
Systems Engineering. Since its early days, youth development
training has been a strong focus of the HPI. In order to raise IT-
skills and interest of (junior-)high school students in program-
ming subjects, the Hasso Plattner Institute has established the
Schiilerakademie (lit. academy for pupils”) offering various
activities in this area. Part of these activities are organized
by the Schiilerklub (’pupils’ club”). Bachelor and master
students at the HPI are encouraged to participate in so called
Klubs, which are self-organized by the students, alongside their
regular studies, as a part of their socio-emphatical education

at the Institute. The Schiilerklub is one of those. The members
of this Klub are working with school children to raise the
enthusiasm for computer science amongst this clientele. They
organize events and activities for children and adolescents who
are interested in getting first hand information about studying
IT Systems Engineering at the HPI. These events include e.g.
a summer camp of several days’ duration for girls and boys
from all over Germany and the HPI CodeNight. The HPI
also sponsors third party events, such as the CoderDojo, with
locations and support. The Schiilerkolleg is a special program
for school children from 7th to 12th grade, who are particularly
interested in computer science and mathematics. For one year,
every Tuesday afternoon, the participants of the program meet
to experiment with new information technologies and their
foundations. They are supported by faculty and students of
the HPI as well as four teachers who are sent by the school
authority of Brandenburg. Even though the HPI facilitates
those numerous activities for high-school students, they are
limited by given capacities, such as staff, room size, and
number of available computers.

openHPI started in 2012 and, thereby, is one of the first
platforms that transferred the idea of MOOCs to Europe
and Germany. Run by the HPI, it has offered about 20 self
produced courses on various ICT topics since September
2012—hosting between 5,000 and 17,000 enrolled users per
course. Typical openHPI courses follow a classical xXMOOC
schema of a six-week course with several ungraded self-
tests and one graded assignment per week. The courses are
concluded with a final exam, which also is graded. For each
of these graded assignments, the participants can achieve a
certain amount of points. To be eligible for a graded record
of achievement, a participant has to achieve at least 50%
of the overall maximum course score [1]. In this specific
course (Python2014), the setting was a little different as the
focus was moved to hands-on exercises. The only way to gain
grade relevant points was by solving practical programming
exercises. Weekly assignments and a final exam have not been
offered, ungraded self-tests were available, however.

A number of improvements on the platform enabled us to
implement a new course model with a focus on hands-on tasks
and practical exercises. A standalone tool has been developed
that allows the participants to write, run, and evaluate Python
code in the browser. The tool stores the submitted code for
each user and automatically grades the submissions.

Video 1.1 '— Quiz 1.1 Knowledge
—
Exercise 1.1.1 Knowledge

—

Exercise 1.1.2

Comprehension

1
Exercise 1.1.3

Application

Fig. 1. Exemplary structure a building block. Each week contained four of
these blocks following the same structure.

The remainder of the paper is structured as follows: The
first section will give some information about the course
itself and its participants. The second section will give more
information about the programming tool, the experiences with
it throughout the course, and how it has been connected to the
openHPI platform. Furthermore, similar solutions offered on
other MOOC platforms will be compared to our approach. The
third section will deal with a non-technology-related scaling
issue that has been encountered while the course was running:
The participation in the forums and the usage of the help-desk,
which was noticeably higher than in regular openHPI courses.
The final sections will discuss some of the steps we are going
to take next and conclude our findings.

II. COURSE STRUCTURE

To scale the HPT’s activities in the area of youth develop-
ment training, a prototypical MOOC to teach children and ado-
lescents the basics of Python programming has been designed
throughout summer 2014 and was realized on openHPI in
October 2014. The 4-week course consisted of teaching videos,
self-tests in quiz-format, and graded hands-on programming
exercises. For each week, four videos were offered. Linked
to each video were one ungraded self-test and three graded
exercises in different levels of difficulty. According to Bloom’s

700

600

500 T

400 1

300 T
200 A
100 1
0 -
8-18

Fig. 2. Total user distribution (8-80).

RN -

19-30 31-40 41-50 51-60 61-70 71-80

“Age

120

100

80

8 9 10 11 12 13 14 15 16 17 18

HAge

Fig. 3. User distribution of the actual target group (8-18).

taxonomy [2] the exercises can be classified in the categories:
knowledge, comprehension, and application. Figure 1 shows
such a building block—exemplary for the first video in week
one. All others followed the same structure. The deadline for
the graded exercises of each week was at 10:00pm(CEST) on
the following week’s Monday.

The course had about 7400 enrolled participants. The
specified target group were children from the age of 11 to 17,
but the course attracted users from a wider range of ages. Some
parents enrolled in the course together with their children, also
teachers enrolled with their classes. Additionally, the course
attracted a vast variety of programming beginners of all ages.
Many of them have expressed in the forum, that the promise of
understanding basic computer programming, persuaded them
to join this course. Figures 2 and 3 show the distribution of
the participants age, as far as it is known. The participants
are not obliged to enter their age—in the case of Python2014
we have this information for 2379 participants (32%). This
course provided the users with a tool to write, run, and evaluate
programs in the browser. From here on we will refer to this
tool as WebPython. It was very well accepted amongst the
participants. Table I shows some of the numbers in the context
of user activity with regard to this tool. In the context of
our regular courses, active participants are defined as those
users, who have submitted at least one discussion post or one
assignment [3]. In previous courses the percentage of active
participants during the first week was about 40% (see e.g.
[4]). In Python2014, due to the different setting, we defined
an active participant as a user that at least has started one
exercise in the respective week. According to this definition,
Python2014 sported 68.73% of active users during the first
week (derived from the number of registered users (Table III)
and active users (Table I).)

Users Started Submitted
Week 1 4961 51209 48764
Week 2 3696 37597 34115
Week 3 3078 28862 26118
Week 4 2392 23780 21725
RoA 2523 -

TABLE 1. ACTIVE USERS, STARTED EXERCISES, AND EXERCISES WITH
SUBMITTED (NOT NECESSARILY CORRECT) SOLUTIONS PER WEEK. THE
LAST ROW SHOWS THE NUMBER OF ISSUED RECORDS OF ACHIEVEMENT.

Total Active

Average openHPI courses 18.3% 51.11%

Python2014 34.22% 50.86%
TABLE II. COMPLETION RATES IN RELATION TO THE TOTAL OF

REGISTERED USERS AND THE NUMBER OF ACTIVE PARTICIPANTS DURING
WEEK ONE

Figure 4 shows the decrease of the number of active
participants over time. High dropout rates are a common issue
that is shared by most MOOCs. Courses on openHPI have
generally rather low dropout rates compared to other MOOCs
[3]. To compare Python2014 to other courses on openHPI, we
employed the same methodology as Meinel et al [3]. They
observed the participants’ engagement throughout the course
and took the number of submitted homework assignments as
measured value. The submission number for the first week’s
homework is taken as a reference (100%) [3]. In this course
multiple submissions per participant and exercise were possi-
ble. We, therefore, normalized the number of submissions by
counting only one submission per participant. We calculated
the average value of the courses Meinel et al have listed and
compared this average to the number of active participants in
Python2014 based on their methodology. The dropout rates
of Python2014 seem to be a little higher than in the average
openHPI courses especially in week four (see Figure 5).

Comparing the completion rates of the average, regular
openHPI course and Python2014 shows a different image: The
completion rate in relation to those users that have been active
in week one is almost the same as for the average openHPI
course. The completion rate in relation to the total of registered
users is even better (see Table II.) At the end of the course we
also conducted a survey amongst the participants. The results
of this survey indicate two explanations for this phenomenon:

1) A substantial amount of participants took the course
with their school class, some of them not by choice.
Teachers required a Record of Achievement to pass
the class. So, as soon as those students had achieved
50% of the points, they quit.

2) The workload of the course was perceived as getting
increasingly higher from week to week. More details
will be discussed in one of the following sections.

60000

40000

30000

20000

10000

Week 1 Week 2 Week 3 Week 4

sm—=Started =====Sybmitted Users

Fig. 4. Decrease of active participants from week one to week four.

III. SCALING THE TECHNOLOGY

As participants kept dropping in during week one, we
decided to extend the deadline for the exercises of this week
until the end of week two. During week two, we faced
increasing load problems, culminating into a tightened version
of another common problem that we are facing at openHPI:
load peaks before deadlines. In this case the participants had to
hand in the exercises for two weeks instead of one, additionally
they did not have to hand-in simple multiple choice tests but
running code. Particularly, in week two—the loop week—this
caused technical problems, which forced us to extend the
deadline for the first two weeks for another day until Tuesday.
Figure 6 shows the load peaks on that particular Tuesday. At
some point we had a CPU outage but could take measures to
recover before the end of the deadline.

Figure 7 compares the number of started exercises, submit-
ted solutions, and active users before and after the deadline of
week three. The numbers on the left have been extracted a day
before the exercises’ deadline. The exercises were available

100% 7
90%
80%
70%
60% |

50%

40% T 1
Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

s=(mepythonjunior *=@==Regular Courses (Avg)

Fig. 5.
courses.

Active participants in Python2014 compared to average openHPI

openhpiqnode- 10, fsoc. hpi.upi-potsdam. de
-

20 |

18 |

1]
Tue 12400 Wed 00| 00

B load five last|day [now 5,93)

openhplqnodg-18.fsoc. hpi.upi-potsdam. de

B cpu_user last fay
12:00'
Outage of CPU capacity

{now 29.20)

00:00
Deadline

Fig. 6. CPU usage and load on a node shortly on the day of the deadline.

35000

28862

30000 36118

25000

20000

15568

15000 13454

10000

5000

1 before end of deadline When the deadline had passed

W Started @ Submitted Users

Fig. 7. Submission peak before deadline (week three, Python2014).

for exactly one week. During the remaining last day before
the exercise’s deadline the number of submissions almost
doubled, which increased the load on the system remarkably.
Unfortunately, we do not have these numbers for the first two
weeks, but the trend would undoubtedly be the same there.

A. Python Programming Tool

The course objective was to teach programming with
Python to people with no prior programming experience. As
programming is learned primarily by exercise, we set a list of
requirements for the infrastructure:

e There should be practical exercises along with the
video teaching material.

e Participants should not be required to install additional
software on their systems, to avoid hassle with broken
software installations.

e There should be support for graphical output, follow-
ing the turtle graphics programming model.

e There should be fully automated assessment of the
programming exercises.

The second requirement resulted in the necessity to offer
Python programming in the web browser. Our system features
a web server that allows to edit Python source code in a
programming editor, based on the CodeMirror!' package. In

CodeMirror: http://codemirror.net

def isPrime(n):

for i in range(2, n): Programm ausfiihren | @ Konsole © Turtle
ifn%i==0: 3
return False 5
return True 7
11
for i in range(3, 100): 13
if isPrime(i): 17
print(i) 19

Fig. 8. WebPython in console mode.

from turtle import *
for i in range(50, 120, 20):
forward(i)
right(90)
forward(i)
right(90)
forward(i)
right(90)
forward(i)
right(130)

Konsole @ Turtle

Programm ausfihren

Fig. 9. WebPython in turtle mode.

order to test their programs, users can submit their source
code to the server for execution and view the results in a
console output window (see Figure 8). After completing the
exercise, users can submit the code for assessment, resulting
in a grade for the exercise. To allow for long-running Python
processes that produce output in an ongoing manner, while also
consuming user input of their own, a web socket connection is
established between the web browser and the Python process.

As the course title and the target group suggest, we in-
tend to attenuate prejudices against computer science amongst
children. Therefore, we designed exercises with visual—and
not only numerical or string—output. Turtle graphics [5] is
a programming model developed by Seymour Papert in the
1970s, which targets this goal. Various projects have demon-
strated its practicability in teaching programming to children
(see e.g. [6] and [7]). Turtle graphics is a core part of the
Python standard library and Python programming literature for
children typically leverages this support [8] [9]. An exemplary
output of a turtle script is shown in Figure 9.

Automated assessment of programming exercises is the
most challenging aspect of this project, and previous work
has demonstrated inherent limitations of automated assessment
when compared to a human teacher’s assessment [10]. On the
other hand, automated assessment also has advantages over
human assessment, such as instantaneous feedback, scalability
to a large number of participants, and objectiveness.

We decided to allow participants to submit each exercise
as often as they want, grading each attempt, and finally taking
the best result into account. The assessment code is written
in Python as well, running it, and then evaluating the output
(not just the printed output, but also side effects on variables,
function definitions, and other changes that were expected from
running the program). In addition, for a few exercises, the
source code was analyzed, primarily to determine whether the
solution was using an undesired shortcut.

Running the Python script either for the user’s testing
purposes or for assessment requires a working Python imple-
mentation. For that purpose, several implementations of Python
that allow to run code in the web browser itself are available.
Unfortunately, none of them is production-ready in the sense
that it provides sufficient compatibility with the official Python
(aka CPython) installation. Therefore, we opted to provide a
server-side installation of CPython.

openhpi-fode- 14. f3oq. hpi.upi{potsdam./d

&

openhpi-node-13. fsoc.hpi.uni-potsdam. de

openhpi-node-12.fsoc.hpi.uni-potsdam.de openhpi-node-15. fsoc. hpi.uni-potsdam. de

100 * 100t 100 * 100
&0 | 80 | 80 80 |
6 |] | 60 60 |
40 B i | 40 | 40 | 40|
20 | TREF 28 mimnn 20 | 1 " 28 | - |
8 i skl iia b N " o Bk s P 0 T ke da 0 1 A
Week 39 Week 40 Week 41 Week 42 Week 39 Week 40 Week 41 Week 42 Week 39 Week 40 Week 41 Week 42 Week 39 Week 40 Week 41 Week 42
B cpu_user lajt month (n o) M cpu_user last month B cpu_user last month (now 0.00)

openhpi-fode- 16. fgoq. hpi.upiipotsdam.d

-y

openhpi-py0l. fsoc. hpi.uni-potsdam.de

(now 8.00)

B cpu_user last month (now 8.00)

openhpi-node-18.fsoc.hpi.uni-potsdam.de openhpi-node-17. fsoc. hpi.uni-potsdam. de

100 * + 100t 100 # 108
&0 | 80 &0 80 | ‘
& { & 2] 60 | |
40 1 40 40 40 i1
20 | 20 20 20| gy =y
) | H B H 1il oy
Week 39 Week 40 Week a1 Week 42 Week 39 Week 40 Week 41 Week 42 ek 39 Week 40 Week 41 Week 42 Week 39 Week 40 Week a1 Week 42
B cpu_user laft menth n o) B cpu_user last month [now ©.00) B cpu_user last month

openhpi-fode-11.f3oq. hpi.upiipotsdam.d

&

openhpi-node-10. fsoc.hpi.uni-potsdam. de

(new 8.08) W cpu_user last month [now ©.08)

openhpi-node-04.fsoc.hpi.uni-potsdam.de openhpi-node-03. fsoc. hpi.uni-potsdam. de

100 * 100t 100 * 100
w0 i 80 a0 I 80 | |
6 | 6 s i el i |
40 | 40 40 | 40 | |
i il | ‘
22 Blaldeli. b N = i lsdly] = 2 | TIPFTY Yl i = Belelfis: 3 X!
Week 39 Week 40 | | Week 41 Wesk 42 Wesk 39 Week 40 Week 41 Wesk 42 Week 39 Week 40 Week 41 Week 42 Week 39 Week 40 Week 41 Wesk 42
B cpu_user laft month (n o) B cpu_user last month B cpu_user last month (now 0.08)

Infinite Deadline Deadline Deadline
Loops Week 1,2 Week3 Week4d

(now 8.00)

B cpu_user last month (now 8.00)

Fig. 10. Load on some of the nodes in our private cloud at the Future SOC Lab during the course. There are two nodes in the middle of the figure that have
no or only very little load. The one on the left is the head-node that only runs the web-server. The one on the right did not want to join for unknown reasons.

B. FutureSOC

Providing a server-side CPython installation produces two
challenges: first, it is necessary to provide sufficient CPU
and memory resources to accommodate a large number of
concurrent users. Second, the system must be protected against
abuse and user mistakes.

To allow for a large number of participants, we set up a
private cloud in the HPI’s Future SOC Lab’.

The Future SOC Lab is a cooperation of the HPI and a cou-
ple of industrial partners. It provides a complete infrastructure
of state of the art hard- and software to researchers—free of
charge—for a certain period of time. Python2014 was running
in between two lab periods, and therefore, we had the chance to
use some of its computing power. The code submission system
consists of several server processes as shown in Figure 11.
The head node runs the nginx web server, to provide for static
files and TLS encryption. It delegates to a number of Python
servers written with the Twisted framework® which perform
user authentication, templating of the exercise descriptions,
and delegation to worker processes running on the cluster. Each
node in the cluster runs a Twisted Python server, which in turn
launches a Docker* container that ultimately runs the Python
process.

Zhttp://hpi.de/en/research/future-soc-lab.html
3https://twistedmatrix.com/trac/
“https://www.docker.com

] Webserver Worker
Browser [Websooket nginx | Twisted Twisted [7| Docker
Fig. 11. WebPython’s architecture.

The cloud consists of 18 machines in the HPI FutureSOC
Lab infrastructure. Each machine has 24 CPU cores and 64GiB
of memory.

As kind of a coarse-grained load balancing, we initially had
set a limit of 10 processes to be run per core. This arbitrary
limit caused a shortage on available process slots within week
two, where we dealt with the concept of loops. As expected,
several users created infinite loops by error, which blocked a
process slot for the maximum allowed runtime of 10 minutes
per process. This issue could luckily be solved by setting the
limit to 50 processes per core, resulting in a more efficient
scheduling, capable of enduring some infinite loops without
running out of available process slots. We have not gotten any
CPU or main memory outage since this increase. This overload
situation can be seen in Figure 10 as the block of higher CPU
usage in week two and the pike at the beginning of week three.
Afterwards, only minor peaks show up—also due to decreasing
numbers of active users—but no more longer lasting high load
situations.

As expected and clearly visible in the peaks, most load
always occurred close to the closing dates of the respective
exercises. With regard to the different charts, it stands out that
some nodes hardly show any load at all. Node 18 seemed
to be simply broken, while node pyO! was responsible for
rendering the web front-end of the python editor, which was
a comparably simple task requiring only little CPU capacity.

The protection against abuse and mistakes is primarily
achieved by using Linux containers, and the Docker infras-
tructure that builds on it. Users are isolated against each other
and the system, and state is not persisted across program
invocations. Docker also allows to limit the CPU share and
memory that a process may consume. However, it currently
does not provide sufficient support for setting a maximum
process run time, which becomes necessary as programming
beginners will inevitably write programs that perform endless
loops. External monitoring is used to kill processes that exceed
the maximum acceptable run time of 10 minutes.

IV. COMPARISON TO SIMILAR COURSES ON OTHER
PLATFORMS

In this chapter, we provide a short description of similar
courses. The selection is based on the following criteria: First,
we only consider courses on MOOC platforms as most of
the issues we are focussing on in this paper are to some
extent specific for this format. Second, we focus on Python
programming courses and third we focus on courses that claim
to be addressing programming novices. Finally, we do not
claim that the following list is exhaustive.

Programming for Everybody’—A first programming
course, teaching Python, applies an open-source, web-based
development environment® for writing and assessing practical
programming exercises. The tool is based on CodeMirror and
Skulpt, an in-browser implementation of Python, providing
client-side code execution. Since no request to the server is
required, the tool’s client-side code evaluation approach has the
advantage of short response times. Infinite loops also turned
out to be problematic, as they eventually rendered the browser
window unresponsive. Affecting the client side only, at least
they did not affect the performance of the tool for other
users than those that caused the problem. Program errors are
reported using native browser alert dialogs. Error messages are
reduced to the essential. They neither contain a traceback nor
provide additional clues to the error’s origin. Whenever code is
executed, it is also checked against the exercise specification.
The programming tool performs automatic grading, based on
I/0O matching and basic invocation checks at runtime. The
grading approach can only grant full score or zero points.
Partial solutions, however, are not awarded. Besides auto-
graded programming assignments, the course contains two
optional peer-graded essays.

Intro to Computer Science’—An introductory Python
course aiming to build a basic search engine. The course
makes use of a lightweight web-based development tool, which
is based on CodeMirror and seamlessly integrates into the
Udacity platform. The editor is easy to operate, but it provides
no means for editing more than one unit of code. Exercise
instructions are provided as comments in the skeleton source
code and sometimes in the form of a short introductory video.
Learners can restart the exercise from scratch, execute their
code for exploration, submit their code for evaluation, or view
a sample solution, which is presented in a step-by-step fashion.
During program execution, Python’s standard traceback is
presented in case of an occurring error, which might be
too cryptic for beginners. During test execution, basic hints
pointing to corrective actions are provided, however. The result
of successful test-based code assessment is briefly presented
in natural language, which benefits comprehensibility but lacks
valuable details, such as expected and actual program behavior.

V. BETA-TESTING THE COURSE DESIGN FOR LEARNING
ENVIRONMENTS AT SCALE

As a course of this kind was new terrain for all members
of the teaching team, we conducted a beta test with six high-
school students, who participated at one of the HPI’s on-site

Shttps://www.coursera.org/course/pythonlearn
Ohttps://github.com/csev/tsugi
"https://www.udacity.com/course/cs101

1200

1000 1

800 1

600

400 -

200 — —

<3h 3-6h 6-9h >%h Dropouts

Hweek1l Hweek2 Week 3 & Week4

Fig. 12. Workload as perceived by the participants.

youth development activities. The main reason for this effort
was to get a feeling about the necessary amount of time that
participants would require to cover the workload. The pupils
in the beta test were able to work through the exercises of
week one in very short time. It took the fastest pupil about
ten minutes the slowest had to invest about twenty minutes.
Another test was conducted with first semester HPI students.
While these students did not notice a higher workload for
the following weeks, a survey at the end of the course, and
some discussions in the forum, showed that the participants
perceived this differently. While in weeks one and two the
majority of the users stated that the workload was below three
hours, in weeks three and four this shifted towards three to
six or even six to nine hours with an increasing dropout rate.
See also Figure 12. Therefore, we investigated if our analysis
tool® would also reveal that the time that the users have spent
on openHPI has increased, which was not the case. See Figure
13. Instead, we can see again the recurring pattern of activity
peaks shortly before approaching deadlines.

VI. SCALING THE SUPPORT

At openHPI, the user forum is an important part of scaling
the support for the users. The help-desk, openHPI’s one-to-
one support tool, turns out to be overwhelming the teaching
teams, particularly in hands-on courses on beginner’s level.
Many participants do not realize that personal support is
not manageable for a small team facing the massive amount
of users. Too often requests cannot be answered during the
runtime of a course. Monitoring the forum alone and providing
appropriate support is often already taking the teaching teams
to their limits. In general, our teaching teams consist of the
professor, four to eight research assistants, and one or two

8piwik: http://piwik.org/

Returning Visits

— Avg. Time on Website (2]

Mon 29 Sep
1989s Avg. Time on Website

Mon 29 Sep

2460s

1230s

0s

Mon 22 Sep Mon 6 Oct

Mon 13 Oct

Mon 20 Oct

Fig. 13. Average session length during the course.

No. of Python2014 IMDB2014
Users total 7373 8641
Users active (avg) about 3700 1191
Users(Q) 700 139
Users(A) 670 56
Users(C) 770 104
Questions 1404 (0.19/2.01) 219 (0.03/1.57)
Answers 2178 (0.30/3.25) 203 (0.02/3.63)
Comments 3571 (0.48/4.64) 385 (0.04/3.70)
TABLE III. COMPARISON OF FORUM AND HELP-DESK USAGE

BETWEEN PYTHON2014 AND IN-MEMORY DATA-MANAGEMENT
(IMDB2014)—TWO PARALLEL COURSES ON OPENHPI. USERS(Q,A,C):
AMOUNT OF USERS THAT POSTED A QUESTION, ANSWER, OR COMMENT.
THE NUMBER IN BRACKETS SHOW THE AVERAGE AMOUNT OF POSTS PER

USERS TOTAL/POSTING USERS.

students. Participants are encouraged to support each other in
the forums. The teaching team only intervenes if discussions
get rough, or go down the wrong track. In Python2014 it could
be observed that this style of offering support to the course
participants has worked very well. Naturally, as the course
had way more participants than the on-site youth development
activities at HPI, an increased demand for support had already
been expected. The factor, however, by which the forum usage
of Python2014 has increased in comparison to other openHPI
courses really came surprising. Table III compares the forum
activity of Python2014 to a IMDB2014, a regular openHPI
course that was conducted in parallel. The numbers in brackets
show the average amount of forum posts per total participants
and the average amount of forum posts per users that actually
have posted a question, answer, or comment in the forum.

The forum usage in Python2014 was significantly higher
compared to other openHPI courses (exemplary IMDB2014).
The average number of questions per participant was six times
higher in Python2014, the average amount of answers was even
more than fifteen times as much. The amount of comments
was about twelve times higher in Python2014. The majority
of the questions were about problems with the programming
exercises. Often, the participants started with a complaint about
the automatic grader while asking for help. Having received an
answer enabled them to finally solve their problem. Common
complaints were about tests being too restrictive, e.g. being
case sensitive.

We came up with a couple of hypotheses for this significant
difference between the two courses.

900
800
700
600
500
400
300
200
100

Unknown >70 60-70 50-60 40-50 30-40 18-30 8tol8

¥ questions Manswers - comments_on_answers ¥ comments_on_questions

Fig. 14. Age of the participants who were active in the forum

1) The age of the participants: Python2014 sported a
high percentage of very young participants. Younger
users are more used to expose themselves on the
internet and therefore have less problems to publicly
post in a forum.

2) More posts due to “misusage” of the forum, such
as duplicated questions due to a “post first, search
for similar topics later (or never)” tactic by the less
experienced participants, fun posts or irrelevant posts,
and user to user communication via the forums.

3) Optimized forum usage by the more experienced
users of IMDB2014.

4) The professional level and background in IT of the
participants: IMDB2014 participants are at a higher
level of their career and, therefore, have the notion
that they have more to lose when they show the gaps
in their knowledge by posting.

5) The language barrier: Python2014 participants were
mostly German native speakers, while IMDB2014
participants come from all over the world.

6) The possible benefit that could be achieved by ac-
tively taking part in the forums was much higher in
Python2014 as graded homework could be done over
and over again. Asking for help in the forum was
likely to improve the grade. Due to the short and strict
time limits for graded assignments in IMDB2014, in
this course, it was rather unlikely to find direct help
in the forum.

7) As the course itself afforded more active participa-
tion, the threshold to actively participate in the forums
was less high.

8) The forum was identified as the second most impor-
tant learning material, next to the course videos, in the
survey at the end of the course. Way in front of books,
even relegating the internet to the third position.

We tried to find indicators for these hypotheses in our
data. Table IV gives an overview about the socio-demographic

Python2014 IMDB2014

Background IT
Beginner 43.8% 14.7%
Advanced 58.7% 49.8%
Expert 18.7% 35.5%

Professional life
None / not set 81.6 % 61.6%
Up to 5 years 4.7% 10.4%
Up to 10 years 2,9% 8.5%
More than 10 years 10,9% 19.5%

Highest degree
High school 23.4% 10.4%
Bachelor, Diplom, Master 42.7% 76.0%
PhD 3.7% 4.9%
other 30.1% 8.7%

Gender
Male 77.2% 87.5%
Female 22.8% 12.5%
Country

Native German 96.2% 48.8%
Native English 0.8% 14.2%
India 0.3% 14.9%
Other 2.7% 22.1%
TABLE IV. SOCIODEMOGRAPHIC COURSE DATA.

data of the course participants in comparison to a regular
course on openHPI. As mentioned before in the context of the
participants’ age distribution, we only have this data available
for those participants who voluntarily entered this informa-
tion in their profile page (25.6% in Python2014 and 41%
in IMDB2014). Generally, those users, which have a longer
relation to the platform and have taken more than one course
(and, therefore, are not in the actual target group of this course)
are more likely to have completed their profile. So the actual
circumstances might be a little distorted. Figure 14 shows
the age distribution of the active participants in the forum.
Most of the posts are from users that have not completed their
profile information. Where we have this information, it seems
to be the 40 - 50 year olds who were most active. There
were some patterns that we observed amongst the younger
participants. For instance, we can say that some inappropriate
posts that had to be removed, were definitely written by
younger participants. After deleting the threads we wrote to the
culprits in private and asked them to stop such behavior. They
apologized and the number of this kind of posts was reduced
remarkably. Technical or performance problems at peak hours
generated a lot of forum posts. We could observe, that espe-
cially among younger and not as experienced online-learners,
the forum mirrored frustrations over-exceptionally. Discussions
in IMDB2014 mainly revolved around three topics: general
questions and comments concerning the content, seeking for
clarification if the participants understood it correct, in-depth
questions on applying the presented principles on real-world
problems and organizational questions concerning the course.
Since technical issues were mainly targeted towards the help-
desk, and organizational questions accounted for only the
minority of threads, most discussions were content oriented.
The fact that the in-depth questions usually were too specific to
be answered by fellow students, such threads typically ended
up in a 3-5 post status, with one post asking the question,
a teaching team member answering it and the original poster
either saying thank you or asking for further clarification of a
certain detail and then thanking the team member. Comparing
the numbers per active or posting user, the gap becomes
noticeable smaller. While the participants of IMDB2014 in
average were less likely to be active in the forum, those who
did participate did not show a different communication pattern
than the participants of Python2014.

A potential reason for the, generally, more reluctant be-
havior within IMDB2014 is the fact that substantial parts of
the audience did not have English as their mother tongue and,
therefore, felt uneasy to pose questions potentially exposing
them in front of other adults or even professionals and col-
leagues. Matching our hypotheses to the data presented in
Table IV, it becomes apparent that the language hurdle is
most likely to be the main reason for the lower post count
within IMDB2014. Above 85% of the participants were non
native speakers with regard to the course language. Also the
second hypothesis, taking the professional career into account,
is backed by the data. While the majority of users did not
answer this question at all, the fraction of participants with
higher progress in their career in IMDB2014 is about twice as
high as the corresponding one in Python2014.

VII. FUTURE WORK

Coming up next on openHPI is another hands-on pro-
gramming tool that will allow to set up courses in a wider
variety of programming languages. This tool also allows to
define test cases for these languages—in the language’s native
testing framework, e.g., RSpec for Ruby, JUnit for Java, etc.
Courses, such as Python2014 require additional forum support
and monitoring. A possible solution might be to involve
experienced and active participants. In an earlier survey we
had very encouraging results from users that would be willing
to mentor in future iterations of a course [11]. Making these
people recognizable as mentors could ease the high demand
for individual support. Already during the registration phase of
Python2014 an opportunity to scale the support for participants
in future iterations of this kind of courses evolved. We received
many requests from teachers who intended to use the course in
a flipped classroom setting and asked if the platform supports
mechanisms to enroll whole classes or to monitor the results
of the students in their class. Enabling teachers to give optimal
support for their pupils seems to be a promising way to
relieve openHPI’s teaching teams from at least a part of their
workload. For this use case enabling teachers to create learning
groups, supervise their students within the group, and being
able to check their results will be very helpful for both sides.
A very important step is to enable users to go on from where
they are when the course has ended. Particularly, it is important
to enable the users to step forward from the restricted learning
environment that has been employed during the course to a
more self-determined way of coding. Therefore, we plan to
enhance our next programming course with a supplementary
course introducing the participants to the world of compilers,
interpreters, and IDEs.

VIII. CONCLUSION

The MOOC format certainly offers a valuable means to
scale the youth development efforts of an institution such as
the HPI. Offering MOOC:s for a very young audience—or more
general for novices—however comes along with a couple of
challenges. Particularly, a significantly increased amount of
support needs to be taken into account when planning the
human resources for such courses. Despite several technical
hiccups at the beginning of the course, we conclude that the
course can be considered as successful. It was well received
by the participants and had a comparably very high rate of
user participation. In the survey at the end of the course,
84.33% of the users stated that they would recommend the
course to other people, and 71.10% asked for a sequel of the
course. The age distribution turned out to be more widespread
than we had intended. Concerns that this could turn out to be
problematic did not come true, rather quite the opposite was
observed. Participants of all ages worked very well together
and supported each other. Particularly, programming courses
at a beginner’s level should support a tool that liberates the
participants from having to install a programming environment
of their own to ease the initial pain. Towards the end of the
course, the participants need to be introduced to more powerful
tools, however, to enable them to transfer the knowledge they
gained to real life challenges.

IX. ACKNOWLEDGMENTS

We thank Kai Fabian, Nicco Kunzmann, and Hauke Kle-

ment for their help with the help-desk, forum, and platform.
We additionally thank Bernhard Rabe for supporting us at the
Future SOC Lab and the pupils and students who helped to
beta test the course.

[1]

[2]

[3]

REFERENCES

C. Meinel and C. Willems, openHPI : the MOOC offer at Hasso Plat-
tner Institute, Hasso-Plattner-Institut fiir Softwaresystemtechnik: Tech-
nische Berichte des Hasso-Plattner-Instituts fiir Softwaresystemtechnik
an der Universitit Potsdam ; Nr. 80. Potsdam, Germany: University
Press, 2013.

B. S. Bloom, “Taxonomy of educational objectives,” Cognitive Domain,
vol. 1, 1956.

C. Willems, J. Renz, T. Staubitz, and C. Meinel, “Reflections on
enrollment numbers and success rates at the openhpi mooc platform,”
in Proceedings of the European MOOC Stakeholder Summit 2014, no.
EPFL-CONF-196608. PAU Education, 2014, pp. 101-106.

(4]

(5]

(6]

(71

(8]

[9]
[10]

[11]

T. Staubitz, J. Renz, C. Willems, J. Jasper, and C. Meinel, “Lightweight
ad hoc assessment of practical programming skills at scale,” in Proc.
CHI 2014, no. 10.1109/EDUCON.2014.6826135. IEEE, 2014, pp.
475-483.

S. Papert and C. Solomon, “Twenty things to do with a computer,” MIT
Artificial Intelligence Memo, no. 248, 1971.

S. Papert, Mindstorms: Children, Computers, and Powerful Ideas. New
York: Basic Books, 1980.

C. Emihovicha and G. E. Miller, “Talking to the turtle: A discourse
analysis of logo instruction,” Discourse Processes, vol. 11, no. 2, pp.
183-201, 1988.

J. R. Briggs, Python for Kids. San Francisco: No Starch Press, 2012.
G. Lingl, Python fiir Kids, 4th ed. Heidelberg: bhv, 2010.

K. M. Ala-Mutka, “A survey of automated assessment approaches
for programming assignments,” Computer Science Education, vol. 15,
no. 2, 2005.

T. Staubitz, J. Renz, C. Willems, and C. Meinel, “Supporting Social In-
teraction and Collaboration on an xXMOOC Platform,” in EDULEARN14
Proceedings. 1ATED, 2014, pp. 6667-6677.

