
published as: Thomas Staubitz, Hauke Klement, Ralf Teusner, Jan Renz, Christoph Meinel: CodeOcean - A Versatile Platform for Practi-
cal Programming Excercises in Online Environments, In Proceedings of 7th Annual IEEE Global Engineering Education Conference

(EDUCON2016), 10-13 April 2016, Abu Dhabi
2016 ANNUAL IEEE GLOBAL ENGINEERING EDUCATION CONFERENCE

CodeOcean - A Versatile Platform for Practical

Programming Excercises in Online Environments

Thomas Staubitz, Hauke Klement, Ralf Teusner, Jan Renz, Christoph Meinel
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
{thomas.staubitz, ralf.teusner, jan.renz, christoph.meinel}@hpi.de

hauke.klement@student.hpi.de

Abstract—The paper at hand introduces CodeOcean, a web-
based platform to provide practical programming exercises.
CodeOcean is designed to be used in Massive Open Online
Courses (MOOCs) to teach programming to beginners. Its con-
cept and implementation are discussed with regard to tools pro-
vided to students and teachers, sandboxed and scalable code exe-
cution, scalable assessment, and interoperability. MOOCs bear a
tremendous potential for teaching programming to a large and
diverse audience. Learning to program, however, is a hands-on
effort; watching videos and solving multiple choice tests will not
be sufficient. A platform, such as CodeOcean, to work on practi-
cal programming exercises and to solve actual programming
tasks is required. Due to the massiveness of the courses, teaching
teams cannot check, give feedback, or assess the submissions of
the participants manually. CodeOcean provides the participants
with proper automated feedback in a timely manner and is able
to assess the given programming tasks in an automated way.

Keywords—MOOC, Hands-on Experience; Online Assessment;
Scalability; E-Learning; Automated Assessment; Programming.

I. INTRODUCTION
In today’s society, technological innovation plays an ever-

increasing role for a country’s development and economic
growth [1]. Technology touches virtually every part of our dai-
ly lives. As a consequence, programming abilities are required
in many professional areas. Programming has become a key
qualification of the 21st century. In recent years, Massive Open
Online Courses (MOOCs) have become a phenomenon pre-
senting the prospect of free high class education to everybody.
They bear a tremendous potential for teaching programming to
a large and diverse audience. The typical MOOC components,
such as video lectures, reading material, and easily assessable
quizzes, however, are not sufficient for proper programming
education. To learn programming, participants need to work on
practical programming exercises and to solve actual program-
ming tasks. It is further crucial that the participants receive
proper feedback on their work in a timely manner. Thus, with-
out a tool for automated assessment of programming assign-

ments, the teaching teams would be restricted to offer optional
ungraded exercises only. In a previous paper [2], we have
shown that similar tools have a long history in computer sci-
ence and have dealt with the question how MOOCs can inte-
grate practical programming assignments in a manner that
meets the demands of novice programmers and satisfies the
inherent scalability requirements of large-scale e-learning envi-
ronments. In the paper at hand, we introduce CodeOcean, a
web-based platform for practical programming exercises,
which is designed to be used in programming MOOCs.
CodeOcean allows teachers to create programming exercises,
which can be automatically graded by employing unit tests as a
measure of quality. Its design and implementation are dis-
cussed with regard to tools provided to students and teachers,
sandboxed and scalable code execution, scalable assessment,
and interoperability. CodeOcean aims at facilitating the entry
into programming and at attracting a diverse audience of inter-
ested learners. While the application is designed to be novice-
friendly, it is not specifically tailored to beginner-oriented pro-
gramming paradigms. Rather, it is designed to support a wide
range of programming languages in a fashion that encourages
novices, yet is not limited to trivial programming tasks.
CodeOcean has already been employed to a different extend in
three courses on openHPI.

The remainder of this paper is structured as follows: Sec-
tions II, III, and IV present the requirements, design, and some
details of our initial implementation of CodeOcean. Section V
presents the results of an early load simulation test. In the fol-
lowing sections, we conclude our findings, and give an outlook
on our upcoming plans.

II. DETERMINING THE REQUIREMENTS
To start with, we defined five high-level requirements– ver-

satility, novice-friendliness, scalability, security, and interoper-
ability–that CodeOcean (and large-scale programming educa-
tion solutions in general) needs to comply with. The following
paragraphs will highlight these requirements one by one.

a) Versatility: Many of the programming tools that we ex-
amined are designed for a single use case; e.g. Webpython, one
of the predecessors of CodeOcean at openHPI, only supported
exercises in the Python programming language. One of our
requirements is to support a wide variety of programming lan-
guages and application domains. A further requirement is to
enable teachers to create practical assignments that can make
use of third-party applications and libraries. As a consequence,
CodeOcean’s approaches towards program execution and code
assessment had to be chosen with flexibility in mind. Accord-
ing to Pieterse [3], the quality of automated assessment is
largely dependent on the quality of the test cases that are used.
Therefore, we required that CodeOcean is able to promote
teachers’ creativity in assessment design by providing them the
freedom to decide which program aspects to assess and which
tools to use for this purpose. CodeOcean is required not to dic-
tate a universal assessment approach but to permit the usage of
any desired tool that fits the particular use case best, such as an
established testing framework or a tailor-made solution.

b) Novice-Friendliness: The large diversity of MOOC par-
ticipants implies that classmates lack a common knowledge
base and educational background [4]. Therefore, learners’ prior
knowledge and digital literacy vary considerably. The first use
cases on openHPI to employ CodeOcean in practice were
courses that addressed complete beginners. We require that
learners are provided with a homogeneous development envi-
ronment that has a simple and appealing User Interface (UI),
requires no prior knowledge, and supports them in many as-
pects of their endeavor to learn programming. We also require
that CodeOcean minimizes the challenges that the usage of an
automated assessment tool may entail (see also [3]). A very
important aspect of the learning process is feedback. Feedback
towards assignments allows students both to understand their
mistakes and to revise their work [5]. Compared to a traditional
learning setting, feedback quality is even more important in
MOOCs because communication opportunities are limited [3].
We consider providing students with understandable and useful
feedback as crucial for their long-term motivation and as an
important requirement for CodeOcean, particularly, since both
MOOCs and programming courses in general are affected by
high dropout rates [6].

c) Scalability: As MOOCs are aimed at unlimited numbers
of participants, they need to be inherently scalable [7]. Any
tool to be employed in a MOOC, obviously needs to provide
this inherent scalability as well. In our specific use case, many
students must be enabled to write and execute code in parallel.
Moreover, a certain level of responsiveness is required in order
to achieve a satisfying User Experience (UX) [8]. Therefore,
CodeOcean is required to follow a code execution approach
that provides fast feedback and that scales for the number of
users to be expected in a MOOC. The same scalability re-
quirements also apply to assessment. Huge enrollment numbers
in MOOCs make manual feedback and grading impossible.
Instead, CodeOcean needs to provide a scalable assessment
approach that fits the needs of large-scale education.

d) Security: Server-side execution of student-written pro-
grams implies that arbitrary code is executed within the bound-
aries of an e-learning system. This constitutes a considerable
risk. Faulty student programs could excessively consume serv-

er resources; intendedly malicious programs could try to cause
damage or obtain unauthorized access. In fact, automated as-
sessment systems that are integrated into Learning Manage-
ment Systems (LMS) are considered a tempting target for at-
tackers [9]. Due to these risks, providing a secured execution
environment for running students’ programs is regarded to be
an essential requirement for automated assessment systems that
employ dynamic evaluation techniques [10]. CodeOcean is
required to provide means for the sandboxed execution of
learners’ code that guarantee that untrusted code can neither
harm the platform nor influence other learners’ code submis-
sions.

Fig. 1. CodeOcean: In the assignment workplace the user is presented the
problem at hand to be solved.

e) Interoperability: We believe that educational program-
ming platforms are more widely adopted if they can be easily
integrated into existent e-learning infrastructures. Therefore,
CodeOcean is required to be interoperable with existing e-
learning systems, such as LMSs and other MOOC platforms,
next to openHPI. In order to extend their courses’ contents with
practical programming tasks, instructors should be able to pre-
pare assignments on the CodeOcean platform and embed them
into their courses. Learners, on the other hand, should be able
to solve these assignments in a transparent manner, without the
need for registration.

III. DESIGN AND COMPONENTS

A. Development Environment and User Interface
Based on the gained insights that have been discussed in

[2] and the requirements as defined in the previous section, we
decided in favor of a web-based development environment
composed of a client-side code editor and a server-side com-
ponent for code execution. This approach entails a number of
advantages. At first, it allows us to provide learners with a
homogeneous and novice-friendly programming environment.
Secondly, the approach supports a variety of programming
languages and third-party libraries while providing a con-
sistent workflow for both code execution and assessment.
Thirdly, the approach enables insights into learners’ problem-

solving strategies by analyzing their code submissions. All
web-based programming tools used in MOOCs that we com-
pared1 are restricted to a single unit of editable code. In con-
trast, we decided that CodeOcean should promote the concept
of files. We believe that it is important to support multiple
editable files and the creation of new files since this enables
more profound programming exercises, fosters learners’ crea-
tivity and flexibility, and empowers learners to practice pro-
gram design [3]. Furthermore, we want to provide learners
Fig. 2. Development Process

with the ability to explore the behavior of the code they wrote
by running it and having it assessed as frequently as desired.

CodeOcean’s development environment is based on wide-

spread web standards that are natively supported by current
web browsers. Non-native technologies, such as Java applets
and third-party plugins, are avoided (see also [11]). Currently
out of scope of this paper, are customization, debugging, and
refactoring features, as these are negligible for our current
purpose of teaching programming to novices. The develop-
ment environment’s UI is shown in the Figures 1, 3, and 4.
The upper part of the view contains the active exercise’s title
and description, as well as the most recent score as determined
by running the learner’s solution against the exercise’s tests.
The navigation bar at the top of the window allows to control
the UI’s language and to access help. The UI is available in
the locales English and German. Further translations can be

1 The results of this comparison–we examined several courses on Coursera,
iversity, edX, Udacity and openHPI and the coding environments they em-
ployed–will be published more detailed in a separate paper.

added with little effort. Although a certain proficiency in Eng-
lish is usually required in the field of programming [12], we
decided to internationalize CodeOcean’s UI. This is required,
particularly, with regard to the courses for novices and chil-
dren. The major part of the development environment was
split up into four tabbed areas, each of which is associated to a
step in learners’ iterative development workflow depicted in
Figure 2.

Fig. 3. CodeOcean: Code has been run with errors. From the output we
assume that the method name was misspelled (fibonaci vs. fibonacci).

Fig. 4. CodeOcean: Code run against teacher defined test cases. Tests can be
defined in separate files. Per file any number of tests is allowed, however
points can only be rewarded on a per file basis.

As it turned out during the first two courses, the process in
Figure 2 is flawed. Reading the instructions cannot be regard-
ed as a separate step. It is a process that occurs constantly
throughout the work on the task. This had to be reflected in the
UI. The first tab used to display the exercise instructions in-
cluding the problem description, expected program behavior
in edge cases, exemplary code snippets, and more. As the as-
sumed underlying process was flawed, the design turned out
not to be successful. Participants complained that they could
not see the instructions while working on the solution. There-
fore, teaching teams often used the short description, which is
visible throughout the process at the top of the page, to pro-
vide the detailed instructions. The place where the instructions
originally were intended to be displayed, often remained un-
used and eventually the first tab was removed completely. The
(originally) second tab (see Figure 1) hosts the development
environment’s core component, which is the programming
workspace. This workspace consists of two elements: a file
tree and a code editor. The teacher is enabled to decide for
each file if it is to be shown in the file tree or if it should be
hidden. The content of files that are shown in the file tree can
be accessed by the participants, the teacher decides if the file
is writeable or read-only. The file tree also allows users to
create, delete, and download files themselves. The ability to
create custom workspace files enables learners to practice

program design and modularization by splitting up their code
into functional units of their own choice. For novices, particu-
larly in the courses that address children and adolescents, this
is not required and turned out to be confusing for the partici-
pants. Therefore, the option to hide the file tree (including the
buttons to create and delete files) was added for the teachers.

CodeOcean’s web-based development environment is

based on Ace2, an embeddable open-source code editor, writ-
ten in JavaScript. We chose Ace from the set of available code
editors due to its rich functionality, good reputation, and active
maintenance. Ace offers source code editing capabilities that
match the functionality and performance of native desktop
editors. Its rich feature set includes syntax highlighting for a
myriad of programming languages, UI theming, code folding,
automatic indent, keyboard shortcuts, find-and-replace func-
tionality, and more.

The remaining tabs contain the program output and the test
results, which will be discussed in the following chapters. The
tabbed design is, currently, subject of discussion and will be
redesigned in a more usable way asking less clicks from the
user to finally submit her solution.

See also Figure 1, 3, and 4 to get an impression of
CodeOcean from the participant’s perspective.

1) The participant has opened CodeOcean and is presented
a programming problem to solve (Figure 1.)

2) The participant has tried to run her code but the execu-
tion failed due to a syntax error (Figure 3.)

3) The participant has fixed the error and evaluated the
code against the teacher-defined unit tests (Figure 4.)

B. Code Execution and Security
The execution of student-written code demands security

measures since learners may submit programs that excessively
consume resources or even cause damage to the system. A
number of possible attacks against systems using automatic
code evaluation have been described by Forišek [13]. Alt-
hough it is far more likely that student programs are rather
erroneous than deliberately malicious, providing our system in
a MOOC context to a large number of learners makes it plau-
sible that individual users may attempt to gain unauthorized
access or do harm [3]. Therefore, CodeOcean has to provide a
secured environment for running student programs that re-
stricts the amount of consumable resources and withstands the
damage that faulty or malicious programs may cause. Isolation
and resource control have traditionally been achieved through
the use of Virtual Machines (VM). However, abstraction pro-
vided by VMs comes at the cost of reduced performance. In
order to meet the scalability requirements of MOOCs, OS-
level virtualization techniques present an interesting alterna-
tive to traditional VMs since they impose almost no overhead.
Rather than running a full OS on virtual hardware, OS-level
virtualization approaches leverage built-in OS capabilities that

2 https://ace.c9.io/#nav=about

enable isolated environments without starting a VM. Unlike a
VM, such an environment can comprise as little as a single
process and only owns the resources that it actively consumes.
Linux Containers (LXC) is one of several OS-level virtualiza-
tion methods that provide multiple virtual environments on a
single host system. LXC is based on control groups3 and
namespaces, which are OS features that allow limiting and
isolating the resources used by groups of processes. Therefore,
virtual environments, so-called containers, have their own
process and network spaces and cannot see or access objects
on the outside. Although LXC’s underlying concepts are well
known and mature, it has only recently been adopted and
standardized in mainstream OSs. Due to its benefits, contain-
er-based virtualization seems to be predestined for our use
case. It allows to run students’ programs in isolated environ-
ments that are practically unrestricted in terms of executable
software while involving hardly any virtualization overhead.
Containers represent a very flexible platform for diverse code
evaluation tasks that is open to any programming language
and third-party library available for Linux. The isolation pro-
vided by LXC for now dispenses us from measures such as
integrating a stand-alone sandboxing solution [9]. An element
of risk remains, however, if a user manages to escape from the
container. Therefore, further securing the containers is part of
our ongoing research and will be discussed in a future paper.

Since every single code submission is executed in a clean,
preconfigured container being in a known state, start-up or
reset times are important. Low latencies for code execution are
a precondition for providing results and feedback in a timely
manner. Small feedback times grant learners a more interac-
tive development process and facilitate iterative problem-
solving strategies. In contrast to traditional VMs, LXC entails
much less overhead for starting the virtualization platform,
which is why the execution of a code submission usually in-
volves an overhead of less than a second. Therefore, an inter-
active development workflow is enabled.

The open-source software Docker4 provides an abstraction
layer on top of LXC, including an image format and conven-
ient tools for building, versioning, distributing, and deploying
containers. Although several management tools for LXC exist,
Docker has emerged as the de facto standard [14]. We decided
to employ Docker as the execution platform for students’ code
submissions because it offers competitive performance [14] as
well as user-friendly tools that allow instructors to define cus-
tom execution environments by themselves. Docker involves
the concept of images, which are stateless templates for con-
tainers that are used to prepare applications for execution in a
Docker container. Since most applications rely on third-party
utilities, libraries, or services, images enable users to package
such applications along with their dependencies [15]. Existing
Docker images can be used as starting points for the definition
of new ones. Therefore, common dependencies can be bun-
dled in a general base image to be used by multiple other im-

3 https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

4 https://www.docker.com/

ages. Besides open-source software, Docker offers Docker
Hub5, a web-based repository for Docker images. Users can
push their images to the repository and fetch them on another
machine. By providing images publicly, they can be easily
shared. In order to prepare an execution environment that is
tailored to the needs of a particular course, teachers are ex-
pected to create a corresponding Docker image and publish it
at Docker Hub. After that, CodeOcean can pull the image
from the repository and utilize it for the execution of students’
code submissions. Docker provides two means for the creation
of images. Firstly, an image can be created manually by mak-
ing changes to a container and committing the results to a new
image. This approach allows to evolve existing images in a
simple way, but it does not promote automation and collabora-
tion. Secondly, Docker provides a tool for building images
automatically from a list of instructions, as well as a DSL6 for
specifying the concrete steps to be taken. Using so-called
Dockerfiles, images can be composed and adjusted in a textual
fashion, which allows automated and reproducible creation. In
addition to the capabilities provided by Docker Hub, Dock-
erfiles enable collaboration and version control using standard
source code management tools, repositories, and practices.

C. Code Assessment and Feedback
In [2] we underlined the relevance of assessment for the

learning process and presented multiple approaches towards
scalable assessment of programming assignments. Due to its
focus on large-scale e-learning environments, such as
MOOCs, scalable assessment is a crucial requirement of
CodeOcean. Since the purpose of CodeOcean is to provide an
appropriate platform for teaching programming to everyone,
including complete beginners, we decided, for now, to rely on
automated assessment techniques rather than peer assessment.
Furthermore, automated assessment provides highly available
and objective evaluation which makes it a predestined ap-
proach to supply learners with means for step-by-step refine-
ment of their solutions before they finally submit their work.
An integration with openHPI’s peer assessment mechanism is
planned, however, in the future. This will enable us to support
peers in assessing the submissions by giving them the infor-
mation that the submission has fulfilled the basic require-
ments: the code compiles and produces the requested outcome.
Thus, the peers can concentrate on code quality and providing
qualitative feedback rather than having to deal with the basics.
The application of additional manual assessment capabilities is
not within the scope of this paper and will be subject of future
research. In the context of automated assessment, we decided
not to dictate a universally applicable assessment approach,
such as I/O-based testing, but to grant instructors the freedom
to select an assessment strategy that they consider appropriate
for a specific use case. Docker provides a versatile platform
for executing the tests for assessment. The employed mecha-
nism is very similar to the one that is used to run the student’s
code. Instructors are very flexible in their choice of a particu-

5 https://hub.docker.com/
6 http://docs.docker.com/reference/builder/

lar assessment strategy. For instance, they are free to use an
arbitrary testing framework, such as the one that is best prac-
tice for the language they teach, the one that fits the applica-
tion domain best, or the one that they are most experienced
with. Besides relying on industry-strength testing tools, in-
structors can also choose to utilize tailor-made scripts for their
assessment workflows. However, we encourage instructors to
favor well-known solutions over improvised ones since estab-
lished testing frameworks usually supply greater functionality
and robustness, and can provide learners with relevant experi-
ence in using them. Since the system’s underlying assessment
approach is visible to learners, they get in contact with the
concept of software testing from the very beginning. Besides
imparting an objective quality to the assessment, test-based
evaluation provides learners with an understanding of the pri-
mary method for verifying industrial software [16]. Moreover,
learners become accustomed to the idea of software testing as
a means for controlling software quality and might be more
willing to write their own tests later on [17]. Instructors are
free to provide the tests they use for assessment as a visible
part of the exercise skeleton, in this way permitting even
deeper insights into the testing approaches used by profession-
al developers. Furthermore, CodeOcean has the ability to be
employed in courses on test-driven development by assessing
if the tests that are submitted by the students are testing at
least as much as the tests that have been provided by the
teachers.

To take full advantage of the role of assessment as a feed-
back channel for learners, the results of teacher-provided test
cases should convey learners a good understanding regarding
the extent to which their code adheres to the exercise specifi-
cation. The output generated by a testing framework can be
confusing for beginners [6]. Inexperienced programmers
might find it difficult to match the feedback supplied with a
failing test to errors in their code [18]. In order to facilitate
learners’ troubleshooting, we supplement test frameworks’
low-level output with instructor-provided feedback that is bet-
ter understandable. Teachers are encouraged to provide under-
standable natural-language feedback for every test. Conse-
quently, in the case of a failing test, the learner is supplied
with a useful hint on how the program’s behavior does not
fulfill the specification and how it can be improved. By
providing the student’s with a clear understanding of their
program’s inadequate aspects, we intend to increase the stu-
dents’ motivation to revise their solution.

D. Interoperability, User Management, and Scoring
Instead of designing CodeOcean as a proprietary compo-

nent for a single e-learning platform, such as openHPI, or add-
ing course management features to its scope, we decided to
build a lean stand-alone application that is interoperable with
existent e-learning systems. The main issues in this approach
are to enable the users of the e-learning platform to access
CodeOcean without being required to have an additional ac-
count, and to transfer the points or grades that they received on
CodeOcean back to the e-Learning platform where they started.
The de-facto standard Learning Tools Interoperability (LTI)
[19] interface provides exactly these functionalities. By imple-

menting the LTI interface, CodeOcean is interoperable with a
wide range of applications that are compliant to the same
standard. These applications include the popular open-source
LMSs Canvas7, Moodle8, and Sakai9, commercial LMSs, such
as Blackboard, and the MOOC platforms Coursera, edX, and
openHPI. LTI is a specification developed by the IMS Global
Learning Consortium10. It is aimed at establishing a standard
Fig. 5. CodeOcean: Three Tier Architecture plus Docker Server.

for integrating remote content and third-party services into e-
learning applications. In LTI lingo, these third-party services
are called tools. Tools are hosted and supplied by so-called tool
providers. E-learning applications that utilize tools are referred
to as tool consumers. CodeOcean implements the LTI specifi-
cation in version 1.1.111. It covers the following mechanisms
for interaction between tool providers and tool consumers:

• The provisioning and installation of external tools in
e-learning applications.  

• A tool launch protocol for sending a tool consumer’s
user to a tool provider while securely providing user
identity, user role, and course context.  

• Runtime web services that allow tool providers to cre-
ate, retrieve, and delete results for users.  

CodeOcean uses these capabilities in order to provide its
services to trusted consumer applications, to receive user in-
formation regarding learners who start a programming session,
and to send learners’ results back to their consumer applica-
tions.  The described mechanism has some implications in the
context of scoring points for the assessments. According to the
LTI 1.1 specification the score that is transferred from the tool
provider to the tool consumer is always a value between 0 and
1. The tool consumer is in charge of the ultimate decision how
much points will be rewarded for a certain assignment. While
CodeOcean, generally, allows to write several (unit) tests for
assessment in one file, it is only possible to reward points per
test file. To provide a fine grained scoring model, the tests,
therefore, need to be provided in separate files per test. A stu-
dent receives at least one point per succeeding test. The teacher
is free, however, to assign more than one point to a given test
file, to emphasize the value of this certain test. Thus, it is pos-

7 https://www.canvas.net/
8 https://moodle.org/
9 https://sakaiproject.org/
10 http://www.imsglobal.org/
11 http://www.imsglobal.org/lti/v1p1p1/ltiIMGv1p1p1.html

sible to end up with an amount of points that might not be ap-
propriate in the global context of the course. In order to map
the results of a test run to a numerical grade, CodeOcean calcu-
lates a score that is based on the ratio of passed tests to failed
tests. This results in a value that is within the range of 0 and 1,
and thus, can be transferred to the tool consumer via LTI. The
tool consumer then multiplies this value with the amount of
points that are considered to be appropriate within the global
course context. Thus, it happens that the points rewarded by the
tool provider differ from the points rewarded by the tool con-
sumer. CodeOcean’s original UI displayed the absolute number
Fig. 6. CodeOcean: Domain Model.

of points (as rewarded by CodeOcean) on the exercise’s result
page in the form of (x Points/max Points). When the points that
a user received on CodeOcean differed from the points that
were rewarded for the same exercise on openHPI, particularly
when the differences were small, users got confused and sus-
pected a bug in the system. We, therefore, replaced the display
of absolute points with a display of the achieved percentage.

IV. SOME IMPLEMENTATION DETAILS

A. Architecture
As depicted in Figure 5, our solution is composed of a

three-tiered web application based on Ruby on Rails (RoR)12
and a Docker server. The web application provides the devel-
opment environment for learners as well as an administration
back-end for teachers. Docker is used for code execution and
assessment. The two core components can either be hosted on
the same machine or distributed on different hosts. The web
application communicates with the Docker server using its
HTTP-based Remote API13. For this purpose, it utilizes an
object-oriented interface to the API, which is provided by the
docker-api14 Ruby gem15. Client-server communication is

12 http://rubyonrails.org/ 
13 https://docs.docker.com/reference/api/docker remote api/ 
14 https://github.com/swipely/docker-api 
15 Ruby gems are packaged Ruby modules that provide a certain functionality.
 Often these gems are available for free under one of the open source licenses

heavily based on Asynchronous JavaScript and XML (AJAX).
Asynchronous background requests enable a single-page de-
velopment workflow for the web-based development envi-
ronment. Moreover, Rails’ Turbolinks16 feature improves page
load times when navigating through the application by partial-
ly reloading visible content instead of performing full page
loads. In our scenario, PostgreSQL17 is employed as the data-
base as it fits best in our landscape. As RoR adds an additional
abstraction layer in form of an object-relational mapping
(ORM) the database can be exchanged easily for other scenar-
ios.

B. Domain Model
Figure 6 depicts the application’s domain model in the

form of a Unified Modeling Language (UML) class diagram.
The diagram is limited to the most relevant attributes. The
most important concepts will be introduced now in short.

a) Consumer: The LTI tool consumer as introduced in Sec-
tion III-D. Tool consumers have to be registered with
CodeOcean. This is a manual process. Administrators of tool
consumers that are interested in using our instance of
CodeOcean have to request this access. We can then in turn
figure out if we will be able to provide the resources for the
requested use case in the given timeframe. Alternatively, as
CodeOcean has been open sourced, interested parties can host
an instance of CodeOcean in their own landscape. In this sce-
nario as well, the intended tool consumer has to be registered
with the CodeOcean instance.

b) User: For now, three types of users are implemented:
Administrators manage tool consumer applications and plat-
form users, Teachers create content and examine learners’
performance, while Learners solve programming exercises.
Whereas, teachers and administrators are internal users, who
are registered directly at CodeOcean and also can log in with-
out any detours, learners are mere visitors that are sent from a
consumer application, complete their task, and return to that
consumer application right away. A dedicated standalone log-
in as it exists for teachers and admins, is not available for
learners.

c) Execution Environment: An execution environment de-
scribes a software platform, which is used for the execution of
code submissions. An execution environment’s central ele-
ment is its Docker image, which provides an operating system
as well as third-party applications and libraries. Depending on
the execution environment’s needs, the permitted execution
time for student-written code and a number of exposed ports
can be specified. Furthermore, run and test commands need to
be defined for each environment.

d) Exercise: An exercise belongs to an execution environ-
ment. The exercise’s creator can decide whether it is public,
and therefore visible to other teachers, or not. Each exercise
has a uniquely generated token that is used for referencing the
exercise when embedded by means of LTI.

16 https://rubygems.org/gems/turbolinks
17 http://www.postgresql.org/

e) Submission: A submission is a snapshot of a user’s on-
going implementation of an exercise. The complete snapshot
history is stored with timestamps in the database.

f) File, Error: Files exist either as part of an exercise or as
part of a submission. The content of a binary file is stored in
the native file system, whereas a non-binary file’s content is
stored in the database. Finally, errors that occur during the
execution of learners’ code are stored and aggregated in order
to provide teachers with a guideline towards their students’
common misconceptions.

C. Code Execution
Whenever a learner triggers a code run from the develop-

ment environment, her current implementation progress is sent

Fig. 7. Code execution workflow.

to the server using AJAX. A snapshot is created and stored. To
execute a code submission, a new or resetted Docker con-
tainer, based on the Docker image of the exercise’s execution
environment, is provided. Every code execution starts with a
blank slate, which prevents potential side effects of previous
code executions. Based on the execution environment’s con-
figuration, a number of network ports can be exposed by the
Docker container during its runtime in order to allow a student
to send and receive data. To avoid port collisions among
simultaneously active learners, a pool of available ports is
maintained, which provides mutually exclusive access to
ports. To supply the container with the necessary files, the
exercise’s skeleton files plus student-written files are collected
from the database and are written to a submission-specific
temporary directory. Depending on the physical location of the
application server in relation to the Docker server, the files can
be placed in a shared folder, explicitly transferred over a
network, or made available through a network or Cloud file
system. In the end, the submission-specific directory is
mounted as a data volume into the container’s file system.

More often than experienced programmers, novices write
non-terminating code, which can block available server pro-
cesses and waste resources [20]. In order to restrict the amount
of wasted computing power, CodeOcean puts a limit on
Docker containers’ permitted execution time. If a running

container’s execution time exceeds the permitted duration, for
example due to an infinite loop or never-ending recursion, the
container is stopped and the learner is notified that she has
built a non-terminating program. Besides cutting down infinite
loops, limiting execution time can also be used as a measure
of quality assessment since an efficiency limit for code
submissions can be enforced [3].

D. Assessment
CodeOcean’s assessment workflow is based on executing a

learner’s solution against a set of tests. Since these tests are
invoked in the same manner as learners’ main programs, the
assessment execution workflow is very similar to the code
execution workflow. Initially, an up-to-date code snapshot is

Fig. 8. Code execution workflow.

created. After that, the learner’s work, exercise skeleton files,
and, most important, the exercise’s tests are written to a
temporary directory, which is supplied to a Docker container.
When the test runs are finished, test results are extracted from
the testing framework’s output. The final assignment score is
calculated based on the single test files’ weighted percentages
of passed tests. In order to calculate a score and display it
prominently in CodeOcean’s UI, the application has to obtain
key figures from the test run. Those are the number of
executed test cases, the number of passed test cases, and the
number of failed test cases. Since we decided to provide
teachers with the flexibility to use an arbitrary testing
framework of their choice, there is no single source of data but
a wide range of testing frameworks, each of which providing a
proprietary API and using a proprietary output format. In
order to obtain the required key figures despite this
inhomogeneity, CodeOcean utilizes framework-specific
adapters that extract the required information from testing
frameworks’ textual output. Such an adapter has to be
provided for every testing framework or family of related
frameworks to be used with CodeOcean.

V. EVALUATION
In order to evaluate the scalability of our application, we

prepared a production environment that is appropriate for han-
dling the number of concurrent users to be expected in a
MOOC. We simulated a corresponding load using Apache
JMeter18.

18 http://jmeter.apache.org/

A. Test Environment
The production server is equipped with two Intel Xeon E5-

2680 v219 central processing units (CPUs), supplying 40 logi-
cal CPU cores in total, and 64 GB of memory. The server
hosts all major components of CodeOcean, which are the web
application, a web server, the database, and Docker. We use
Ubuntu 14.04.1 LTS (64-bit), Docker 1.3.1, and PostgreSQL
9.3.5. As depicted in Figure 8, the web application is served
by Puma20 2.10.1, a web server built for speed and concurren-
cy, using Nginx21 1.6.2 as a reverse proxy. In order to make
best use of the parallelism provided by the server’s many-core
CPU, we decided not to use Ruby’s standard interpreter,
which is Matz’s Ruby Interpreter (MRI), but to rely on JRuby,
its JVM-based equivalent. While MRI’s Global Interpreter
Lock (GIL) limits the multi-thread performance of a single
Fig. 9. Response Time Graph Depicting Requests for LTI Launch and
Snapshot Creation.

interpreter process by allowing only one thread to execute at a
time [21], JRuby offers thread-level parallelism by mapping
Ruby threads to Java threads, which in turn are mapped to
native OS threads by most JVMs.

In order to prepare the production environment for the
planned load, we set the maximum numbers of database con-
nections allowed by PostgreSQL and allocable by Active Rec-
ord’s connection pool to 1024. Moreover, Puma has been con-
figured to use up to 64 threads.

B. Test Plan
The JMeter-based load test simulates 500 learners who use

CodeOcean in parallel to solve a practical assignment. Each

simulated student’s programming session starts with launching

19 http://ark.intel.com/products/75277
20 http://puma.io/

CodeOcean from within openHPI. After that, students perform
an iterative development process. Each iteration comprises
two requests between client and server. The first request sends
the learner’s code to the server for creating a code snapshot.
The second request triggers either a code run or the execution
of tests. The requests associated to a single simulated student
are issued at intervals of five seconds, which mimic the stu-
dent’s thinking time.

C. Test Results
Figure 9 depicts the response times of requests for starting

the programming session and sending code revisions to the
server. An LTI launch request, which involves validating the
request signature, redirecting the learner to the specified exer-
cise, and rendering the development environment, takes about
Fig. 10. Response Time Graph Depicting Requests for LTI Launch and
Snapshot Creation.

Fig. 11. Server Workload During the Load Test.

270ms on average. The simpler request for creating a code
submission, which does not render a view but yields a JSON
response, takes about 50ms on average. Short and hardly vary-
ing response times throughout the entire load test indicate that
CodeOcean is able to handle the simulated load for the regard-
ed requests without problems. Moreover, the application
should be able to handle a higher number of concurrent users
when given a proportionate amount of resources. Unfortunate-
ly, an entirely different picture emerges when taking code ex-
ecution and assessment into account. Figure 10 depicts the
response times of a subset of the requests regarded in Figure 9
as well as requests corresponding to code execution.

As the graph in Figure 10 shows, response times for code exe-
cution increase with the number of concurrent requests. In a
massively parallel usage scenario, as simulated by the load
test, response times rapidly reach a level at which students
cannot be provided with feedback in a timely manner any-
more.

While concurrent requests increase the response times for
code execution to tens of seconds, the response times of all
other requests remain at similar levels as depicted in Figure 10

However, due to the increased range of response times, these
requests are barely perceptible in Figure 10. The fact that only
Docker-related requests’ response times escalate, while other
requests are handled with ease, suggests that there is no gen-
eral resource shortage but rather a problem concerning Dock-
er. Figure 11 shows the server’s workload during the load test
as determined using the process viewer htop.

In fact, the image does not indicate resource shortage, but
it shows that the server’s available CPUs and memory are
hardly used. Therefore, we believe that the poor scalability of
code execution is attributable to problems with parallelizing
server-to-server requests between the web application and
Docker’s API endpoint. The production server’s many-core
CPU should easily support running a sizable number of Dock-
er containers in parallel. In order to eliminate the possibility of
a general parallelization problem, we conducted an experiment
investigating the parallelizability of concurrent Docker execu-
tions. In contrast to short-running processes, which are usual

Fig. 12. Server Workload During the Parallelizability Experiment.

for students’ code submissions and which are represented in
the load test, we regarded the behavior of long-running pro-
cesses executed in Docker containers. In order to minimize the
differences between the load test and the experiment, contain-
ers were started from within CodeOcean’s web application.
Figure 12 depicts the server’s workload during the experiment.
The image shows that all logical CPU cores are fully occupied
by running the Docker containers. Hence, parallelization of
concurrently running Docker containers is possible on the re-
garded infrastructure. Based on our observations, we deduce
that Docker can provide sandboxed execution of multiple
learners’ code submissions in parallel. While this should theo-
retically provide the scalability needed for a large-scale usage
of CodeOcean, scalable code execution was not achieved in
practice. We suspect that the increasing response times for
concurrent code execution requests are caused by a problem
with parallelizing the allocation of new Docker containers. In
order to enable the usage of CodeOcean in a MOOC, this issue
had to be eliminated or evaded. To tackle the issue, we em-
ployed a pooling concept, allowing us to start containers up-
front and assign them to users on demand. Whenever possible,
new containers are started in the background to cover the rela-

tively long start-up times. Having run all these tests made us
look forward optimistically to the course start. The actual pro-
duction usage in a Java programming course on openHPI,
however, turned out to reveal several problems, which are
beyond the scope of this paper and will be discussed in a fol-
low up paper in detail. Particularly, the decision to use JRuby,
turned out to be problematic.

VI. FUTURE WORK
As already mentioned, our next step will be a more de-

tailed evaluation of our first programming courses that have
been using CodeOcean. The focus here is on CodeOcean’s
performance. Another aspect that we are focusing on, is to
further strengthen the security of the code execution environ-
ments. We are working on an extension to allow the upload of
locally coded exercises, preferably directly from within an
IDE such as Eclipse, Netbeans, IntelliJ, or–on a beginners’
level–BlueJ. Furthermore, we are examining how code quality
control tools, such as CheckStyle, FindBugs, PMD, or Rubo-
Cop might be employed to extend the assessment spectrum.
Finally, we aim to allow tutoring sessions via direct video
chats, in order to increase interaction between participants and
the teaching team.

VII. CONCLUSION
Having previously examined the history and state of the art

of automated code assessment tools, we now took the next
step and designed and implemented a modern version of such
a tool, particularly tailored for the usage in MOOCs, but not
restricted to that use case. The tool has been successfully em-
ployed in two different MOOCs on the openHPI platform and
thus has demonstrated its ability to provide MOOCs with
hands-on programming exercises. After a bit of a rough start
for CodeOcean during the Java programming course, we have
by now fixed the majority of the initial problems. During the
pilots we have proved the tool’s versatility and consider it to
be production ready. CodeOcean has been open sourced and
everybody is invited to use the tool with their e-learning plat-
form and to contribute to the improvement of the system.

REFERENCES
[1] S. AlHumoud, H. S. Al-Khalifa, M. Al-Razgan, and A. Alfaries, “Using

App Inventor and LEGO mindstorm NXT in a Summer Camp to attract
High School Girls to Computing Fields,” in Global Engineering Educa-
tion Conference (EDUCON), 2014 IEEE, 2014, pp. 173–177.

[2] T. Staubitz, H. Klement, J. Renz, R. Teusner, and C. Meinel, “Towards
Practical Programming Exercises and Automated Assessment in Mas-
sive Open Online Courses,” in Proceedings of IEEE TALE Conference,
Zhuhai, 2015.

[3] V. Pieterse, “Automated Assessment of Programming Assignments,” in
Proceedings of the 3rd Computer Science Education Research Confer-
ence on Computer Science Education Research, 2013, pp. 45–56.

[4] L. Pappano, “The Year of the MOOC,” N. Y. Times, 2012.
[5] L. Malmi, A. Korhonen, and R. Saikkonen, “Experiences in Automatic

Assessment on Mass Courses and Issues for Designing Virtual Cours-
es,” ACM SIGCSE Bull., vol. 34, no. 3, pp. 55–59, 2002.

[6] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A Study of the Diffi-
culties of Novice Programmers,” ACM SIGCSE Bull., vol. 37, no. 3, pp.
14–18, 2005.

[7] A. Vihavainen, M. Luukkainen, and J. Kurhila, “Multi-faceted Support
for MOOC in Programming,” in Proceedings of the 13th Annual Con-
ference on Information Technology Education, 2012, pp. 171–176.

[8] M. M. Ben-Ari, “MOOCs on Introductory Programming: A Trave-
logue,” ACM Inroads, vol. 4, no. 2, pp. 58–61, 2013.

[9] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of
Recent Systems for Automatic Assessment of Programming Assign-
ments,” in Proceedings of the 10th Koli Calling International Confer-
ence on Computing Education Research, 2010, pp. 86–93.

[10] K. Ala-Mutka, “A Survey of Automated Assessment Approaches for
Programming Assignments,” Comput. Sci. Educ., vol. 15, no. 2, pp. 83–
102, 2005.

[11] N. Truong, P. Bancroft, and P. Roe, “Learning to Program Through the
Web,” ACM SIGCSE Bull., vol. 37, no. 3, pp. 9–13, 2005.

[12] T. Staubitz, J. Renz, C. Willems, J. Jasper, and C. Meinel, “Lightweight
Ad Hoc Assessment of Practical Programming Skills at Scale,” in Glob-
al Engineering Education Conference (EDUCON), 2014 IEEE, 2014,
pp. 475–483.

[13] M. Forišek, “Security of Programming Contest Systems,” Inform. Se-
cond. Sch. Evol. Perspect., 2006.

[14] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An Updated Per-
formance Comparison of Virtual Machines and Linux Containers,”
IBM, Austin, TX, USA, 2014.

[15] D. Merkel, “Docker: Lightweight Linux Containers for Consistent De-
velopment and Deployment,” Linux J., vol. 2014, no. 239, 2014.

[16] C. Douce, D. Livingstone, and J. Orwell, “Automatic Test-Based As-
sessment of Programming: A Review,” J. Educ. Resour. Comput.
JERIC, vol. 5, no. 3, p. 4, 2005.

[17] A. Vihavainen, T. Vikberg, M. Luukkainen, and M. Pärtel, “Scaffolding
Students’ Learning using Test My Code,” in Proceedings of the 18th
ACM Conference on Innovation and Technology in Computer Science
Education, 2013, pp. 117–122.

[18] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated Feedback
Generation for Introductory Programming Assignments,” in ACM
SIGPLAN Notices, 2013, vol. 48, pp. 15–26.

[19] C. Severance, T. Hanss, and J. Hardin, “IMS Learning Tools Interoper-
ability: Enabling a Mash-up Approach to Teaching and Learning
Tools,” Technol. Instr. Cogn. Learn., vol. 7, no. 3–4, pp. 245–262,
2010.

[20] M. von Löwis, T. Staubitz, R. Teusner, J. Renz, S. Tannert, and C.
Meinel, “Scaling Youth Development Training in IT Using an xMOOC
Platform,” in Frontiers in Education Conference (FIE), 2015 IEEE,
2015.

[21] R. Odaira, J. G. Castanos, and H. Tomari, “Eliminating Global Inter-
preter Locks in Ruby through Hardware Transactional Memory,” in
Proceedings of the 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2014, pp. 131–142.

