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ABSTRACT

Functional dependencies are structural metadata that can
be used for schema normalization, data integration, data
cleansing, and many other data management tasks. Despite
their importance, the functional dependencies of a specific
dataset are usually unknown and almost impossible to dis-
cover manually. For this reason, database research has pro-
posed various algorithms for functional dependency discov-
ery. None, however, are able to process datasets of typical
real-world size, e.g., datasets with more than 50 attributes
and a million records.

We present a hybrid discovery algorithm called HYFD,
which combines fast approximation techniques with efficient
validation techniques in order to find all minimal functional
dependencies in a given dataset. While operating on com-
pact data structures, HYFD not only outperforms all exist-
ing approaches, it also scales to much larger datasets.

1. FUNCTIONAL DEPENDENCIES

A functional dependency (FD) written as X — A ex-
presses that all pairs of records with same values in at-
tribute combination X must also have same values in at-
tribute A [6]. The values in A functionally depend on the
values in X. Consequently, keys in relational datasets ex-
press functional dependencies, because they uniquely deter-
mine all other attributes. Functional dependencies also arise
naturally from real-world facts that a dataset describes. In
address datasets, for instance, a person’s firstname might
determine the gender attribute, the zipcode might determine
city, and birthdate should determine age.

The most important use for functional dependencies is
schema normalization [5]. Normalization processes system-
atically decompose relations with their functional dependen-
cies to reduce data redundancy. But functional dependencies
also support further data management tasks, such as query
optimization [22], data integration [17], data cleansing [3],
and data translation [4]. Although we find many such use
cases, functional dependencies are almost never specified as
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concrete metadata. One reason is that they depend not only
on a schema but also on a concrete relational instance. For
example, child — teacher might hold for kindergarten chil-
dren, but it does not hold for high-school children. Conse-
quently, functional dependencies also change over time when
data is extended, altered, or merged with other datasets.
Therefore, discovery algorithms are needed that reveal all
functional dependencies of a given dataset.

Due to the importance of functional dependencies, many
discovery algorithms have already been proposed. Unfor-
tunately, none of them is able to process datasets of real-
world size, i.e., datasets with more than 50 columns and
a million rows, as a recent study showed [20]. Because
the need for normalization, cleansing, and query optimiza-
tion increases with growing dataset sizes, larger datasets are
those for which functional dependencies are most urgently
needed. The reason why current algorithms fail on larger
datasets is that they optimize for either many records or
many attributes. This is a problem, because the discovery of
functional dependencies is by nature quadratic in the num-
ber of records n and exponential in the number attributes
m. More specifically, it is in O(n”(%)*2™) as shown by Liu
et al. [15]. Therefore, any truly scalable algorithm must be
able to cope with both large schemata and many rows.

To approach such datasets, we propose a novel hybrid
algorithm called HYFD, which combines row- and column-
efficient discovery techniques: In a first phase, HYFD ex-
tracts a small subset of records from the input data and cal-
culates the FDs of this non-random sample. Because only
a subset of records is used in this phase, it performs par-
ticularly column-efficient. The result is a set of FDs that
are either valid or almost valid with respect to the complete
input dataset. In a second phase, HYFD validates the dis-
covered FDs on the entire dataset and refines such FDs that
do not yet hold. This phase is row-efficient, because it uses
the previously discovered FDs to effectively prune the search
space. If the validation becomes inefficient, HYFD is able to
switch back into the first phase and continue there with all
results discovered so far. This alternating, two-phased dis-
covery strategy clearly outperforms all existing algorithms
in terms of runtime and scalability, while still discovering all
minimal FDs. In detail, our contributions are the following:

(1) FD discovery. We introduce HYFD, a hybrid FD dis-
covery algorithm that is faster and able to handle much
larger datasets than state-of-the-art algorithms.

(2) Focused sampling. We present sampling techniques that
leverage the advantages of dependency induction algorithms
while, at the same time, requiring far fewer comparisons.



(3) Direct validation. We contribute an efficient validation
technique that leverages the advantages of lattice traversal
algorithms with minimal memory consumption.

(4) Robust scaling. We propose a best-effort strategy that
dynamically limits the size of resulting FDs if these would
otherwise exhaust the available memory capacities.

(5) Ezhaustive evaluation. We evaluate our algorithm on
more than 20 real-world datasets and compare it to seven
state-of-the-art FD discovery algorithms.

In the following, Section 2 discusses related work. Then,
Section 3 provides the theoretical foundations for our dis-
covery strategy and Section 4 an overview on our algorithm
HYFD. Sections 5, 6, 7, and 8 describe the different com-
ponents of HYFD in more detail. Section 10 evaluates our
algorithm and compares it against seven algorithms from
related work. We then conclude in Section 11.

2. RELATED WORK

The evaluating work of [20] compared the seven most
popular algorithms for functional dependency discovery and
demonstrated their individual strengths and weaknesses.
Some effort has also been spent on the discovery of approzi-
mate [12] and conditional [3,7] functional dependencies, but
those approaches are orthogonal to our research: We aim to
discover all minimal functional dependencies without any
restrictions or relaxations. Parallel and distributed depen-
dency discovery systems, such as [10] and [14], form another
orthogonal branch of research. They rely on massive par-
allelization rather than efficient pruning to cope with the
discovery problem. We focus on more sophisticated search
techniques and show that these can still be parallelized ac-
cordingly. In the following, we briefly summarize current
state-of-the-art in non-distributed FD discovery.

Lattice traversal algorithms: The algorithms TANE [12],
Fun [18], FD_MINE [25], and DFD [1] conceptually arrange
all possible FD candidates in a powerset lattice of attribute
combinations and then traverse this lattice. The first three
algorithms search through the candidate lattice level-wise
bottom-up using the apriori-gen candidate generation [2],
whereas DFD applies a depth-first random walk. Lattice
traversal algorithms in general make intensive use of prun-
ing rules and their candidate validation is based on stripped
partitions (also called position list indices). They have been
shown to perform well on long datasets, i.e., datasets with
many records, but due to their candidate-driven search strat-
egy, they scale poorly with the number of columns in the in-
put dataset. In this paper, we adopt the pruning rules and
the position list index data structure from these algorithms
for the validation of functional dependencies.

Difference- and agree-set algorithms: The algorithms
DEP-MINER [16] and FASTFDs [24] analyze a dataset for sets
of attributes that agree on the values in certain tuple pairs.
These so-called agree-sets are transformed into difference-
sets from which all valid FDs can be derived. This dis-
covery strategy scales better with the number of attributes
than lattice traversal strategies, because FD candidates are
generated only from concrete observations rather than be-
ing generated systematically. The required maximization
and minimization of agree- and difference-sets respectively,
however, reduces this advantage significantly. With regard
to the number of records, DEP-MINER and FASTFDS scale

much worse than the previous algorithms, because they need
to compare all pairs of records. Our approach also compares
records pair-wise, but we choose these comparisons carefully.

Dependency induction algorithms: The FDEP [9] algo-
rithm also compares all records pair-wise to find all invalid
functional dependencies. This set is called negative cover
and is stored in a prefix tree. In contrast to DEP-MINER
and FASTFDs, FDEP translates this negative cover into the
set of valid functional dependencies, i.e., the positive cover,
not by forming complements but by successive specializa-
tion: The positive cover initially assumes that each attribute
functionally determines all other attributes; these functional
dependencies are then refined with every single non-FD in
the negative cover. Apart from the fact that the pair-wise
comparisons do not scale with the number of records in the
input dataset, this discovery strategy has proven to scale
well with the number of attributes. For this reason, we fol-
low a similar approach during the induction of functional
dependency candidates. However, we compress records be-
fore comparison, store the negative cover in a more efficient
data structure, and optimize the specialization process.

The evaluation section of this paper provides a comparison
of our approach with all mentioned related work.

3. HYBRID FD DISCOVERY

We begin this section by formally defining functional de-
pendencies (FDs). We then discuss sampling-based FD dis-
covery and our hybrid discovery approach.

Preliminaries. Our definition of a functional dependency
follows [23]: A functional dependency (FD) written as X —
A is a statement over a relational schema R, where X C R
and A € R. The FD is valid for an instance r of R, iff for all
pairs of tuples t1, t2 € r the following is true: if t1[B] = t2[B]
for all B € X, then t:1[A] = t2[A]. In other words, the
values in X functionally determine the values in A. We call
the determinant X the FD’s left hand side (LHS), and the
dependent A the FD’s right hand side (RHS). Moreover, an
FD X — A is a generalization of another FD Y — A if
X CY and it is a specialization if X DY. The FD X — A
is non-trivial if A ¢ X and it is minimal if no B exists such
that X\B — A is a valid FD, i.e., if no valid generalization
exists. To discover all FDs in a given relational instance r,
it suffices to discover all minimal, non-trivial FDs, because
all LHs-subsets are non-dependencies and all LHS-supersets
are dependencies by logical inference.

The discovery of all minimal, non-trivial FDs can best be
modeled as a graph search problem: The graph is a powerset
lattice of attribute combinations and an edge between the
nodes X and XA represents the FD candidate X — A.
Figure 1 depicts an example lattice and its FDs and non-
FDs. In all such lattices, FDs are located in the upper part
of the lattice; non-FDs are located at the bottom. A virtual
border separates the FDs and non-FDs. All minimal FDs,
which we aim to discover, reside on this virtual border line.

Sampling-based FD discovery. For a relational instance
r, a sample r’ of r contains only a subset of records r’ C r.
Because r’ is smaller than r, discovering all minimal FDs
on 7’ is expected to be cheaper than discovering all minimal
FDs on r (with any FD discovery algorithm). The resulting
r’-FDs can, then, be valid or invalid in r, but they exhibit
three properties that are important for our hybrid algorithm:
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Figure 1: FD discovery in a power set lattice.

(1) Completeness: The set of r'-FDs implies the set of 7-
FDs, i.e., we find an X’ — A in 7’ for each valid X — Ainr
with X’ C X. Hence, all X — A are also valid in r’ and the
sampling result is complete. To prove this, assume X — A is
valid in 7 but invalid in 7’. Then 7’ must invalidate X — A
with two records that do not exist in r. So it is " ¢ r, which
contradicts ' C 7.

(2) Minimality: If a minimal r'-FD is valid on the entire
instance r, then the FD must also be minimal in r. This
means that the sampling cannot produce non-minimal or
incomplete results. In other words, a functional dependency
cannot be valid in 7 but invalid in 7’. This property is easily
proven: If X — A is invalid in 7/, then 7’ contains two
records with same X values but different A values. Because
r’ C r, the same records must also exist in r. Therefore,
X — A must be invalid in r as well.

(8) Proximity: If a minimal r'-FD is invalid on the entire
instance r, then the r'-FD is still close to specializations
that are valid in 7. In other words, r’-FDs are always lo-
cated closer to the virtual border, which holds the true r-
FDs, than the FDs at the bottom of the lattice. Therefore,
any sampling-based FD discovery algorithm approximates
the real FDs. The distance between r’-FDs and r-FDs still
depends on the sampling algorithm and the entire data.

In summary, a sampling-based FD discovery algorithm
calculates a set of r'-FDs that are either 7-FDs or possibly
close generalizations of r-FDs. In terms of Figure 1, the
result of the sampling is a subset of solid lines.

The hybrid approach. Recently, the authors of [20] made
the observation that current FD discovery algorithms ei-
ther scale well with the number of records (e.g., DFD) or
they scale well with the number of attributes (e.g., FDEP).
None of the algorithms, however, addresses both dimen-
sions equally well. Therefore, we propose a hybrid algo-
rithm that combines column-efficient FD induction tech-
niques with row-efficient FD search techniques in two phases.
In Phase 1, the algorithm uses column-efficient FD induc-
tion techniques. Because these are sensitive to the number
of rows, we process only a small sample of the input. The
idea is to produce with low effort a set of FD candidates
that are according to property (3) prozimity close to the
real FDs. To achieve this, we propose focused sampling
techniques that let the algorithm select samples with a pos-
sibly large impact on the result’s precision. Due to sampling
properties (1) completeness and (2) minimality, these tech-
niques cannot produce non-minimal or incomplete results.
In Phase 2, the algorithm uses row-efficient FD search
techniques to validate the FD candidates given by Phase 1.

Because the FD candidates and their specializations repre-
sent only a small subset of the search space, the number
of columns in the input dataset has a much smaller impact
on the row-efficient FD search techniques. Furthermore, the
FD candidates should be valid FDs or close to valid special-
izations due to sampling property (3) prozimity. The task of
the second phase is, hence, to check all FD candidates and
to find valid specializations if a candidate is invalid.

Although the two phases match perfectly, finding an ap-
propriate, dataset-independent criterion for when to switch
from Phase 1 into Phase 2 is difficult. If we switch too early
into Phase 2, the FD candidates approximate the real FDs
only poorly and the search space becomes large; if we remain
too long in Phase 1, we might end up analyzing the entire
dataset with only column-efficient FD induction techniques,
which is very expensive on many rows. For this reason, we
propose to switch between the two phases back and forth
whenever the currently running strategy becomes inefficient.

For Phase 1, we track the sampling efficiency, which is de-
fined as the number of new observations per comparison. If
this efficiency falls below an optimistic threshold, the algo-
rithm switches into Phase 2. In Phase 2, we then track the
validation efficiency, which is the number of discovered valid
FDs per validation. Again, if this efficiency drops below a
given threshold, the validation process can be considered
inefficient and we switch back into Phase 1. In this case,
the previous sampling threshold was too optimistic, so the
algorithm dynamically increases it.

When switching back and forth between the two phases,
the algorithm can share insights between the different strate-
gies: The validation phase obviously profits from the FD
candidates produced by the sampling phase; the sampling
phase, in turn, profits from the validation phase, because
the validation hints on interesting tuples that already inval-
idated some FD candidates. The hybrid FD discovery ter-
minates when Phase 2 finally validated all FD candidates.
We typically observe three to eight switches from Phase 2
back into Phase 1 until the algorithm finds the complete set
of minimal functional dependencies. This result is correct,
complete, and minimal, because Phase 1 is complete and
minimal, as we have shown, and Phase 2 finally releases a
correct, complete, and minimal result as shown by [12].

4. THE HYFD ALGORITHM

We implemented the hybrid FD discovery approach as
the HYFD algorithm. Figure 2 gives an overview of HYFD
showing its components and the control flow between them.
In the following, we briefly introduce each component and
their tasks in the FD discovery process. Each component is
later explained in detail in their respective sections. Note
that the Sampler and the Inductor component together im-
plement Phase 1 and the Validator component implements
Phase 2.

(1) Preprocessor. To discover functional dependencies, we
must know the positions of same values for each attribute,
because same values in an FD’s LHS can make it invalid
if the according RHS values differ. The values itself, how-
ever, must not be known. Therefore, HYFD’s Preprocessor
component first transforms the records of a given dataset
into compact position list indexes (PLI). For performance
reasons, the component also pre-calculates the inverse of
this index, which is later used in the validation step. Be-
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Figure 2: Overview of HyFD and its components.

cause HYFD uses sampling to combine row- with column-
efficient discovery techniques, it still needs to access the in-
put dataset’s records. For this purpose, the Preprocessor
compresses the records using the PLis as dictionaries.

(2) Sampler. The Sampler component implements the first
part of a column-efficient FD induction technique: It starts
the FD discovery by checking the compressed records for
FD-violations. An FD-violation is a pair of two records that
match in one or more attribute values. From such record
pairs, the algorithm infers that the matching attributes
cannot functionally determine any of the non-matching at-
tributes. Hence, they indicate non-valid FDs or short non-
FDs. The schema R(A, B,C), for instance, could hold the
two records r1(1,2,3) and r2(1,4,5). Because the A-values
match and the B- and C-values differ, A 4 B and A A C
are two non-FDs in R. Finding all these non-FDs requires
to systematically match all records pair-wise. Because this
quadratic complexity does not scale in practice, the Sampler
carefully selects only a subset of record pairs, namely those
that indicate possibly many FD-violations. For the selection
of record pairs, the component uses a deterministic, focused
sampling technique that we call cluster windowing.

(3) Inductor. The Inductor component implements the
second part of the column-efficient FD induction technique:
From the Sampler component, it receives a rich set of non-
FDs that must be converted into FD-candidates. An FD-
candidate is an FD that is minimal and valid with respect
to the chosen sample — whether a candidate is actually
valid on the entire dataset is determined in Phase 2. The
conversion algorithm is similar to the FDEP algorithm [9]:
We first assume that the empty set functionally determines
all attributes; then, we successively specialize this assump-
tion with every known non-FD. Recall the example schema
R(A, B,C) and its known non-FD A /4 B. Initially, we de-
fine our result to be ) — ABC, which is a short notation for
the FDs @ — A, ) — B, and ) — C. Because A 4 B, the
FD @ — B, which is a generalization of our known non-FD,
must be invalid as well. Therefore, we remove it and add
all valid, minimal, non-trivial specializations. Because this
is only C' — B, our new result set is § -+ AC and C — B.
To execute the specialization process efficiently, the Induc-
tor component maintains the valid FDs in a prefix tree that
allows for fast generalization look-ups. If the Inductor is
called again, it can continue specializing the FDs that it al-
ready knows, so it does not start with an empty prefix tree.

(4) Vvalidator. The Validator component implements a
row-efficient FD search technique: It takes the candidate-
FDs from the Inductor and validates them against the entire
dataset, which is given as a set of PLis from the Preproces-
sor. When modeling the FD search space as a powerset
lattice, the given candidate-FDs approximate the final FDs
from below, i.e., a candidate-FD is either a valid FD or a gen-
eralization of a valid FD. Therefore, the Validator checks
the candidate-FDs level-wise bottom-up: Whenever the al-
gorithm finds an invalid FD, it exchanges this FD with all
its minimal, non-trivial specializations using common prun-
ing rules for lattice traversal algorithms [12]. If previous
calculations yielded a good approximation of the valid FDs,
only few FD candidates need to be specialized; otherwise,
the number of invalid FDs increases rapidly from level to
level and the Validator switches back to Sampler. The FD
validations themselves build upon direct refinement checks
and avoid the costly hierarchical PLI intersections that are
typical in all current lattice traversal algorithms. In the end,
the Validator outputs all minimal, non-trivial FDs for the
given input dataset.

(5) Guardian. FD result sets can grow exponentially with
the number of attributes in the input relation. For this rea-
son, discovering complete result sets can sooner or later ex-
haust any memory-limit, regardless of how compact inter-
mediate data structures, such as PLIs or results, are stored.
Therefore, a robust algorithm must prune the results in
some reasonable way, if memory threatens to be exhausted.
This is the task of HYFD’s Guardian component: When-
ever the prefix tree, which contains the valid FDs, grows,
the Guardian checks the current memory consumption and
prunes the FD tree, if necessary. The idea is to give up
FDs with largest left-hand-sides, because these FDs mostly
hold accidentally in a given instance but not semantically in
the according schema. Overall, however, the Guardian is an
optional component in the HYFD algorithm and does not
contribute in the discovery process itself. Our overarching
goal remains to find the complete set of minimal FDs.

S. PREPROCESSING

The Preprocessor is responsible for transforming the
input data into two compact data structures: plis and
pliRecords. The first data structure plis is an array of po-
sition list indexes (PLI). In the literature, these PLIs are
also known as stripped partitions [8,12]. A PLI, denoted
by mx, groups tuples into equivalence classes by their val-
ues of attribute set X. Thereby, two tuples t; and t2 of
an attribute set X belong to the same equivalence class if
VA € X : 11[A] = t2[A]. These equivalence classes are also
called clusters, because they cluster records by same values.
For compression, a PLI does not store clusters with only a
single entry, because tuples that do not occur in any cluster
of wx can be inferred to be unique in X. Consider, for exam-
ple, the relation Class(Teacher, Subject) and its tuples (Brown,
Math), (Walker, Math), (Brown, English), (Miller, English), and
(Brown, Math). Then, m{reachert = {{1,3,5}}, T{subjecty =
{{17 27 5}7 {37 4}}7 and T'{ Teacher,Subject} — {{17 5}} Such
PLis can efficiently be implemented as sets of record ID sets,
which we wrap in PLI objects.

To check a functional dependency X — A using only PLIs,
we can test if every cluster in wx is a subset of some cluster
of ma. If this holds true, then all tuples with same values in



X have also same values in A, which is the definition of an
FD. This check is called refinement (see Section 8) and was
first introduced in [12].

Algorithm 1 shows the Preprocessor component and the
two data structures it produces: The already discussed plis
and a PLI-compressed representation of all records, which
we call pliRecords. For their creation, the algorithm first
determines the number of input records numRecs and the
number of attributes numAttrs (Lines 1 and 2). Then, it
builds the plis array — one 7 for each attribute. This is done
by hashing each value to a list of record IDs and then simply
collecting these lists in a PLI object (Line 4). When created,
the Preprocessor sorts the array of PLIs in descending order
by the number of clusters (including clusters of size one,
whose number is implicitly known). This sorting improves
the FD-candidate validations of the Validator component,
which we discuss in Section 8.

Algorithm 1: Data Preprocessing

Data: records
Result: plis, invertedPlis, pliRecords

numRecs < |records;

numAttrs + |records|0][;

array plis size numAttrs as PLI;

plis + buildPlis (records);

plis < sort (plis, DESCENDING);

array pliRecords size numRecs X numAttrs as Integer;
pliRecords < createRecords (invertedPlis);

return plis, invertedPlis, pliRecords;

0O TR WN -

With the plis, the Preprocessor finally creates dictionary
compressed representations of all records, the pliRecords
(Lines 6 and 7). A compressed record is an array of cluster
IDs where each field denotes the record’s cluster in attribute
A € [0,numAtirs[. We extract these representations from
the plis that already map cluster IDs to record IDs for each
attribute. The PLI-compressed records are needed in the
sampling phase to find FD-violations and in the validation
phase to find LHS- and RHs-cluster IDs for certain records.

6. SAMPLING

The idea of the Sampler component is to analyze a
dataset, which is represented by the pliRecords, for FD-
violations, i.e., non-FDs that can later be converted into
FDs. To derive FD-violations, the component compares
records pair-wise. These pair-wise record comparisons are
robust against the number of columns, but comparing all
pairs of records scales quadratically with their number.
Therefore, the Sampler uses only a subset, i.e., a sample
of record pairs for the non-FD calculations. The record
pairs in this subset should be chosen carefully, because some
pairs are more likely to reveal FD-violations than others. In
the following, we first discuss how non-FDs are identified;
then, we present a deterministic focused sampling technique,
which extracts a non-random subset of promising record
pairs for the non-FD discovery; lastly, we propose an im-
plementation of our sampling technique.

Retrieving non-FDs. A functional dependency X — A
can be invalidated with two records that have matching X
and differing A values. Therefore, the non-FD search is
based on pair-wise record comparisons: If two records match
in their values for attribute set Y and differ in their values
for attribute set Z, then they invalidate all X — A with

X CY and A € Z. The corresponding FD-violation Y /4 Z
can be efficiently stored in bitsets that hold a 1 for each
matching attribute of Y and a 0 for each differing attribute
Z. To calculate these bitsets, we use the match ()-function,
which compares two PLI-compressed records element-wise.
Because the records are given as Integer arrays (and not as,
for instance, String arrays), this function is cheap in con-
trast to the validation and specialization functions used by
other components of HYFD.

Sometimes, the sampling discovers the same FD-violations
with different record pairs. For this reason, the bitsets are
stored in a set called nmonFds, which automatically elimi-
nates duplicate observations. For the same task, related al-
gorithms, such as FDEP [9], proposed prefix-trees, but these
data structures consume much more memory and do not
yield a better performance. Reconsidering Figure 1, we can
easily see that the number of non-FDs is much larger than
the number of minimal FDs, so storing the non-FDs in a
memory efficient data structure is crucial.

Focused sampling. FD-violations are retrieved from
record pairs, and while certain record pairs indicate impor-
tant FD-violations, the same two records may not offer any
new insights when compared with other records. So an im-
portant aspect of focused sampling is that we sample record
pairs and not records. Thereby, only record pairs that match
in at least one attribute can reveal FD-violations; compar-
ing records with no overlap should be avoided. A focused
sampling algorithm can easily assure this by comparing only
those records that co-occur in at least one PLI-cluster. But
due to columns that contain only few distinct values, most
record pairs co-occur in some cluster. Therefore, more so-
phisticated pair selection techniques are needed.

The problem of finding promising comparison candidates
is a well known problem in duplicate detection research.
A popular solution for this problem is the sorted neighbor-
hood pair selection algorithm [11]. The idea is to first sort
the data by some domain-dependent key that sorts similar
records close to one another; then, the algorithm compares
all records to their w closest neighbors, where w is called
window. Because our problem of finding violating record
pairs is similar to finding matching record pairs, we use the
same idea for our focused sampling algorithm.

At first, we sort similar records, i.e., records that co-occur
in certain PLI-clusters, close to one-another. We do this
for all clusters in all PLIs with different sorting keys each.
Then, we slide a window over the clusters and compare all
record pairs within this window. Because some PLIs pro-
duce better sortations than others in the sense that they
reveal more FD-violations than others, the algorithm shall
automatically prefer more efficient sortations over less ef-
ficient ones. This can be done with a progressive selec-
tion technique, which is also known from duplicate detec-
tion [21]: The algorithm first compares all records to their
direct neighbors and counts the results; afterwards, the re-
sult counts are ranked and the sortation with the most re-
sults is chosen to run a slightly larger window (w -+ 1). The
algorithm stops continuing best sortations, when all sorta-
tions have become inefficient. In this way, the algorithm
automatically chooses most profitable comparisons. When
adapting the same strategy for our FD-violation search, we
can save many comparisons: Because efficient sortations an-
ticipate most informative comparisons, less efficient sorta-
tions become quickly inefficient.



Algorithm 2: Record Pair Sampling

Data: plis, pliRecords, comparisonSuggestions
Result: nonFds

1 if efficiencyQueue = () then

2 for pli € plis do

3 for cluster € pli do

4 | cluster < sort (cluster, ATTR_LEFT_RIGHT);

5 nonFds < (;
6 efficiencyThreshold < 0.01;
7 efficiencyQueue < new PriorityQueue;
8 for attr € [0, numAttributes| do
9 efficiency < new Efficiency;
10 efficiency.attribute < attr;
11 efficiency.window <+ 2;
12 efficiency.comps < 0;
13 efficiency.results < 0;
14 runWindow (efficiency, plis|attr], nonFds);
15 efficiencyQueue.append (efficiency);
16 else
17 efficiency Threshold < efficiencyThreshold | 2;
18 for sug € comparisonSuggestions do
19 | nonFds <— nonFds U match (sug[0], sug[1]);

20 while true do

21 bestEff + efficiencyQueue.peek();

22 if bestEff.eval() < efficiencyThreshold then
23 | break;

24 bestEff.window <« bestEff.window + 1;
25 | runWindow(bestEff, plis[bestEff.attribute], nonFds);

26 return newFDsIn(nonFds);

function runiindow (efficiency, pli, nonFds)
27 prevNumNonFds < |nonFds|;
28 for cluster € pli do

29 for i € [0, |cluster| — efficiency.window [ do

30 pivot < pliRecords|cluster[i]];

31 partner < pliRecords|cluster(i + window — 1]];
32 nonFds < nonFds U match(pivot, partner);
33 efficiency.comps < efficiency.comps + 1;

34 newResults + |nonFds| — prevNumNonFds;
35 efficiency.results < efficiency.results + newResults;

Finally, the focused sampling must decide on when the
comparisons of records in a certain sortation, i.e., for a cer-
tain PLI, become inefficient. We propose to start with a
rather strict definition of efficiency, because HYFD will re-
turn into the sampling phase anyway, if the number of iden-
tified FD-violations was too low. So an efficiency threshold
could be 0.01, which is one new FD-violation within 100
comparisons — in fact, Section 10 shows that this threshold
performs well on all dataset sizes. To relax this threshold in
subsequent iterations, we double the number of comparisons
whenever the algorithm returns to the sampling phase.

The sampling algorithm. Algorithm 2 implements the
focused sampling strategy introduced above. It requires the
plis and pliRecords from the Preprocessor and the compar-
isonSuggestions from the Validator. Figure 3 illustrates
the algorithm.

The priority queue efficiencyQueue is a local data struc-
ture that ranks the PLis by their sampling efficiency. If the
efficiencyQueue is empty (Line 1), this is the first time the
Sampler is called. In this case, we need to sort all clusters by
some cluster-dependent sorting key (Lines 2 to 4). As shown
in Figure 3.1, we sort the records in each cluster of attribute
A;’s PLI by their cluster number in attribute A;_; and, if

1. Sort Plis
Ai-l Ai Ai+1

2. Match Neighbors 3. Match Progressively
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Figure 3: Focused sampling: Sorting of Pli clusters
(1); record matching to direct neighbors (2); pro-
gressive record matching (3).

numbers are equal or unknown, by the cluster number in
Ait1. The intuition here is that attribute A;_; has more
clusters than A;, due to the sorting of plis in the Prepro-
cessor, which makes it a promising key; some unique values
in A;_1, on the other hand, do not have a cluster number,
so the sorting also checks the PLI of attribute A;+; that
has larger clusters than A;. However, the important point
in choosing sorting keys is not which A;;,_, to take but
to take different sorting keys for each PLI. In this way, the
neighborhood of one record differs in each of its PLI clusters.

When the sorting is done, the algorithm initializes the
efficiencyQueue with first efficiency measurements. The ef-
ficiency of an attribute’s PLI is an object that stores the
PL’'s sampling performance: It holds the attribute identi-
fier, the last window size, the number of comparisons within
this window, and the number of results, i.e., FD-violations
first revealed with these comparisons. An efficiency object
can calculate its efficiency by dividing the number of results
by the number of comparisons. For instance, 8 new FD-
violations in 100 comparisons yield an efficiency of 0.08. To
initialize the efficiency object of each attribute, the Sampler
runs a window of size two over the attribute’s PLI clusters
(Line 14) using the runWindow ()-function shown in Lines 27
to 35. Figure 3.2 illustrates how this function compares all
direct neighbors in the clusters with window size two.

If the Sampler is not called for the first time, the PLI clus-
ters are already sorted and the last efficiency measurements
are also present. We must, however, relax the efficiency
threshold (Line 17) and execute the suggested comparisons
(Lines 18 and 19). The suggested comparisons are records
pairs that violated at least one FD candidate in Phase 2
of the HYFD algorithm so that they probably also violate
some more FDs. With the suggested comparisons, Phase 1
incorporates knowledge from Phase 2 to focus the sampling.

No matter whether this is the first or a subsequent call
of the Sampler, the algorithm finally starts a progressive
search for more FD-violations (Lines 20 to 25): It selects
the efficiency object bestEff with the highest efficiency in the
efficiencyQueue (Line 21) and executes the next window size
on its PrI (Line 25). This updates the efficiency of bestEff
so that it might get re-ranked in the priority queue. Figure
3.3 illustrates one such progressive selection step for a best
attribute A; with efficiency 0.08 and next window size three:
After matching all records within this window, the efficiency
drops to 0.03, which makes A; the new best attribute.

The Sampler algorithm continues running ever larger win-
dows over the PLIs until all efficiencies have fallen below the



current efficiencyThreshold (Line 22). At this point, the
row-efficient discovery technique has apparently become in-
efficient and the algorithm decides to proceed with a column-
efficient discovery technique.

7. INDUCTION

The Inductor component concludes the column-efficient
discovery phase and leads over into the row-efficient dis-
covery phase. Its task is to convert the nonFds given by
the Sampler component into corresponding minimal FD-
candidates fds. These FD-candidates are stored in a data
structure called F'DTree, which is a prefix-tree optimized for
functional dependencies. Figure 4 shows three such FDTrees
with example FDs. First introduced by Flach and Savnik
in [9], an FDTree maps the LHS of FDs to nodes in the tree
and the RHS of these FDs to bitsets, which are attached to
the nodes. A RHS attribute in the bitsets is marked if it is
at the end of an FD’s LHS path, i.e., if the current path of
nodes describes the entire LHS to which the RHS belongs to.

(0) Initialize:

(1) Specialize: D » B (2) Specialize:A - D,B » D,C » D
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Figure 4: Specializing the FDTree with non-FDs.

Algorithm 3 shows the conversion process in detail. The
Inductor first sorts the nonFds in descending order by their
cardinality, i.e., the number of set bits (Line 1). The sorting
of FD-violations is important, because it lets HYFD convert
non-FDs with long LHSs into FD-candidates first and non-
FDs with ever shorter LHSs gradually later achieving much
stronger pruning in the beginning. In this way, the prefix-
tree of candidate-FDs fds grows much slower, significantly
reducing the costs for early generalization look-ups.

When the Inductor is called for the first time, the FDTree
fds has not been created yet and is initialized with a schema
R’s most general FDs () — R, where the attributes in R are
represented as integers (Line 4); otherwise, the algorithm
continues with the previously calculated fds. The task is to
specialize the fds with every bitset in nonFds: Each bitset
describes the LHS of several non-FDs (Line 5) and each zero-
bit in these bitsets describes a RHS of a non-FD (Lines 6
and 7). Once retrieved from the bitsets, each non-FD is
used to specialize the FDTree fds (Line 8).

Figure 4 exemplarily shows the specialization of the initial
FDTree for the non-FD D /4 B in (1): First, the special-
ize-function recursively collects the invalid FD and all its
generalizations from the fds (Line 10), because these must
be invalid as well. In our example, the only invalid FD in
the tree is § — B. HYFD then successively removes these
non-FDs from the FDTree fds (Line 12). Once removed, the
non-FDs are specialized, which means that the algorithm
extends the LHS of each non-FD to generate still valid spe-
cializations (Line 17). In our example, these are A — B

Algorithm 3: Functional Dependency Induction

Data: nonFds
Result: fds

nonFds < sort(nonFds, CARDINALITY_DESCENDING);
if fds = null then

fds < new FDTree;

fds.add (0 — {0, 1, ..., numAtiributes});

for lhs € nonFds do
rhss < lhs.clone().flip();
for rhs € rhss do
| specialize(fds, lhs, rhs);
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return fds;

function specialize(fds, lhs, Ths)
10 invalidLhss < fds.getFdAndGenerals (lhs, Ths);
11 for invalidLhs € invalidLhss do

12 fds.remove (invalidLhs, Ths);

13 for attr € [0, numAttributes| do

14 if invalidLhs.get(attr) V

15 rhs = attr then

16 | continue;

17 newLhs < invalidLhs U attr;

18 if fds.findFdOrGeneral(newLhs, ths) then
19 | continue;

20 fds.add (newLhs, rhs);

and C' — B. Before adding these specializations, the In-
ductor assures that the new candidate-FD are minimal by
searching the fds for generalizations of the candidate-FDs
(Line 18). Figure 4 also shows the result when inducing
three more non-FDs into the FDTree. After specializing the
fds with all nonFds, the prefix-tree holds the entire set of
valid, minimal FDs with respect to these given non-FDs [9].

8. VALIDATION

The Validator component takes the previously calcu-
lated FDTree fds and validates the contained FD-candidates
against the entire input dataset, which is represented by the
plis and the invertedPlis. For this validation process, the
component uses a row-efficient lattice traversal strategy. We
first discuss the lattice traversal; then, we introduce our di-
rect candidate validation technique; and finally, we present
the specialization method of invalid FD-candidates. The
Validator component is shown in detail in Algorithm 4.

Traversal. Usually, lattice traversal algorithms need to tra-
verse a huge candidate lattice, because FDs can be every-
where (see Figure 1 in Section 3). Due to the previous,
sampling-based discovery, HYFD already starts the lattice
traversal with a set of promising FD-candidates fds that are
organized in an FDTree. Because this FDTree maps directly
to the FD search space, i.e., the candidate lattice, HYFD can
use it to systematically check all necessary FD candidates:
Beginning from the root of the tree, the Validator compo-
nent traverses the candidate set breath-first level by level.

When the Validator component is called for the first
time (Line 1), it initializes the currentLevelNumber to zero
(Line 2); otherwise, it continues the traversal from where it
stopped before. During the traversal, the set currentLevel
holds all FDTree nodes of the current level. So before
entering the level-wise traversal in Line 5, the Validator
initializes the currentLevel using the getLewel ()-function
(Line 3). This function recursively collects all nodes with
depth currentLevelNumber from the prefix-tree fds.



Algorithm 4: Functional Dependency Validation

Data: fds, plis, pliRecords
Result: fds, comparisonSuggestions

1 if currentLevel = null then
2 L currentLevel Number < 0;
3 currentLevel < fds.getLevel (currentLevelNumber);
4 comparisonSuggestions < 0;
5 while currentLevel # () do
/* Validate all FDs on the current level */
6 invalidFds <+ 0;
7 num ValidFds < 0;
8 for node € currentLevel do
9 lhs < node.getLhs ();
10 rhss < node.getRhss ();
11 validRhss < refines (lhs, rhss, plis, pliRecords,
comparisonSuggestions);
12 numValidFds < numValidFds + |validRhss|;
13 invalidRhss < rhss.andNot (validRhss);
14 node.setFds (validRhss);
15 for invalidRhs € invalidRhss do
16 | inwalidFds < invalidFds U (lhs, invalidRhs);
/* Add all children to the next level */
17 nextLevel < (;
18 for node € currentLevel do
19 for child € node.getChildren() do
20 L neztLevel <— nextLevel U child;
/* Specialize all invalid FDs */
21 for invalidF'd € invalidF'ds do
22 lhs, Ths <+ invalidFd;
23 for atir € [0, numAttributes| do
24 if lhs.get(attr) V rhs = attr V
25 fds.findFd0OrGeneral(lhs, atir) V
26 fds.findFd(attr, rhs) then
27 | continue;
28 newLhs < lhs U attr;
29 if fds.findFdOrGeneral(newLhs, rhs) then
30 | continue;
31 child < fds.addAndGetIfNew(newLhs, rhs);
32 if child # null then
33 L nextLevel <— nextLevel U child,
34 currentLevel <— nextLevel;
35 currentLevel Number < currentLevel Number + 1;
/* Judge efficiency of validation process */
36 if |invalidFds| > 0.01 x numValidFds then
37 L return fds, comparisonSuggestions;

38 return fds, 0;

On each level (Line 5), the algorithm first validates all FD-
candidates removing those from the FDTree that are invalid
(Lines 6 to 16); then, the algorithm collects all child-nodes
of the current level to form the next level (Lines 17 to 20); fi-
nally, it specializes the invalid FDs of the current level which
generates new, minimal FD-candidates for the next level
(Lines 21 to 33). The level-wise traversal stops, if the valida-
tion process becomes inefficient (Lines 36 and 37). Here, this
means that more than 1% of the FD-candidates of the cur-
rent level were invalid and the search space started growing
rapidly. HYFD then returns into the sampling phase. We
use 1% as a static threshold for efficiency of this phase, but
our experiments in Section 10.5 show that any small percent-
age performs well here due to the observed high growth rate
of invalid FD-candidates. The validation terminates when
the next level is empty (Line 5) and all FDs in the FDTree
fds are valid. This also ends the entire HYFD algorithm.

Validation. Each node in an FDTree can harbor multiple
FDs with the same LHS and different RHSs (see Figure 4 in
Section 7): The LuS attributes are described by a node’s
path in the tree and the RHS attributes that form FDs with
the current LHS are marked. The Validator component val-
idates all FD-candidates of a node simultaneously using the
refines ()-function (Line 11). This function checks which
RHSs attributes are refined by the current LHS using the plis
and pliRecords. The refined RHS attributes indicate valid
FDs, while all other RHS attributes indicate invalid FDs.

Figure 5 illustrates how the refines()-function works:
Let X — Y be the set of FD-candidates that is to be vali-
dated. At first, the function selects the pli of the first LHS
attribute Xo. Due to the sorting of plis in the Preproces-
sor component, this is the PLI with the most and, hence,
the smallest clusters of all LHS attributes. For each cluster
in Xo’s PLI, the algorithm iterates all record IDs 7; in this
cluster and retrieves the according compressed records from
the pliRecords. A compressed record contains all cluster IDs
in which a record is contained. Hence, the algorithm can
create one array containing the LHS cluster IDs of X and
one array containing the RHS cluster IDs of Y. The LHs
array, then, describes the cluster of r; regarding attribute
combination X. To check which RHS PLI these LHS clusters
refine, we map the LHS clusters to the corresponding array
of RHS clusters. We fill this map while iterating the record
IDs of a cluster. If an array of LHS clusters already exists in
this map, the array of RHS clusters must match the exist-
ing one. All non-matching RHS clusters indicate refinement-
violations and, hence, invalid RHS attributes. The algorithm
immediately stops checking such RHs attributes so that only
valid RHS attributes survive until the end.
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Figure 5: Directly validating FD-candidates X — Y.

In comparison to other Puri-based algorithms, such as
TaNE, HYFD’s validation technique avoids the costly hier-
archical PLI intersections. By mapping the LHS clusters to
RHS clusters, the checks are independent of other checks and
do not require intermediate Pris. The direct validation is
important, because the Validator’s starting FD candidates
are — due to the sampling-based induction part — on much
higher lattice levels and successively intersecting lower level
Pris would undo this advantage. Furthermore, HYFD can
terminate refinement checks very early if all RHS attributes
are invalid, because the results of the intersections, i.e., the
intersected PLIs are not needed for later intersections. Not
storing intermediate PLIs also has the advantage of demand-
ing much less memory — most PLI-based algorithms fail at
processing larger datasets, for exactly this reason [20].



Specialization. The validation of FD candidates identifies
all invalid FDs and collects them in the set invalidFds. The
specialization part of Algorithm 4, then, extends these in-
valid FDs in order to generate new FD candidates for the
next higher level: For each invalid FD represented by lhs
and rhs (Line 21), the algorithm checks for all attributes
attr (Line 23) if they specialize the invalid FD into a new
minimal, non-trivial FD candidate lhs U attr — rhs. To
assure minimality and non-triviality of the new candidate,
the algorithm tests the following:

(1) Non-triviality: attr & lhs and atér # rhs (Line 24)
(2) Minimality 1: lhs /4 attr (Line 25)
(3) Minimality 2: lhs U attr /4 rhs (Lines 24 and 29)

For the minimality checks, the Validator algorithm recur-
sively searches for generalizations in the FDTree fds. This
is possible, because all generalizations in the FDTree have
already been validated and must, therefore, be correct. The
generalization look-ups also include the new FD candidate
itself, because if this is already present in the tree, it does
not need to be added again. The minimality checks logically
correspond to candidate pruning rules, as used by lattice
traversal algorithms, such as TANE, FUN, and DFD.

If a minimal, non-trivial specialization has been found, the
algorithm adds it to the FDTree fds (Line 31). The adding
of a new FD into the FDTree might create a new node in
the graph. To handle these new nodes on the next level,
the algorithm must add them to nextLevel. When the spe-
cialization has finished with all invalid FDs, the Validator
moves to the next level. If the next level is empty, all FD-
candidates have been validated and fds contains all minimal,
non-trivial functional dependencies of the input dataset.

9. MEMORY GUARDIAN

The memory Guardian is an optional component in HYFD
and enables a best-effort strategy for FD discovery for very
large inputs. Its task is to observe the memory consumption
and to free resources if HYFD is about to reach the memory
limit. Observing memory consumption is a standard task
in any programming language. So the question is, what
resources the Guardian can free if the memory is exhausted.

The PLI data structures grow linearly with the input data-
set’s size and are relatively small. The number of FD-
violations found in the sampling step grows exponentially
with the number of attributes, but it takes quite some at-
tributes to exhaust the memory with these compact bit-
sets. The data structure that grows by far the fastest is
the FDTree fds, which is constantly specialized by the In-
ductor and Validator components. Hence, this is the data
structure the Guardian must prune.

Obviously, shrinking the fds is only possible by giving up
some results, i.e., giving up completeness of the algorithm.
In our implementation of the Guardian, we decided to suc-
cessively reduce the maximum LHS size of our results; we
provide three reasons: First, FDs with a long LHS usually
occur accidentally, meaning that they hold for a particular
instance but not for the relation in general. Second, FDs
with long LHSs are less useful in most use cases, e.g., they
become worse key /foreign-key candidates when used for nor-
malization and they are less likely to match a query when
used for query optimization. Third, FDs with long LHSs
consume more memory, because they are physically larger,
and preferentially removing them retains more FDs in total.

To restrict the maximum size of the FDs’ LHSs, we need to
add some additional logic into the FDTree: It must hold the
maximum LHS size as a variable, which the Guardian com-
ponent can control; whenever this variable is decremented,
the FDTree recursively removes all FDs with larger LHSs
and sets their memory resources free. The FDTree also re-
fuses to add any new FD with a larger LHS. In this way, the
result pruning works without changing any of the other four
components. However, note that the Guardian component
prunes only such results whose size would otherwise exceed
the memory capacity, which means that the component in
general does not take action.

10. EVALUATION

FD discovery has shown to be quadratic in the number of
records n and exponential in the number of attributes m [15].
This also holds for HYFD: Phase 1 is in O(mn® + m?2™),
because in the worst case n? records are compared with
comparison costs m and for each of the m possible RHS
attributes, 2™~! LuS attribute combinations must be re-
fined m — 1 times in the negative cover. Phase 2 is also in
O(mn?® + m?2™) as shown in [15], because our complexity
is the same as for TANE. Note that each phase can (po-
tentially) discover all minimal FDs without the other. The
following experiments, however, show that HYFD is able to
process significantly larger datasets than state-of-the-art FD
discovery algorithms in less runtime. At first, we introduce
our experimental setup. Then, we evaluate the scalability of
HyYFD with both a dataset’s number of rows and columns.
Afterwards, we show that HYFD performs well on different
datasets. In all these experiments, we compare HYFD to
seven state-of-the-art FD discovery algorithms. We, finally,
analyze some characteristics of HYFD in more detail and
discuss the results of the discovery process.

10.1 Experimental setup

Metanome. HYFD and all algorithms from related work
have been implemented for the Metanome data profiling
framework (www.metanome.de), which defines standard in-
terfaces for different kinds of profiling algorithms. Meta-
nome also provided the various implementations of the state
of the art. Common tasks, such as input parsing, result for-
matting, and performance measurement are standardized by
the framework and decoupled from the algorithms [19].

Hardware. We run all our experiments on a Dell Pow-
erEdge R620 with two Intel Xeon E5-2650 2.00 GHz CPUs
and 128 GB RAM. The server runs on CentOS 6.4 and uses
OpenJDK 64-Bit Server VM 1.7.0_25 as Java environment.

Null Semantics. Real-world data often contains null
values. So a schema R(A, B) could hold the two records
r1 = (L1,1) and 72 = (L,2). Depending on whether we
choose the semantics null = null or the semantics null #
null, the functional dependency A — B is false or true
respectively. Hence, the null semantics changes the results
of the FD discovery. Our algorithm HYFD supports both
settings, which means that the semantics can be switched
in the Preprocessor (PLI-construction) and in the Sampler
(match ()-function) with a parameter. For the experiments,
however, we use null = null, because this is how related
work treats null values [20].

Datasets. We evaluate HYFD on various synthetic and
real-world datasets. Table 1 in Section 10.4 and Table 2 in
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Section 10.5 give an overview of these datasets. The data
shown in Table 1 was already used in [20]. We also use
the plista [13] dataset containing web log data, the uniprot!
dataset storing protein sequences, and the ncvoter® dataset
listing public voter statistics. The datasets listed in Table 2
have never been analyzed for FDs before, because they are
much larger than the datasets of Table 1 and most of them
cannot be processed with any of the related seven FD dis-
covery algorithms within reasonable time (<1 month) and
memory (<100 GB): The CD dataset contains CD-product
data, the synthetic TPC-H dataset models business data,
the PDB dataset stores protein sequence data, and the
SAP_R3 dataset holds data of a real SAP R3 ERP system.

10.2 Varying the number of rows

Our first experiment measures the runtime of HYFD on
different row numbers. The experiment uses the ncvoter
dataset with 19 columns and the uniprot dataset with 30
columns. The results, which also include the runtimes of the
other seven FD discovery algorithms, are shown in Figure 6.
A series of measurements stops if either the memory con-
sumption exceeded 128 GB or the runtime exceeded 10,000
seconds. The dotted line shows the number of FDs in the
input using the second y-axis: This number first increases,
because more tuples invalidate more FDs so that more larger
FDs arise; then it decreases, because even the larger FDs get
invalidated and no further minimal specializations exist.

With our HYFD algorithm, we could process the 19 col-
umn version of the ncvoter dataset in 97 seconds and the
30 column version of the uniprot dataset in 89 seconds for
the largest row size. This makes HYFD more than 20 times
faster on ncvoter and more than 416 times faster on uniprot
than the best state-of-the-art algorithm respectively. The
reason why HYFD performs so much better than current
lattice traversal algorithms is the fact that the number of
FD-candidates that need to be validated against the many
rows is greatly reduced by the Sampler component.
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10.3 Varying the number of columns

In our second experiment, we measure HYFD’s runtime on
different column numbers using the uniprot dataset and the
plista dataset with 1,000 records each. Again, we plot the
measurements of HYFD with the measurements of the other
FD discovery algorithms and cut the runtimes at 10,000 sec-
onds. Figure 7 shows the result of this experiment.

We first notice that HYFD’s runtime rather scales with
the number of FDs, i.e., with the result size than with the
number of columns. This is a desirable behavior, because
the increasing effort is compensated by an also increasing
gain. We further see that HYFD again outperforms all
existing algorithms. The improvement factor is, however,
smaller in this experiment, because the two datasets are with
1,000 rows so small that comparing all pairs of records, as
FDEP does, is feasible and probably the best way to pro-
ceed. HYFD is still slightly faster than FDEP, because it
does not compare all record pairs; the overhead of creat-
ing PLIs is compensated by then being able to compare PLI
compressed records rather than String-represented records.

10.4 Varying the datasets

To show that HYFD is not sensitive to any dataset pe-
culiarity, the next experiment evaluates the algorithm on
many different datasets. For this experiment, we set a time
limit (TL) of 4 hours and a memory limit (ML) of 100 GB.
Table 1 summarizes the runtimes of the different algorithms.

The measurements show that HYFD was able to process
all datasets and that it usually performed best. There are
only two runtimes, namely those for the fd-reduced-30 and
for the wuniprot dataset, that are in need of explanation:
First, the fd-reduced-30 dataset is a generated dataset that
exclusively contains random values. Due to these random
values, all FDs are accidental and do not have any semantic
meaning. Also, all FDs are of same size, i.e., 99% of the
89,571 minimal FDs reside on lattice level three and none of
them above this level. Thus, bottom-up lattice traversal al-
gorithms, such as TANE and FUN, and algorithms that have
bottom-up characteristics, such as DEP-MINER and FAST-



Dataset Cols Rows Size FDs | TANE Fun  Fp_MINE Drb  DEP-MINER  FASTFDs FDEP HYFD
(#] [#] [KB] (#] [12] (18] [25] (1] [16] [24] [9]
iris 5 150 5 4 1.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1
balance-scale 5 625 7 1 1.2 0.1 0.2 0.3 0.3 0.3 0.2 0.1
chess 7 28,056 519 1 2.9 1.1 3.8 1.0 174.6 164.2 125.5 0.2
abalone 9 4,177 187 137 2.1 0.6 1.8 1.1 3.0 2.9 3.8 0.2
nursery 9 12,960 1,024 1 4.1 1.8 7.1 0.9 121.2 118.9 46.8 0.5
breast-cancer 11 699 20 46 2.3 0.6 2.2 0.8 1.1 1.1 0.5 0.2
bridges 13 108 6 142 2.2 0.6 4.2 0.9 0.5 0.6 0.2 0.1
echocardiogram 13 132 6 527 1.6 0.4 69.9 1.2 0.5 0.5 0.2 0.1
adult 14 48,842 3,528 78 67.4 111.6 531.5 5.9 6039.2 6033.8  860.2 1.1
letter 17 20,000 695 61 | 260.0 529.0 7204.8 6.0 1090.0 1015.5 291.3 3.4
ncvoter 19 1,000 151 758 4.3 4.0 ML 5.1 11.4 1.9 1.1 0.4
hepatitis 20 155 8 8,250 12.2  175.9 ML  326.7 5576.5 9.5 0.8 0.6
horse 27 368 25 128,727 | 457.0 TL ML TL TL 385.8 7.2 7.1
fd-reduced-30 30 250,000 69,581 89,571 41.1 7.7 ML TL 377.2 382.4 TL 513.0
plista 63 1,000 568 178,152 ML ML ML TL TL TL 26.9 21.8
flight 109 1,000 575 982,631 ML ML ML TL TL TL 216.5 53.4
uniprot 223 1,000 2,439  >2,437,556 ML ML ML TL TL TL ML >5254.7

Results larger than 1,000 FDs are only counted

TL: time limit of 4 hours exceeded

ML: memory limit of 100 GB exceeded

Table 1: Runtimes in seconds for several real-world datasets (extended from [20])

FDs, perform very well on such an unusual dataset. The
runtime of HYFD, which is about 9 minutes, is an adequate
runtime for any dataset with 30 columns and 250,000 rows.

The uniprot dataset is another extreme, but real-world
dataset: Because it comprises 223 columns, the total num-
ber of minimal FDs in this dataset is much larger than 100
million. This is, as Figure 7 shows, due to the fact that
the number of FDs in this dataset grows exponentially with
the number of columns. For this reason, we limited HYFD’s
result size to 4 GB and let the algorithm’s Guardian com-
ponent assure that the result does not become larger. In
this way, HYFD discovered all minimal FDs with a LHS of
up to four attributes; all FDs on lattice level five and above
have been successively pruned, because they would exceed
the 4 GB memory limit. So HYFD discovered the first 2.5
million FDs in about 1.5 hours. One can compute more FDs
on uniprot with HYFD using more memory, but the entire
result set is — at the time — impossible to store.

The datasets in Table 1 brought all state-of-the-art al-
gorithms to their limits, but they are still quite small in
comparison to most real-world datasets. Therefore, we also
evaluated HYFD on much larger datasets. This experiment
reports only HYFD’s runtimes, because no other algorithm
can process the datasets within reasonable time and memory
limits. Table 2 lists the results for the single-threaded imple-
mentation of HYFD (left column) that we also used in the
previous experiments and a multi-threaded implementation
(right column), which we explain below.

The measurements show that HYFD’s runtime depends
on the number of FDs, which is fine, because the increased
effort pays off in more results. Intuitively, the more FDs
are to be validated, the longer the discovery takes. But

Dataset Cols Rows Size  FDs HYFD

#  [# MBl [#] | [s/m/b/d]
TPC-H.lineitem 16 6m 1,051 4k | 39 m 4 m
PDB.POLY_SEQ 13 17m 1,256 68| 4m 3m

PDB.ATOM_SITE 31 27m 5,042 10k 12h 64 m
SAP_R3.ZBC0O0ODT 35 3m 783 211 4 m 2m

SAP_R3.ILOA 48 45 m 8,731 16 k 35 h 8 h
SAP_R3.CE4HIO1 65 2m 649 2 k 17 m 10 m
NCVoter.statewide 71 1m 561 5 m 10 d 31 h
CD.cd 107 10 k 5 36k 5s 3s

Table 2: Single- and multi-threaded runtimes on
larger real-world datasets.

the CD dataset shows that the runtime also depends on the
number of rows, i.e., the FD-candidate validations are much
less expensive if only a few values need to be checked. If
both the number of rows and columns becomes large, which
is when they exceed 50 columns and 10 million rows, HYFD
might run multiple days. This is due to the exponential
complexity of the FD-discovery problem. However, HYFD
was able to process all such datasets and because no other
algorithm is able to achieve this, obtaining a complete result
within some days is the first actual solution to the problem.

Multiple threads. We introduced and tested a single-
threaded implementation of HYFD to compare its runtime
with the single-threaded state-of-the-art algorithms. HYFD
can, however, easily be parallelized, because the compar-
isons in the Sampler component are like the validations in
the Validator component independent of one another. We
implemented these simple parallelizations and the runtimes
reduced to the measurements shown in the right column
of Table 2 running 32 parallel threads. Compared to the
parallel FD discovery algorithm PARADE [10], HYFD is 8x
(POLY_SEQ), 38x (lineitem), 89x (CE4HIO1), and 1178x
(cd) faster due to its novel, hybrid search strategy — for the
other datasets, we stopped PARADE after two weeks.

10.5 In-depth experiments

Memory consumption. Many FD discovery algorithms
demand a lot of main memory to store intermediate data
structures. The following experiment contrasts the memory
consumption of HYFD with its three most efficient com-
petitors TANE, DFD, and FDEP on different datasets (the
memory consumption of FUN and FD_MINE is worse than
TANE’s; DEP-MINER and FASTFDs are similar to FDEP [20]).
To measure the memory consumption, we limited the avail-
able memory successively to 1 MB, 2 MB, ..., 10 MB, 15 MB,
..., 100 MB, 110 MB, ..., 300 MB, 350 MB, ..., 1 GB, 2 GB,
..., 10 GB, 15 GB;, ..., 100 GB and stopped increasing the
memory when an algorithm finished without memory issues.
Table 3 lists the results. Note that the memory consumption
is given for complete results and HYFD can produce smaller
results on less memory using the Guardian component. Be-
cause DFD takes more than 4 hours, which is our time limit,
to process horse, plista, and flight, we could not measure the
algorithm’s memory consumption on these datasets.



Dataset | TANE DrD FpEP HYFD

hepatitis 400 MB 300 MB 9 MB 5 MB
adult 5GB 300 MB 100 MB 10 MB
letter 30 GB 400 MB 90 MB 25 MB
horse 25 GB - 100 MB 65 MB
plista > 100 GB - 800 MB 110 MB
flight > 100 GB - 900 MB 200 MB

Table 3: Memory consumption

Due to the excessive construction of PLis, TANE of course
consumes the most memory. DFD manages the PLIs in a
PLi-store using a least-recently-used strategy to discard PLis
when memory is exhausted, but the minimum number of re-
quired PuIs is still very large. Also, DFD becomes very slow
on low memory. FDEP has a relatively small memory foot-
print, because it does not use PLIs at all. HYFD uses the
same data structures as TANE and FDEP and some addi-
tional data structures, such as the comparison suggestions,
but it still has the overall smallest memory consumption: In
contrast to TANE, HYFD generates much fewer candidates
and requires only the single-column PLis for its direct vali-
dation technique; in contrast to FDEP, it stores the non-FDs
in bitsets rather than index lists and uses the PLIs instead
of the original data for the record comparisons.

Efficiency threshold. HYFD requires a parameter that
determines when Phase 1 or Phase 2 become inefficient: It
stops the record matching in the Sampler component if less
than x percent matches delivered new FD-violations and it
stops the FD-candidate validations in the Validator com-
ponent if more than x percent candidates have shown to be
invalid. In the explanation of the algorithm and in all previ-
ous experiments, we set this parameter to 1% regardless of
the datasets being analyzed. The following experiment eval-
uates different parameter settings on the ncvoter_statewide
dataset with ten thousand records.
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Figure 8: Effect of HyFD’s only parameter on 10
thousand records of the ncvoter_statewide dataset.

The first line in Figure 8 plots HYFD’s runtime for param-
eter values between 0.01% and 100%. It shows that HYFD’s
performance is not very sensitive to the efficiency threshold
parameter. In fact, the performance is almost the same for
any value between 0.1% and 10%. This is because the effi-
ciency of either phase falls suddenly and fast so that all low
efficiency values are met quickly: The progressive sampling
identifies most matches very early and the validation gener-
ates many new, largely also invalid FD-candidates for every
candidate tested as invalid.

However, if we set the parameter higher than 10%, then
HYFD starts validating some lattice levels with too many
invalid FD-candidates, which affects the performance neg-
atively; if we, on the other hand, set the value lower than
0.1%, HYFD invests too much time on sampling than ac-

tually needed, which means that it keeps matching records
although all results have already been found. We observed
the same effects an different dataset, so we propose 1% as
the default efficiency threshold for HYFD.

The second line in Table 8 depicts the number of switches
from Phase 2 back into Phase 1 that HYFD made with the
different parameter settings. We observe that four to five
phase-switches are necessary on ncvoter_statewide and do-
ing fewer or more switches is disadvantageous for the per-
formance. Note that HYFD did these switches on different
lattice-levels depending on the parameter setting, i.e., with
low thresholds it switches earlier; with high thresholds later.

10.6 Result analysis

The number of FDs that HYFD can discover is very large.
In fact, the size of the discovered metadata can easily ex-
ceed the size of the original dataset (see the uniprot dataset
in Section 10.4). A reasonable question is, hence, whether
complete results, i.e., all minimal FDs, are actually needed.
Schema normalization, for instance, requires only a small
subset of FDs to transform a current schema into a new
schema with smaller memory footprint. Data integration
also requires only a subset of all FDs, namely those that
overlap with a second schema. In short, most use-cases for
FDs indeed require only a subset of all results.

However, one must inspect all functional dependencies to
identify these subsets: Schema normalization, for instance,
is based on closure calculation and data integration is based
on dependency mapping, both requiring complete FD result
sets to find the optimal solutions. Furthermore, in query
optimization, a subset of FDs that optimizes a given query
workload by 10% is very good at first sight, but if a different
subset of FDs could have saved 20% of the query load, one
would have missed some high optimization potential. For
these reasons and because we cannot know which other use
cases HYFD will have to serve, we discover all functional
dependencies — or at least as many as possible.

11. CONCLUSION & FUTURE WORK

In this paper, we proposed HYFD, a hybrid FD discovery
algorithm that discovers all minimal, non-trivial functional
dependencies in relational datasets. Because HYFD com-
bines row- and column-efficient discovery techniques, it is
able to process datasets that are both long and wide. This
makes HYFD the first algorithm that can process datasets of
relevant real-world size, i.e., datasets with more than 50 at-
tributes and a million records. On smaller datasets, which
some other FD discovery algorithms can already process,
HYFD offers the smallest memory footprints and the fastest
runtimes; in many cases, our algorithm is orders of magni-
tude faster than the best state-of-the-art algorithm. Because
the number of FDs grows exponentially with the number of
attributes, we also proposed a component that dynamically
prunes the result set, if the available memory is exhausted.

A task for future work is the development of use-case-
specific algorithms that leverage FD result sets for schema
normalization, query optimization, data integration, data
cleansing, and many other tasks. In addition, knowledge of
the use-case might help develop specific semantic pruning
rules to further speed-up detection. The only reasonable
semantic pruning we found was removing FDs with largest
left-hand-sides, because these are most prone to being acci-
dental, and we only apply it when absolutely necessary.
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