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ABSTRACT

Today’s fast-paced society is increasingly reliant on correct and
up-to-date data. Wikipedia is the world’s most popular source
of knowledge, and its infoboxes contain concise semi-structured
data with important facts about a page’s topic. However, these
data are not always up-to-date: we do not expect Wikipedia
editors to update items at the moment their true values change.
Also, many pages might not be well maintained and users might
forget to update the data, e.g., when they are on holiday.

To detect stale data in Wikipedia infoboxes, we combine cor-
relation-based and rule-based approaches trained on different
temporal granularities, based on all infobox changes over 15
years of English Wikipedia. We are able to predict 8.19 % of all
changes with a precision of 89.69 % over a whole year, thus meet-
ing our target precision of 85 % as suggested by the Wikimedia
Foundation. These results can be used to mark potentially stale
information on Wikipedia (on average 3,362 fields per week) for
readers and to request an update by community contributors.

1 CHANGES ON WIKIPEDIA

Wikipedia is a free online encyclopedia, which is written and
maintained by community contributors. Many pages contain
infoboxes, which summarize short facts about the topic of the
page. For example, the Wikipedia page for Premier League con-
tains an infobox that provides insights about the league, such as
the property Current champions, which has the value Manchester
City. Infoboxes follow templates, which pre-define the set of
properties for the entity type at hand.

Wikipedia is a community-driven effort and most editors con-
tribute in their free time. In their limited time they not only
provide new content, but also maintain the existing content of
Wikipedia. Due to the fast growth of Wikipedia, the effort for
the latter is intensifying, which makes automated support in the
editing process highly desirable. Here, we present a system that
can support editors by hinting at likely outdated information that
needs their attention. This allows it to be updated more quickly
and the editors to work more effectively.

Our system, which detects out-of-date properties in Wikipedia
infoboxes, can help not only editors, but also readers by making
them aware of possibly outdated information. For example, a
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Figure 1: A mock-up of how our system could inform about
potentially outdated values!.

marker could be placed on outdated information, as it is already
common elsewhere on Wikipedia (e.g., for missing sources). A
mock-up for a real example! our method identified is shown in
Figure 1. In the best case, users then not only check the provided
information through external sources, but also update Wikipedia
directly, if necessary.

For such a system to be useful, it needs to have a high precision:
raising false alerts is both annoying and detracting. We reached
out to the Wikimedia Foundation 2, and in a personal conversa-
tion they revealed that such a system should have a precision of
at least 85 %. Simultaneously, it needs a noticeable recall (even
if it is not very high) to have an impact on Wikipedia infoboxes.
Moreover, the system should be able to predict stale data on dif-
ferent time granularities: When a property usually changes daily,
e.g., the num_episodes of current soap operas, marking it stale on
the next day, when we expected a change but it did not occur,
is reasonable. In contrast, a daily prediction for a property that
changes rarely is more difficult, and we might raise an alert too
early. In such cases, predicting stale data on a weekly or monthly
granularity makes more sense. Finally, the system must be able to
make predictions for all of Wikipedia infoboxes, every day. Since
Wikipedia is constantly evolving, e.g., new pages and infoboxes
are created, the system needs to be updated regularly. Combined,
this results in tight limits on training and prediction time.

A simple baseline, e.g., always predicting the next change
based on the mean time-to-change of older changes of that prop-
erty, does not solve the problem satisfactorily. For instance, it
does not work for seasonal data, such as football league seasons.
Another natural idea is to use time series forecasting methods
to make predictions. However, these methods are not applicable
for two reasons: First, most of the data is very sparse, with many
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properties changing only a few times throughout their lifetime.
Second, many of the properties that do change frequently have an
irregular change behavior, such as the goals scored by a football
player.

To tackle this problem, we present a two-step approach to de-
tect different kinds of change patterns. We detect simultaneously
changing properties

(1) on page level via discovering correlated fields on a page,

(2) and on infobox template level via association rule mining.

Figure 2 shows examples of both correlations and rules - their
content is explained later. Then, we combine the results of the
individual approaches by an OR-ensemble to obtain the final
result. The field correlation and association rules have another
key advantage: they inherently give an explanation for their
prediction. We contribute

(1) a framework for predicting out-of-date data on Wikipedia
infoboxes for different time intervals,

(2) two different change-detection models (field correlation,
association rules) for infobox and schema-level data as-
pects for Wikipedia infoboxes,

(3) an extensive evaluation of our method on different time
granularities, and

(4) a combination of the models, achieving the performance
level desired by Wikimedia Foundation.

The structure of the paper is as follows. First, we discuss re-
lated work in Section 2. Next, we describe the problem setting,
our two change prediction models, namely field correlations and
association rules, as well as ensemble methods in Section 3. Sec-
tion 4 describes the dataset that we use for the evaluation of our
approach in Section 5. Finally, we draw conclusions and provide
ideas for future work in Section 6.

2 RELATED WORK

All revisions of Wikipedia pages are freely available [14] and have
been extensively researched, as Mesgari et al. have surveyed [7].
According to them, the main research areas focus on the size of
Wikipedia or on its quality. In this paper, we consider the latter.

Data Quality. Given the size and the manual updates of
Wikipedia, data quality inevitably becomes an issue. Fiirber and
Hepp [4] suggest a framework for information quality assess-
ment of Semantic Web data that can be used to automatically
identify deficient data. To achieve this, they provide a set of
generic SPARQL queries to detect missing values or functional
dependency violations.

Tran and Cao [11] propose a novel method to automatically
detect outdated attribute values in Wikipedia infoboxes by us-
ing pattern-based fact extraction with facts extracted from the
web, achieving an accuracy of 77 %. They improved their own
approach [12] by combining it with an entity-search-based ap-
proach for an accuracy score of 82 %. However, both of their
accuracy numbers were shown only for one specific attribute
within a specific infobox, namely the number of employees in
a company, which makes an assessment of their general accu-
racy difficult. In our approach, we aim to detect stale data in all
attributes.

Data Cleaning. There have also been novel ideas to not only
detect stale data but also clean it as well. Milani et al. [8] pro-
pose the probabilistic CurrentClean system, which can learn the
update patterns of a database and then infer the actual updates
the database ought to make. Wang and Wang [13] evaluate and
compare many state-of-the-art techniques for data cleaning in
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Figure 2: Examples of field correlations (left) and template
level association rules (right). *https://en.wikipedia.org/?oldid=
1121049020 IJhttps://en.wikipedia.(‘:rg/?oldid:1111262597

a time-series context. They conclude that most techniques are
developed for relational databases and not time-series data like
in our scenario. Given these results and the scope of our work,
we focus on the detection of stale data, and leave its cleaning to
future work.

Association rule mining. One possibility to find related
properties is frequent itemset or frequent pattern mining. With
association rule mining, it is possible to discover potential causal
relationships between items of a frequent itemset. At the heart
of these fields of study lie algorithms that efficiently discover
frequent patterns, such as the Apriori algorithm [1], which effi-
ciently traverses and prunes a lattice of candidate itemsets before
generating association rules from them. This is also the algorithm
that we employ. Another related field is frequent episode min-
ing [6], which, in contrast to association rule mining, does not
mine rules on transactions of events, but instead on a single event
sequence. This makes it unsuitable for the scope of Wikipedia, as
modelling changes to Wikipedia as a single sequence would lead
to a prohibitively large number of event types. CR-Miner [5] also
searches for rules between change events, but aims at finding rare
and exceptional relationships. In contrast, we are interested in
frequently occurring associations because they have the greatest
potential to reveal stale data.

3 CHANGE PREDICTORS

As explained in Section 1, there is a high variance in the change
patterns that we can find in Wikipedia. Thus we tackle the prob-
lem of detecting stale data using two algorithms that each focus
on a different aspect of the data. First, we define the problem
that we address in this paper in Section 3.1. Then we propose
a distance-based correlation measure to detect correlated field
change histories in Section 3.2, and an association rule mining ap-
proach to detect patterns within infobox templates in Section 3.3.
Finally, we combine these approaches into an ensemble to cover
various aspects of the data effectively, as described in Section 3.4.

3.1 Preliminaries and Problem

As a model to represent the changes on Wikipedia, we use the
change-cube [2]. It describes four dimensions of each change in
the data: time (when did the change happen), entity (the unique
id of the infobox to which the change belongs), property (specific
attribute of an entity) and value (the newly assigned value). We
call combinations of entity and property fields. Additionally, our
data contains shared sets of properties for groups of infoboxes,
which are referred to as templates. Each infobox (entity) belongs
to exactly one template. As we want to predict when the next
change will happen and not what the new value shall be, we can
disregard the value dimension for our approaches.



We solve the following problem: Given the current time ¢, a
time window size w and a candidate field f, that did not change
in [t —w, t], predict whether f should have changed in [t — w, t].

In our experiments, we choose w € {1d, 7d, 30d, 365d} to re-
flect the usual calendar time periods. As this is a binary classi-
fication task, we use precision and recall to measure the model
performance and optimize recall given a target precision of 0.85.

3.2 Field Correlations

Changes in different fields can occur in close temporal proximity.
Semantically linked fields, i.e., those that represent the same
underlying concept, are one reason. For example, if a soccer club
experiences an update to its uniform home colors, it should also
receive an update to the away colors, as these are usually changed
in unison once per season.

Our field correlation predictor is based on rules that represent
semantically related fields. The rules are used to identify stale
data and represent implications of changes over time: Given fields
X and Y, the field correlation rule X ~ Y states that a change in
X should also imply a change in Y during the same time period
and vice-versa. We tried different time periods (to, e.g., allow
delayed updates), but same-day worked best on our dataset. Field
correlation rules contain one field on both the left- and right-
hand side (but larger clusters can be modeled through multiple
rules).

We represent the change history of a field P as a k-dimensional
vector v, which represents the number of changes per day of the
field for each of the k days that is present in the training data.
We create the set V of vectors, which contains a vector for each
field. We then define an error metric M : V XV + [0, 1], which
measures how uncorrelated two fields are: M is the Manhattan-
distance normalized by the vector length k. Here, 0 represents a
perfect correlation (they always change together) and 1 indicates
no overlapping changes. To find correlated fields in a set of fields,
we use this metric to calculate the pairwise distance between
vectors of this set. Two fields are part of a correlation rule if the
metric M for their two vectors is lower than the error threshold 6
(see Section 5.2 how we tuned this threshold).

With a quadratic runtime O(k|V|?), it is computationally
infeasible to calculate all distances between members of V. Fur-
thermore, in a large set of fields, many spurious correlations are
likely to occur. Thus, we restrict the correlation search to fields
of the same page to avoid this problem and reduce the complex-
ity to O(k 3 |'V;|?) where V; is the set of vectors of all fields
on page i. We originally performed experiments using changes
across multiple pages, for instance including all pages that are
linked from the page under consideration. Analyzing correlation
proved infeasible, and we aborted the analysis after one week. In
another variant, we included only symmetrically linked pages.
Here, the recall increased only in the third decimal digit. Figure 2
shows examples of field correlations that we have found in the
data: the daughters of a series character should change in the
same way as the sisters of his sons change and furthermore, the
urls of various Open Office formats change synchronously.

To make a prediction if a field should have changed, we check
whether a field has correlated fields, meaning it is part of a field
correlation rule. Additionally, we require a time window for
which we want to make a prediction. For all rules that contain the
field of interest, we check all other contained fields for changes
inside the given time window. Should there be any change, we
make a prediction that the field should have changed within that
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time window. If no change in the target field can be observed,
the field can be marked as stale.

3.3 Association Rules

While the field correlation approach excels in finding rules spe-
cific to pairs of fields, it falls short with entities and properties
that change rarely or were only recently created, because the
information an individual field can provide for such cases is lim-
ited. Thus, we introduce a second approach that aims to capture
relationships that hold for groups of similar entities, and apply
them to predict stale data for all members of these groups, regard-
less of whether a particular instance of a group was present in
the training data. We capture these relationships between prop-
erties of groups of entities — here, all infoboxes that belong to
the same template — by finding association rules between them.
The example dependency of a soccer club’s season, between
goals_scored and matches_played illustrates the differences to
the previous approach: (1) the relationship between goals_scored
and matches_played is not symmetric — if a match is played, a
goal is not guaranteed, and (2) it should hold for all soccer clubs’
seasons, not only for a particular one.

Before discovering association rules that capture relationships
on the input data (tuples of the change-cube), we must partition
it into transactions and assign the changes to an item (event
type) so that we can mine rules on the transactions containing
these items. We assemble transactions by gathering all changes
that were made across Wikipedia during some predefined time
period. If this period is very short, such as a few nanoseconds,
the resulting association rules describe relationships that hold
only for this very short period, resulting in few association rules.
On the other hand, if the period is very long, such as a few
years, the resulting association rules are not useful in our use
case: predicting a change anytime in this period would not help
in finding stale information in a timely manner. To reflect the
expected editing workflow of volunteer Wikipedia contributors,
which we assume to be weekly [15], we set this period to a
granularity of 7 days. This is done for each infobox, resulting in
a transaction for each week and infobox combination.

To assign changes to an event type, we have, in principle,
five dimensions available per change: the time, the entity, the
property, the value and the template. Including the timestamp in
the definition of an event type would result in several changes
to the same infobox field being represented as different event
types, thus leading to association rules that hold only for specific
timestamps. Because we aim to find association rules that hold
at all timestamps, we do not include the time in the event types.
Second, considering the actual values would limit the resulting
rules to the domain of historical values. Since we do not expect
to see all (or even a fraction) of possible future values in our
historical dataset, we also exclude the value dimension. Finally,
including the entity ID would lead to rules that are specific to
certain entities, which is not what we desire here, because this
functionality is already covered by the field correlations as de-
scribed in Section 3.2. Thus, we only use the property and the
template of the changed infobox to identify the event type of
a change. This allows us to discover general rules that capture
relationships that hold for all infoboxes of a template.

With the transformed data as a transaction list, we use the
Apriori algorithm [1] (we describe its configuration in Section 5.2)
to find unary association rules. The complexity of transaction
generation is O (n), where n is the number of changes, and that of



rule mining is O(m? - |T|), where m is the number of properties
and |T| is the number of transactions. After mining association
rules, we use a subset of the training data that we were holding
out to validate the precision of the rules. Note that the test data
was removed beforehand. Using our target of 85 % precision with
a 5% buffer to account for performance decrease between the
training and test set, we discard rules that do not meet 90 %
precision on the validation set. We make a prediction for an
infobox if one of its properties changes and there is an association
rule for the template of the infobox where the property that
changed is at the left-hand side of the association rule.

Figure 2 shows examples of association rules that we found
with this approach, such as the dependency between knockouts
and wins for all infoboxes of boxers, or the population estimate
and its date for settlements. We note in these particular examples
that the relationship between wins and knockouts should indeed
be asymmetric (a change in property ko should entail a change in
property wins, but not vice versa), as correctly captured by the as-
sociation rule approach, thus complementing the field correlation
approach that is restricted to symmetric relationships.

3.4 Ensemble

The associations and field correlation rules both describe ways
to label fields as outdated, but focus on different aspects of the
data. As both predictors are optimized for roughly the same target
precision, we can combine the predictions by disjunction to boost
our recall while expecting to keep a high precision. We call this
combination the OR-ensemble. It is also possible to boost the
precision at the cost of recall by conjunction, which we call AND-
ensemble. We evaluate how different the predictions of the field
correlation and association rule approaches are in Section 5.3.4.

4 DATASET

The entire history of infoboxes of all English Wikipedia pages
from January 4, 2003 until September 2, 2019 has been exported
by Bleifufd et al. [3]. It consists of the state of Wikipedia infoboxes
over multiple revisions as they were edited by the contributors,
with a total of 283 million changes. The Wikipedia infoboxes
contain the information in a key-value pair structure. For in-
stance, the infobox of the page Unites States contains the property
largest_city with the value New York City. Every infobox has
exactly one infobox template, which describes how properties are
displayed. For example, the infobox of London has the template
Infobox settlement.

Due to the nature of the data, the dataset contains a lot of noise
caused by edit wars, typo fixes and vandalism [9, 10]. Before
we train and evaluate our models, we filter the data to remove
noise and data that is uninteresting for our use-case, by applying
a set of filters to each change history separately. Some filters
adjust the change history, while others discard whole change
histories. After applying these filters, 9.2 % (25 million) of the
original changes remain. All our change predictors use subsets
of this filtered data for training and testing. We briefly describe
the filters in the following.

A small number of all changes (0.008 %) are directly reverted
by Wikipedia bots. This usually includes accidental edits or van-
dalism. As these changes do not have any value for us - they
do not indicate that a property value was updated — we filter
them out. To limit the influence of vandalism further, we reduce
the resolution of the time dimension by grouping all changes
on a day for every change history to one representative change,
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eliminating 19.185 % of the remaining changes. A representative
change is defined as the mode of all values that the property had
over the day. We keep the most recent value in case of ties.

Furthermore, a large part of the data are creations (50.6%)
and deletions (20.3%), which we do not aim to predict and are
not helpful for our models. A property is created when a new
infobox is created or a property is added. On the other hand, a
property is deleted if the infobox it belongs to is deleted or a
single property of an infobox is removed. Ignoring creations and
deletions removes another 61.373 % of the remaining changes.

Finally, there are also many properties that should never change.
For instance, infoboxes of people usually contain the properties
birth_date and birth_name, which should not be subject to any
changes. Thus, the underlying field can be seen as static, and is
not of interest for the problem of change prediction which is why
we filter changes of fields with fewer than five changes (10.241 %)
to focus on the more frequently changing part of Wikipedia.
While this filter creates a bias towards dynamic data, we require
some historical data for training of the field correlation predic-
tor. To keep the individual results comparable, we applied this
filter for all predictors. However, experiments showed, that the
association rules, which can work on data without any changes,
achieve similar precision without this filter.

5 EVALUATION

In the following, we describe our evaluation of our proposed
change predictors. We describe two baselines and simulate pre-
dictions over a 365-day time span on different granularities. We
evaluate these predictions on mean precision and mean recall,
and provide more detailed analyses, such as precision over time
and between groups of fields with varying degrees of change
frequencies. Our code is available on GitHub3.

5.1 Experimental Setup

To evaluate the different change predictors, we split all available
data into training, validation and test sets. All approaches are
trained on the training set, optimized on the validation set, then
trained on both training and validation set and finally evaluated
on the test set. The ensembles require no optimization and are
thus applied to predictors trained on the training and validation
sets.

The train, validation, and test splits are made along the time
axis rather than the field axis: all datasets contain all fields that
have at least five changes within their timeframe. The test set
starts September 1, 2018 and spans 365 days. The validation set
is marked as the 365 days before the start of the test set. The
training set contains all filtered data up to the validation set. This
results in a training set of 4,835 days beginning June 5, 2004, and
a validation and test set of 365 days each.

Predictions are made on field level at various degrees of gran-
ularity. The dataset to be predicted is split into 1-, 7-, 30- and
365-day tumbling windows. Windows that would exceed the vali-
dation and test set limit are disregarded (which is the case for the
last 7- and 30-day windows). For each window and for each field,
a prediction has to be made, which states whether a field should
change within the given time window. Predicting on all granulari-
ties results in 430 predictions (365X 1d+52X7d+12x30d+1X365d)
per field for both the validation and test set. The overall training
and prediction time is about 6 hours on a Dell PowerEdge R810
with four Intel Xeon E7-8837 and 256GB of RAM.

3https://github.com/HPI-Information-Systems/wikipedia_cleanup



Q

:213() | 1 day 7 days 30 days 365 days

g P[%]R[%] # |P[%]R[%] # |P[%]R[%] # |P[%R[%] #

“g 1004 ° Mean baseline 4.69 1.86 887,192|13.22 6.16 891,206/21.37 12.12 838,415|51.47 34.33 521,777

g 50 . Threshold baseline| 0.00 0.00 0(80.77 0.06 1,456(60.47 0.45 11,016|53.59 57.24 835,791

g bl Field correlations [87.66 5.19 132,537|88.74 4.99 107,715(88.20 3.96 66,442(90.55 3.19 27,599

z 0 N N \.\‘\- ° Association rules [91.73 5.63 137,436/93.30 5.35 109,890|93.43 4.60 72,804(95.52 3.86 31,594
Number of di:c()vered assgt:iation rules AND-ensemble 96.08 2.31 53,803/96.58 2.16 42,738|96.68 1.77 27,129/98.06 1.46 11,666

OR-ensemble 88.16 8.51216,173|89.69 8.19 174,829(89.54 6.79 112,084/92.02 5.59 47,513

Figure 3: Number of association
rules (logarithmic x-scale) discov-
ered for infobox templates.

Association Rules
OR-Ensemble

Field Correlations
AND-Ensemble

%)

Recall [%] Precision
S

[e=)
1

T T

20 30
Week

Figure 4: Precision and recall over time of our predictors
on 7-day windows on the test set.

For each prediction of a field f in a window w, the change
predictors receive the start date of w, all changes to f up to
the start date of w, and for other fields f # f, the predictors
receive all changes before and within w. This simulates a realistic
scenario in which one edit for field f was forgotten by the editors,
but related fields were updated correctly.

Predictions are evaluated separately for each of the four win-
dow sizes. We analyze the resulting binary classification problem
in terms of precision and recall. Specifically, we focus on max-
imizing recall while keeping precision above a previously set
threshold of 85 %. Such a threshold would be necessary to de-
ploy the mentioned predictors in a recommendation setting, as
described in Section 1. Additionally, we report the number of
predicted changes to give a better intuition on the real-world
impact of our solution.

5.2 Baselines and Predictor Configuration

We compare our predictors to two baselines. The first baseline
is a regressor that creates predictions by stating a next change
will happen in the next n days, starting from the last known
prediction. We determine n as the mean number of days between
changes for each field separately. We call this the mean baseline.
This regression is then converted to a classification by checking
whether the day of the next estimated change falls within a
window of interest.

The second baseline makes use of basic statistical properties
and is called threshold baseline. When training, we check if a
field had a change in more than a specific threshold of windows
of a window size during the validation set period. We use the
previously mentioned threshold of 85 %. If this is the case, the
baseline predicts a change for every window of that size during
testing. For example, if a field changed in at least 45 (85 % of 52)
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Table 1: Precision, recall, and absolute number of predictions (true and false positives)
of all predictors on the test set.

7-day windows, we predict a change for all 7-day windows in the
test set.

For our field correlation predictor, we perform a grid search
over suitable error thresholds 6 ranging from 0.01 to 0.15. We
choose 0.1, as it provides the highest recall (5.19 %) while main-
taining a precision above our threshold (87.65 %). The 2.65 %
margin between this precision and our threshold is desirable,
as we expect precision on the test set to drop slightly because
the validation set may differ from the test set in terms of data
distribution.

For the association rule predictor, we ran a thorough grid
search on parameters of the Apriori algorithm (min-confidence
and min-support) and the size of the validation set used to dis-
card rules with a low precision. The results of the predictor are
evaluated on the validation set. We arrive at a min-support of
0.25 %, a min-confidence of 60 % and a validation set size of 10 %.
Figure 3 shows the number of rules discovered for the infobox
templates: The association rule predictor discovers a total of
3,852 association rules, which cover 248,865 pages in our dataset.
The distribution among templates is skewed: for 191 of the 8,276
templates in the dataset, exactly one association rule is discov-
ered each, but there is also one template (infobox legislative
election) with more than 150 association rules. The number of
rules is limited by the number of property pairs, so it is quite
surprising that templates with so many rules exist.

5.3 Results

The results of all predictors on the test set are shown in Table 1.
The total number of windows containing changes is 2,239,604
for the 1-day, 1,914,466 for the 7-day, 1,478,266 for the 30-day,
and 782,304 for the 365-day window. The difficulty of predicting
changes for the windows decreases as the window size increases.
A perfect prediction on 1-day windows can be used to create
perfect predictions on all other window sizes. Thus, we expect
that average results on 1- and 7-day windows are worse than on
30- and 365-day windows.

5.3.1 Baselines. Both baselines make predictions solely on
the data of the field to be predicted, as opposed to the field corre-
lation and association rule predictors, which require additional
data. The mean baseline does not achieve a precision over 55 %
across all window sizes. Both precision and recall linearly in-
crease as the size of the windows increases. This confirms that
smaller window sizes are harder to predict for this baseline. The
threshold baseline makes no predictions for the daily prediction
because no field had 311 (85 % of 365) or more changes in the
previous year. Both baselines fail to achieve results that exceed



our precision threshold in any of the different window evalua-
tions. They do, however, have the highest recall on the 365-day
windows by a large margin.

5.3.2  Our predictors. The field correlation with the configu-
ration described in Section 5.2 performs just marginally better
in terms of precision on the test set compared to the validation
set on the 1-day window. The precision is up to 0.2 % higher,
whereas the recall is equal. Similar results can be found for all
four tested window sizes, indicating that the additional year of
training data does not have a large effect on the field correlations.
We also conclude that the data distribution of the validation and
the test sets are similar. Precision on all window sizes is above
our defined target precision.

Using the best configuration found with the grid search, the
association rule predictor achieves a precision of 91.73 % on the
test set with a recall of 5.63 % at a daily prediction interval with a
total number of 137,436 predictions within the test set spanning
365 days. The precision increases as the prediction interval in-
creases while the recall and total number of predictions decrease.
At a yearly prediction interval, we observe a precision of 95.52 %,
a recall of 3.86 % and a total number of 31,594 predictions. These
results are marginally better in terms of precision than on the
validation set used to perform the grid search, where we observe
a precision of 91.08 % and a recall of 4.92 % at a daily prediction in-
terval. Overall, recall is low as expected, as we measure it against
all changes to all Wikipedia infoboxes, most of which are likely
to occur in a non-systematic fashion or on whims of the editors.
The ability to reliably predict even a small percentage of changes
translates to large quantities of correct change-predictions.

5.3.3  Behavior over time. The precision over time can be seen
in the upper plot of Figure 4. It contains a slight downwards trend
as time increases, but remains above the 85 % precision threshold
at the end of the year. However, it dips below this threshold in the
middle of the test set. Since it increases afterwards, and a similar
dip can be seen in the association rule predictor, we assume it
is not due to problems with an outdated predictor, but rather a
particularly irregular period of data. This dip is also present in the
recall (lower plot in Figure 4). As properties are renamed and data
is deleted and created over time, the percentage of data for which
rules exist drops influencing recall. With decreasing precision
and slightly decreasing recall, we recommend retraining at least
once per year to maintain both high precision and recall. Overall,
both predictors show a relatively stable and similar behavior over
time.

5.3.4 Ensembles. Lastly, we evaluate the ensembles of the
field correlation and association rule predictors (see Table 1).
As expected, the AND-ensemble shows higher precision and
lower recall than the two predictors, while the OR-ensemble has
higher recall and a precision between both. The OR-ensemble
is the predictor with the highest recall that also satisfies our
prediction threshold, and thus is our best performing predictor.
Both predictors create overlap in 37 - 42 % of their predictions,
meaning 58 - 63 % of their predictions are unique and contribute
to the recall of the OR-ensemble. This number is quite high
given the relatively low recall of both predictors, and shows that
the template-based association rules and the field-based field
correlation rules partly contain redundant information. However,
as both contribute significantly to the success of the OR-ensemble,
we believe both approaches have their use.
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5.4 Comparison to Ground Truth

In our evaluation, predictors can be penalized for making correct
change predictions that should have happened according to real-
world events, but in fact were not represented as a change in
Wikipedia. Such cases particularly show the potential benefit
of our system. Thus, we investigated results on a few selected
infobox change histories. The following example shows one of
these cases:

For the German Handball-Bundesliga season 2018-2019%, we
find that we correctly predict three changes to total goals that
are not in the change history of the infobox. It is found by an
association rule for the template infobox football league season,
which is also used for the Handball-Bundesliga seasons. The
symmetrical rule states that a change in matches leads to a change
in total goals and vice versa. For three different days with played
games, matches is correctly updated, but total goals is not.

We also found an interesting behavior for the values of total
goals per se. Editors often just incremented the current value of
total goals without verifying it. In one instance, the total score
of 9,880 changed to 1,073 instead of 10,073 — a typo. This wrong
value was then incremented multiple times until the last day
of the season, where it was changed from 6,197 to the correct
16,227.

6 CONCLUSIONS

As information on Wikipedia grows at a fast pace, the need
to keep information up-to-date arises. Especially in infoboxes,
which summarize an entity to consume at a quick glance, correct
and up-to-date data is crucial. Using infobox change histories,
we examined the staleness of data and propose a solution to
inform about stale infobox data. With a successfully reached
target precision of 85%, we achieve a recall of 8.19 %, which allows
us to classify on average 3,362 fields per week as stale. In terms
of absolute numbers, this is a significant recall that can make a
difference for editors and readers.

We recognize limitations to our approach that shall be ad-
dressed in future work. As we rely on simultaneous (same day)
changes, we cannot capture cases where the updates of related
properties are also delayed or there are no related properties with
similar change patterns. A way to tackle this problem is adding
predictors to the ensemble that focus on other aspects of the
data: they could capture seasonality or consider further signals,
such as changes to the text of Wikipedia articles or additions and
deletions of values. Grouping annual events like soccer seasons,
the Oscars, or the Olympics, where each year has its dedicated
Wikipedia page, could help identify more general patterns across
less frequently changing pages. Finally, the approaches could be
generalized to other datasets containing structured data [3] or
even be extended to textual data.
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