
DLS, Portland, 2006 – 10 – 23

Open, extensible dynamic programming systems
or just how deep is the ‘dynamic’ rabbit hole?

Ian Piumarta

Viewpoints Research Institute

ian@squeakland.org

dynamic

dynamic?

• data?

– extending objects and definitions

– modifying the type system

∗ modifying the dynamic type system

• behaviour?

– extending the program during execution

∗ modifying the dynamic effects of execution

• something that subsumes/unifies both, obviates one?

‘dynamic languages’ provide direct tools to do this

2

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

language

language?

• syntax

– valid sentences of the language

• semantics

– finding a meaning for those sentences

• implementation

– translation of semantics into ‘more primitive’ equivalents

• runtime

– the machine and its intrinsic mechanisms

• pragmatics

– interaction with libraries, users, and everything

when?

• compile time? run time?

• staged? continuous?

3

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

dynamic languages

dynamic language?

• syntax

– redefining ‘valid sentence’

• semantics

– redefining or extending the range of meaning

• implementation

– creating meaning from ‘primitive’ execution mechanisms

– ability to directly modify machine code, including ...

• runtime

– creating new ‘primitive’ execution mechanisms

• pragmatics

– discovering, attaching to, using external resources

at any time during development, compilation, deployment, execution

The assertion that ‘a language is dynamic’ is more an assertion about the
ease of use of dynamic features than it is a clear statement of the
capabilities of the language. [WP]

4

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

techniques and tools

introspection

• from determining the type of a polymorphic value

• to full analysis of the system’s code as data

1st-class dynamic functions

• construction of new behaviour at any time

• immediate or delayed execution

active introspection (intercession)

• full access to the compiler

– compiler implementation is 1st-class dynamic functions

• full access to the runtime

– runtime mechanisms are 1st-class dynamic functions

• (re)define language elements

– new syntax, grammar, semantics, optimisations

5

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

questions for this talk

how much of the language/system can we make dynamic?

how dynamic can we make it?

how general can we make it?

how simple can we make it?

6

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

less is more

It seems that perfection might be attained not when there is nothing left to
add but rather when there is nothing left to take away.

Antoine de Saint-Exupéry, Terre des Hommes, III :L’Avion, 1939

extreme late binding

• less mechanism ⇒ fewer assumptions to early bind

• fewer assumptions ⇒ easier to late-bind everything

• eliminate early-bound assumptions ⇒ generality

7

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

self-hosting system

self-hosting system

• completeness

• understandability

• independence

• portability

8

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

objects

minimal object:

• encapsulates behaviour

• (subsumes state)

M ?

no assumptions about object contents

• decouple implementation from representation

• representation arbitrary

• behaviour replaceable (and shareable)

• implementation of behaviour replaceable (and shareable)

M
?
B

? ?

9

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

the minimal object

vtable
oop

?
increasing

memory
addresses

send(message, object, ...) :=
method := object[-1].lookup(message)
method(object, ...)

vtable protocol

vtable.lookup(aSelector)

vtable.methodAtPut(aSelector, aMethodImplementation)

vtable.intern(aString)

vtable.allocate(objectSize)

10

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

everything is an object

S -> I

lookup: -> <impl>

vtable
vtable

vtable

oop

? ?
lookup: -> <impl>

object’s behaviour

delegate

object

behaviour’s behaviour

11

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

methods as closures

vtable
vtable

native codeselector

generalise relationship between message send and implementation of response:

vtable
vtable closure

method

data

native code

anything you want

selector

• closure implementation can be shared

• closure data can be shared

• closure can reimplement ‘apply’

12

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

mixed-mode execution

• one ABI, multiple execution mechanisms

• transparent to sender

• profile-based optimisations (JIT), cross-paradigm calls, etc...

vtable
vtable closure

method

data

interp(byteCodeArray *)
{
 ...
}

byte-compiled method 1

selector

closure

method

data

byte-compiled method 2selector

function

13

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

methods as value holders

• one getter one setter method, shared by all

• getter closure holds value

• setter closure assigns value of getter closure

• slot lookup as fast as method cache

vtable
vtable closure

method

data
getter(closure)
{
 ^closure.data
}

slotName

closure

method

data

slotName:

setter(closure, value)
{
 ^closure.data.data := value
}

function

function

14

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

revised vtable methods

after exposing the entire implementation:

selector intern: nameString

closure withMethod: aMethod data: anything

vtable methodAt: aSelector put: aClosure
vtable lookup: aSelector
vtable allocate: objectSize

with intrinsic delegation mechanism (unnecessary but simplifies bootstrapping):

object vtable → self[-1]

vtable delegate → new vtable delegating to self

thus:

myPrototype := object vtable delegate allocate: 0

myPrototype new := [
↑self vtable allocate: self objectSize

]

15

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

static implementation of a dynamic universe

independent axes
• compilation (static/offline vs.dynamic/incremental)
• execution (static/early-bound vs.dynamic/late-bound)

co
m

pi
la

tio
n

execution

sta
tic

dynamic

dy
na

m
ic

objComp.src

objComp.c

cc

bootstrap
compiler (C)

object
compiler

rm -rf objComp.c

anything.src

anything.exe

⇒ hello world

16

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

the object compiler

demo

• self-hosting static compiler for an extreme late-bound execution model

• dynamic environment creation

vtable methodAt:aSelector put:aClosure

• dynamic execution mechanism

vtable lookup:aSelector

⇒ reflect

object compiler (in itself):2200 LOC

does it scale? ⇒ sqvm

17

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

objects are; methods do

consider Smalltalk

• represent ‘does’ with some ‘is’ (CompiledMethod)

• wave magic wand (apply VM to image)

• representation of ‘does’ indirectly moves messages around between the ‘is’

• methods have no dynamic effect without a VM

• the VM is not an object

• the actions of methods cannot be described purely in object terms

– bind, apply, sequence

method objects imply how objects might be animated; the animation itself comes
from ‘outside’

we need to bring it ‘inside’

18

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

objects are form

O x M -> I

(I = { O’ x M’ }*)

form

19

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

form needs function

O x M -> I

(I = { O’ x M’ }*)

01001011
01100101
11001000

form

function

20

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

form describes function

O x M -> I

(I = { O’ x M’ }*)

01001011
01100101
11001000

form

function

21

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

functions transform form into function

O x M -> I

(I = { O’ x M’ }*)

01001011
01100101
11001000

form

function

22

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

form describes function implements form

O x M -> I

(I = { O’ x M’ }*)

01001011
01100101
11001000

expr -> IR -> gen

form

function

23

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

functions

representation:s-expressions

• simple

• structured (eqv.AST)

• reasoning

domain:primitive operations and values

• closest to metal

• ‘animation’ of system (bind, apply, sequence) occurs at machine instruction level

• impedance with OS, libraries:C ABI

cf., Pre-Scheme (Richard Kelsey, 1997)
LISP-70 (Larry Tesler et al., 1973)

24

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

semantics

evaluation

• atoms (42, "hello world") compile to primitive literal

• sequences evaluate elements and apply first to rest; unless ...

• sequence head defined as syntax ⇒ delegate compilation

(... (myNodeType ...) ...)

(syntax myNodeType
 (lambda (node compiler)
 ;; rewrite and/or codegen and/or side-effect
 ...))

environment
locals
codegen

compilerexpression

• single mechanism for ‘intrinsic’ and ‘extended’ syntax

• intrinsic:quote syntax define set and or if while let lambda return send

⇒ operator ++

• syntactic sugar for send⇒ seamless connection to representation

⇒ message send, definition

25

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

implementation

(printf "%d\n" (+ 3 4))

| vpu entry |
entry := Label new.
(vpu := VPU new)

define: entry;
enter;
ldInt: 3;
ldInt: 4;
add;
ldPtr: ’%d\n’;
call: 2 target: (Label dlsym: ’printf’);
ret;
compile.

↑ entry address

26

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

implementing semantics

(syntax while
(lambda (node compiler)
(let ((vpu [compiler vpu]))

(or [[node size] == ’3] (syntax-error node))
[vpu begin: ’2]
[vpu br: ’1]
[vpu define: ’0]
[[node third] compile: compiler] ; body
[vpu drop]
[vpu define: ’1]
[[node second] compile: compiler] ; condition
[vpu bt: ’0]
[vpu end: ’2]
[vpu ldInt: ’0])

0))

27

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

complexity of implementation

transform s-expressions to VPU instructions

compile.src: 620 LOC (including intrinsics)

VPU implementation

VPU.src: 420 LOC
+ 176 LOC (ppc)
+ 118 LOC (i386)

714

28

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

syntax and grammar

advanced recursive-descent parsing techniques (Birman, 1970)

• easy to write, read, understand

• more general and powerful than ‘traditional’ table-driver parsers

• just as amenable to analytic techniques

need to go back even earlier:Meta-II (Val Schorre, 1962)

• self-describing, self-implementing, self-bootstrapping dynamic syntax

• memoisation

• analytic treatments (predictive parsing)

synergy:

• TEX (Donald Knuth, 1981)

demo:

• active parsing ⇒ input

• dynamic postfix operator syntax in a prefix language ⇒ array

29

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

everything is self-describing structure

downwards, sideways

01001011
01100101
11001000

.c

.h
...

objComp

your
DSL/ASL/MSL

& upwards

• lexical, syntactic, semantic, IR analysis as pattern-directed transformation

30

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

scorecard (so far)
√

extend the program’s code during execution
√

extend objects and definitions during execution
√

a program analyzing its own structure, code, types or data
√

executable data structures
√

offline and online compilation
√

VM, just-in-time compilation
√

ability to directly modify machine code
√

generating new objects from a runtime definition
√

runtime alteration of object or type system
√

changing the inheritance or type tree
√

closures, continuations, introspection
√

new language constructs, optimisations, grammar

object comp s-expr comp VPU + 2 arch total

2199 620 714 3533

31

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

topics not discussed #1

implicit types

• tagged immediates

• NULL pointer as nil object

pragmatics

• primitive function _dlsym, primitive constant _RTLD_DEFAULT

• platform header parsing → dynamic interface generation

lazy coercions

• impedance mismatch between object and primitive type

• compiler-introduced message send to covert value

• ‘primitive methods’ become unnecessary

– all ‘primitive’ behaviour subsumed by dynamic interfaces and coercions

selector-directed compilation

32

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

topics not discussed #2

reduction of compilation process to smallest number of ‘fundamental’ algorithms

• generic inference engine:parsing, compilation, codegen

 reduce(tree, startSymbol) =
 foreach rule in startSets[startSymbol]
 if match(tree, rule.pattern)
 invoke rule.action
 return startSymbol

match(tree, pattern) =
 if (isSymbol(pattern)) return reduce(tree, pattern)
 if (tree.first ~= pattern.first) return false
 return foreach treeElement, patternElement in tree.tail, pattern.tail
 match(treeElement, patternElement)

ri4 :: (indiri4 (addp ri4 li2)) => $0 := $1 [lwz r$1, $2(r$1)]

ri4 :: (addp ri4 li2) => $0 := $1 [addi r$1, $2]

ri4 :: (addi4 ri4 ri4) => $0 := $1 [add r$1, r$1, r$2]

ri4 :: (cvtu4 ri4) => $0 := $1

ri4 :: (indiri4 (vregp)) => $0 := $1.1

li2 :: (cnstu4) ? -32768 <= $1 <= 32767 => $0 := $1

(addi4

 (indiri4 (vregp 1))

 (indiri4 (addp (indirp (vregp 2)))

 (cnstu4 12)))

=> lwz r3, 12(r5)

 addi r3, r3, r4

33

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

putting it all together: parser

Stmt ::=
"{" Stmt*:s "}" => ‘(begin ,@s)

| "var" Binding:first ("," Binding)*:rest ";" => ‘(begin ,first ,@rest)
| "if" "(" Expr:c ")" Stmt:t ("else" Stmt |

Empty => ’0):f => ‘(if (js-bool ,c) ,t ,f)
| "while" "(" Expr:c ")" Stmt:s => ‘(while (js-bool ,c) ,s)
| "do" Stmt:stmt "while" "(" Expr:cond ")" ";" => ‘(while (begin ,stmt ,cond))
| "for" "(" ("var" Binding | Expr):init ";"

Expr:cond ";" Expr:upd ")" Stmt:s => ‘(begin ,init
(while ,cond
(begin ,s ,upd)))

| "break" ";" => ’(break)
| "continue" ";" => ’(continue)
| "return" (Expr:e => ‘(#return ,e) |

Empty => ’(#return)):r ";" => r
| Expr:e ";" => e

JavaScript parser:86 LOC

34

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

putting it all together: semantics

(define js-set
(lambda (lhs val)

(match lhs
((js-get (js-get :c :n) :p) ‘[(js-get ,c ,n) bind: ,p to: ,val])
((js-get (js-arr-get :a :i) :p) ‘[(js-arr-get ,a ,i) bind: ,p to: ,val])
((js-get :c :n) ‘[,c set: ,n to: ,val])
((js-arr-get :a :i) ‘(js-arr-set ,a ,i ,val))
(:otherwise (error "%o is not assignable" lhs)))))

JavaScript semantics:100 LOC

35

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

putting it all together: library

function Array()
{

var l = arguments.length == 1 ? arguments[0] : 0;
this.__array__ = #[Array new: (js-get _ctxt ’l)];
this.length = l;
for (var idx = 0; idx < l; idx++)

this[idx] = null;
}

JavaScript library:102 LOC

(minimal Object, String, Date, Number, etc...)

36

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

putting it all together: JavaScript

• semantics:100

• parser:86

• library:102 (minimal Object, String, Date, Number, etc.)

• graphics:136

⇒ js repl

⇒ cairo-app.js

just over 400 LOC

with no serious attempt at optimisation, runs a little faster than FireFox

(and a lot faster than WebKit aka Safari)

37

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

conclusion #1

objects

• five ‘essential’ methods

• one semantic primitive (dynamic bind in the method cache)

• ≈ 2200 LOC for self-hosting object compiler (Smalltalk-like syntax)

• infinitely extensible/reusable object framework

38

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

conclusion #2

functions

• tightly integrated with object model ⇒ dynamic objects

• compatible with platform ABI

• ≈ 1300 LOC for self-hosting dynamic function → native code compiler

• infinitely extensible/reusable semantic framework

39

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

conclusion #3

take away:

• ‘dynamic’ can apply to everything (data, code, types, ...)

• ‘language’ can mean all of it (syntax, semantics, implementation, pragmatics, ...)

• it can be made very, very simple

• it can be made very, very general

• it can free you from a multitude of pedantries

• it is a lot of fun

attractive implementation vehicle

• active protocols, extensible/configurable systems

• programming/scripting languages

40

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

conclusion #4

ideal testbed for new language and systems ideas

• if you aren’t using dynamic languages this way, you should be

ideal for teaching language and systems principles

• if you aren’t teaching languages this dynamic, you should be

go home and innovate!

• built your own and share it with us

• or use ours:release in a month or two

41

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

Form follows function — that has been misunderstood. Form and function should be
one, joined in a spiritual union.

Frank Lloyd Wright, 1908

It is the grand object of all theory to make these irreducible elements as simple and
as few in number as possible, without having to renounce the adequate
representation of any empirical content whatever.

Albert Einstein, Mein Weltbild, 1934

On the contrary, most of our systems are much more complicated than can be
considered healthy, and are too messy and chaotic to be used in comfort and
confidence.

Edsger W. Dijkstra, CACM 44(3), 2001

42

c© 2006 Ian Piumarta. Some rights reserved. For license terms see http://creativecommons.org/licenses/by-sa/2.5/

