Language Constructs for Context-oriented Programming

An Overview of ContextL

Pascal Costanza
Vrije Universiteit Brussel
Programming Technology Lab
B-1050 Brussels, Belgium

pascal.costanza@vub.ac.be

ABSTRACT

ContextL is an extension to the Common Lisp Object Sys-
tem that allows for Context-oriented Programming. It pro-
vides means to associate partial class and method definitions
with layers and to activate and deactivate such layers in the
control flow of a running program. When a layer is activated,
the partial definitions become part of the program until this
layer is deactivated. This has the effect that the behavior of
a program can be modified according to the context of its
use without the need to mention such context dependencies
in the affected base program. We illustrate these ideas by
providing different Ul views on the same object while, at
the same time, keeping the conceptual simplicity of object-
oriented programming that objects know by themselves how
to behave, in our case how to display themselves. These
seemingly contradictory goals can be achieved by separat-
ing class definitions into distinct layers instead of factoring
out the display code into different classes.

Categories and Subject Descriptors

D.1 [Software]: Programming Techniques— Object-oriented
Programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features

General Terms
Languages

Keywords

Context-oriented programming, layers, views, dynamic scope

1. INTRODUCTION

Before we explore ContextL. and its features in the follow-
ing sections, let us first go back and recall how objects are
introduced to novices.

@ ACM, 2005. This is the authors’ version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2005 Dynamic
Languages Symposium, http://doi.acm.org/10.1145/1146841.1146842

Robert Hirschfeld
DoCoMo Communications Laboratories Europe
Future Networking Lab
D-80687 Munich, Germany

hirschfeld@acm.org

1.1 Back to the Roots

Among prominent domains to motivate object-oriented pro-
gramming, graphics and people are the most widely used
examples. A reason for their popularity is the fact that
one can easily introduce the idea that objects know how to
behave, that is how to react to messages. Often draw or
display messages are used for pedagogical purposes because
they allow demonstrating immediately visible effects on a
computer screen. So, for example, rectangles and persons
can be introduced as follows, using a Java-like syntax.

class Rectangle {
int x, y, width, height;
void draw() { ... }

}

class Person {
String name, address, city, zipCode;
void display() { ... }

}

However, when programs become more complex, the code
for displaying objects is usually not contained in the classes
to be displayed because there is a need to have different
views on the same objects, often at the same time. There-
fore, such code is separated into view objects that need to
be notified of changes to model objects (such as instances of
Rectangle or Person), leading to variants of the well-known
Model-View-Controller (MVC) framework originally intro-
duced with Smalltalk [22]. Unfortunately, this distribution
of responsibilities that conceptually belong to a single ob-
ject complicates the original simplicity of the object-oriented
paradigm. For this reason, some more recent object systems
like Self and Squeak have even changed their frameworks for
presenting objects on the screen back to the original idea
that objects maintain their own knowledge about how to
display themselves (Morphic, [28]). However, with that they
lose the desired property to offer different views of the same
objects.! ContextL provides an alternative approach that
both keeps the conceptual simplicity that all of an object’s

1Squeak allows us to select whether we want to use Morphic
or MVC for the presentation of objects, but this does not
change the main argument of our introduction: The choice
is still between either associating the display behavior with
the classes to be displayed, or being able to create different
views on the same objects, but not both at the same time.

Dynamic Languages Symposium’05, San Diego, CA, USA

behavior is indeed associated with that object and still al-
lows an object to be viewed in different ways depending on
the context.

1.2 Context-oriented Programming

ContextL is one of the first programming language exten-
sions that explicitly supports a programming style that we
call Context-oriented Programming.? Tt is an extension of
the Common Lisp Object System (CLOS, [2]), but the fea-
tures we describe are conceptually independent of that par-
ticular object model.>

In the subsequent sections, we use the introductory person
class as an example. However, we are convinced that the
desire to have different views with different behavior on the
same objects is a recurring theme in other scenarios that
range from personalization, adaptation to different kinds of
devices (desktop, mobile, etc.), diverging business rules for
varying provider-customer relations up to enforcing different
security policies for different users [17].

From a programmer’s point of view, the goal of Context-
oriented Programming is to avoid having to spread context-
dependent behavior throughout a program. Currently, the
only way to introduce context-dependent behavior into a
program is either by inserting if statements everywhere that
check for the context in which a program is running, vio-
lating one of the fundamental principles of object-oriented
programming, namely to avoid if statements for achieving
polymorphic behavior, or else by factoring out the context-
dependent behavior into separate objects that can be sub-
stituted according to the context in which a program is
used. Both approaches lead to unnecessarily complicated
code that is hard to comprehend and even harder to main-
tain. Furthermore, they can only be applied for context-
dependent behavior that are anticipated in the software de-
velopment process. The MVC framework is an example of
such a distribution of behavior over different objects and re-
quires anticipation of notifying observers of (relevant!) state
changes in the model objects. See for example the discus-
sion of the Observer pattern in [10] for an overview of the
complexities that are involved in such an approach.

We want different views on the same object or the same set
of objects. With Context-oriented Programming, instead
of separating out the display into different classes, we sep-
arate out class definitions into separate layers. Depending
on the context of use, we can then select different layers for
further program execution. As is shown in this paper, this
avoids the complexities of distributing behavior across ob-
jects as described above. The principal notion of such layers
has been suggested before ([1, 27], cf. the section on related
work in this paper) but in ContextL, we have combined this
idea with the notion of dynamically scoped layer activation
(see below), and we are convinced that this combination re-
sults in a viable approach for expressing context-dependent
behavior.

2Thanks to Wolfgang De Meuter for suggesting this term.

3For example, we are also working on similar extensions to
Smalltalk and T'weak called ContextS and ContextT respec-
tively.

2. CONTEXTL

In the following sections, we introduce the most significant
constructs of ContextL by using the introductory person
class as an example. In order to define that class and en-
able the subsequent use of the Contextl features, we have
to define the class as a layered class.*

(define-layered-class person ()
((name :initarg :name
raccessor person-name)))

This code snippet defines the class person with no super-
classes and one slot (field) name that can be initialized with
:name and accessed with person-name.®

2.1 Layers

Layers are the essential extension introduced by ContextL
that all subsequent features of ContextL are based on. Lay-
ers can be created by the deflayer macro, just like this.

(deflayer employment-layer)

Layers basically consist of only a name and no further prop-
erties of their own. However, other constructs of ContextL
can explicitly refer to such layers and add definitions to them
accordingly. There is a predefined layer named t that de-
notes the root or default layer that all definitions are auto-
matically placed in when they do not explicitly name a layer.
For example, our definition of class person (see above) is im-
plicitly placed in the root layer.®

Layers can be activated in the dynamic scope of a program.

(with-active-layers (employment-layer)
. contained code ...)

Dynamically scoped layer activation has the effect that the
layer is only active during execution of the contained code,
including all the code that the contained code calls directly
or indirectly. When the control flow returns from the dy-
namically scoped layer activation, the layer is deactivated
again. Layer activation can be nested, which means that
a layer can be activated when it is already active. How-
ever, this effectively means that a layer is always active only
once, i.e. nested layer activations are just ignored. This also
means that on return from a dynamically scoped layer acti-
vation, a layer’s activity state actually depends on whether
it was already active before or not. In other words, dynam-
ically scoped layer activation obeys a stack-like discipline.

“In fact, layered-class is a CLOS metaclass, but we hide
this with the define-layered-class macro to simplify the
presentation in this paper.

°In Java parlance, the :initarg keyword implicitly creates
a parameter for the person constructor, and the :accessor
keyword implicitly creates getter and setter methods for the
respective field.

5In Common Lisp, it is common to denote “general”, “root”
or “default” concepts by t or nil since they are the canonical
truth and false values in that language.

Furthermore in multithreaded Common Lisp implementa-
tions, dynamically scoped layer activation only activates lay-
ers for the currently running thread. If a layer is not active
in other threads, it will remain so unless it is incidentally
also activated in some of them.

2.2 Layered Classes

We have already seen define-layered-class being used for
the definition of the person class. We can confine the defi-
nition of a class to a specific layer.

(define-layered-class employer
:in-layer employment-layer ()
((name :initarg :name
:layered-accessor employer-name)))

This confinement does not have a useful effect yet: The class
can still be instantiated from anywhere. However, placing a
class definition in a specific layer becomes interesting when
we use layers to add to the definition of a class that is already
defined in other layers.

(define-layered-class person
:in-layer employment-layer ()
((employer :initarg :employer
:layered-accessor person-employer)))

Here, the original class person is not replaced, the class
person still has its original slot name. It additionally gets the
slot employer contained in the employment-layer. Since the
accessors defined for employer-name and person-employer
are declared as :layered-accessor, the slots are actually
only visible when the employment-layer is active (activated
by with-active-layers). When it is not active, an error is
thrown when these accessors are called. This allows us to
restrict the view of slots to certain layers.

2.3 Layered Functions

So far, we have not yet defined any behavior for the person
and employer classes. In order to simplify the presentation,
we do not provide code examples that implement a full-
blown graphical display of instances of these classes, but
restrict ourselves to textual display. Still, this illustrates the
approach how to provide different views with layers. This is
achieved by way of a layered generic function.”

(define-layered-function display-object (object))

This code defines a function that takes one parameter object.

In order to make the function perform some useful behav-
ior, we have to define methods on it. Here is the method
definition that displays a person object for the root layer.

"CLOS is based on the notion of generic functions that asso-
ciates methods with functions instead of classes. This means
that in CLOS, classes only define state but not behavior.
Layered functions are actually instances of the generic func-
tion class layered-function, but again this is hidden by
the define-layered-function macro.

(define-layered-method display-object
:in-layer t ((object person))
(format t "Person~%")
(format t "Name: "A~%" (person-name object)))

Such a method definition takes an additional : in-layer dec-
laration. Here, the layer is t that represents the root layer.
The method’s only argument object is specialized on the
class person.®

Here are two other method definitions for display-object
that are placed in the employment-layer.

(define-layered-method display-object
:in-layer employment-layer
((object employer))
(format t "Employer~%")
(format t "Name: "A”%" (employer-name object)))

(define-layered-method display-object
:in-layer employment-layer :after
((object person))
(display-object (person-employer object)))

The first method, with object specialized on employer, is
similar to the previous method for person but additionally
restricted to the employment-layer. The second method
adds behavior to the previous method for person that is
to be executed :after the previous one has been executed.
The fact that the :in-layer declaration is bound to the
employment-layer has the effect that this :after method
is only executed when the employment-layer is active but
not otherwise. The difference can be noticed in the following
transcript.

> (defvar *vubx*
(make-instance ’employer
:name "Vrije Universiteit Brussel"))

> (defvar *pascalx*
(make-instance ’person
:name "Pascal Costanza"
:employer *vubx*))

> (display-object *pascalx)

Person
Name: Pascal Costanza

> (with-active-layers (employment-layer)
(display-object *pascalx))

Person

Name: Pascal Costanza

Employer

Name: Vrije Universiteit Brussel

8format is a Common Lisp function for formatted output,
sunllar to printf in C. (format t "... control string
. .) means to print the control string to standard
output (represented by t), by optionally taking further pa-
rameters that are spliced into the control string.

Dynamic Languages Symposium’05, San Diego, CA, USA

Root Layer : Employment Layer : Info Layer
| |
| | Info
| | |Address
|
| |
| |
|

Person |
Name
Employer
Do e —— Employer
Name

Figure 1: The class Person has a field Name in the
Root Layer and a field Employer in the Employ-
ment Layer. The classes Person and Employer in-
herit from the class Address in the Info Layer.

Please note again that layer activation is confined to the
currently running thread. This means that the latter output
that contains the employment information does not show in
other threads unless employment-layer is incidentally also
active in some of them.

To make things more interesting, we add another layer that
adds address information to both persons and employers.

(deflayer info-layer)

(define-layered-class info-mixin
:in-layer info-layer ()
((address :initarg :address
:layered-accessor address)))

(define-layered-method display-object
:in-layer info-layer :after ((object info-mixin))
(format t "Address: "A~Y" (address object)))

(define-layered-class person
:in-layer info-layer (info-mixin)

0))

(defclass employer
:in-layer info-layer (info-mixin)

0))

Here, we define a mixin class info-mixin that defines one
slot address, and a method for display-object that prints
the address information. Then, info-mixin is added as a
superclass to the classes person and employer.® See Figure
1 for the resulting class hierarchy.

9CLOS supports multiple inheritance, so we can arbitrarily
add superclasses to a given class in different layers.

Here is a transcript that shows a use of the info-layer.

> (defvar *docomo*
(make-instance ’employer
:name "DoCoMo Euro-Labs"
:address "Munich"))

> (defvar *robertx
(make-instance ’person
:name "Robert Hirschfeld"
:employer *docomox*
:address "Ilmenau"))

> (with-active-layers (employment-layer)
(display-object *robertx*))

Person

Name: Robert Hirschfeld
Employer

Name: DoCoMo Euro-Labs

> (with-active-layers (employment-layer info-layer)
(display-object *robert*))

Person

Name: Robert Hirschfeld
Address: Ilmenau
Employer

Name: DoCoMo Euro-Labs
Address: Munich

Activation of the employment-layer results in display of the
employer slot of the person object, as before. Note that ad-
ditional activation of the info-layer activates display of the
address information for both the person and the employer
instance.

Note that the :in-layer declaration for layered methods
is optional. If it is omitted, that declaration is implicitly
bound to the root layer. Further note that the :in-layer
declaration has to occur before any method qualifiers, like
:before, :after or :around.

2.4 Special Slots

ContextL provides the dletf framework for binding values
to arbitrary places, again with dynamic scope. In Common
Lisp parlance, a place denotes a conceptual location to which
values can be stored and read, like for example slots of an
object or components of an array. A slot for a layered class
can be declared to be “special”, which means that such a
slot can be bound to a new value in the control flow of a
program. This allows us to provide a more generic display
functionality. We define the following layer.

(deflayer generic-display-layer)

(define-layered-class displayed-slots-mixin
:in-layer generic-display-layer ()
((displayed-slots :special t

rinitform ’()
:accessor displayed-slots)))

(define-layered-class person
:in-layer generic-display-layer
(displayed-slots-mixin)

0))

(define-layered-class employer
:in-layer generic-display-layer
(displayed-slots-mixin)

o))
(defgeneric generic-display (object))

(defmethod generic-display (object)
(format t ""A" object))

(defmethod generic-display
((object displayed-slots-mixin))
(let ((slots (displayed-slots object)))
(if slots
(dolist (slot slots)
(format t ""&"A: " slot)
(generic-display
(slot-value object slot)))
(format t "No slots to display.~%")))))

The (plain) generic function generic-display takes an ob-
ject as a parameter, and if it is an instance of generic-dis-
play-mixin it will print the slots that are associated with
the special slot displayed-slots. The latter is introduced
into persons and employers by way of the mixin class generic-
display-mixin. Since it is a special slot, the actual slots to
be displayed can be selected on a case-by-case basis via the
dletf operator. The slot values are retrieved by the stan-
dard CLOS function slot-value that takes an object and
a slot name as parameters. Here is a transcript that uses
these definitions.

> (with-active-layers (generic-display-layer)
(dletf (((displayed-slots *robert*)
’ (name employer))
((displayed-slots *docomox*)
’ (name address)))
(generic-display *robert*)))

Name: Robert Hirschfeld
Employer:

Name: DoCoMo Euro-Labs
Address: Munich

The effect of dletf is similar to the effect of rebinding a
dynamically scoped “special” variable: All forms that re-
fer to the respective displayed-slots slot also see the new
values in the dynamic extent of the dletf form. It is im-
portant to note that dletf does not introduce new access
functions, like displayed-slots in the example above, that
shadow the previously visible accessors, but that the change
to slot values is indeed performed on the actual slots of the
xrobert* and *docomo* objects. This means that if those
objects are, or have been, passed around to other functions,
the new slot values will be visible during the extent of the
dletf form, no matter how they are accessed.

Again, ContextL ensures that a new binding created via
dletf is confined to the currently executing thread. For
our example, this means that the specific set of slots to be
displayed is different from other threads unless the same set
of slots is incidentally also selected in some of them.

2.5 Layered Slots

In the previous sections, we have illustrated how to dis-
play objects in varying ways while keeping the conceptual
simplicity that all presentation code is associated with the
classes to be displayed. However, the simplification to just
textual output misses an important feature that is typical
for graphical user interfaces: Whenever the value for a slot of
a displayed object is changed, the graphical representation
on the screen is automatically updated in order to always
present the current state of objects. We need a way to be
notified of such changes, and we do this by mimicking the
way slot access is implemented in CLOS.

According to the CLOS Metaobject Protocol (MOP, [19])
specification, all slot accesses, including those of the au-
tomatically generated accessors, go through the function
slot-value that takes an object and a slot name as pa-
rameters. In turn, that function calls the generic function
slot-value-using-class that takes the class of the ob-
ject, the object itself and a representation of the slot as
parameters. That scheme enables the definition of one’s
own slot access behavior by way of providing a method for
slot-value-using-class, like this:'°

(defmethod slot-value-using-class
((class persistent-class) object slot)
(... access a database ...))

In ContextL, slots can be declared to be :layered which has
the effect that slot accesses go through similar slot-value-
using-layer functions. Here is a sketch of a presentation-
layer that takes advantage of this protocol.

(deflayer presentation-layer)

(define-layered-class view-mixin
:in-layer presentation-layer ()
((active-views :accessor active-views

rinitform > ())))

(define-layered-method setf-slot-value-using-layer
:in-layer presentation-layer :after
(value class (object view-mixin) slot)
(... notify active views for ’object’ ...))

(define-layered-class person
:in-layer presentation-layer (view-mixin)
((name :layered t)
(employer :layered t)))

10The call of slot-value-using-class is only the specified
effect of accessing slots. For efficiency reasons, CLOS imple-
mentations take care of bypassing the slot access protocol
when it will provably result in the standard behavior.

Dynamic Languages Symposium’05, San Diego, CA, USA

(define-layered-class employer
:in-layer presentation-layer (view-mixin)
((name :layered t)))

(define-layered-class info-mixin

:in-layer presentation-layer (view-mixin)
((address :layered t)))

So the heart of being notified about changes to slots is by

defining a method on the layered slot writer setf-slot-value-

using-layer and activating the layered slot access protocol
for the slots of interest by way of the :layered keyword.'*
Whenever a view is created for a given object (not shown
here), it must add itself with a collection of active views for
that object which is stored in the slot active-views for that
object. Again, all code that deals with display of objects can
be associated with the classes to be displayed.'?

This approach finally needs a construct for globally acti-
vating a layer because updates of graphical representations
should always be performed. This can be achieved by the
following simple statement.

(ensure-active-layer ’presentation-layer)

2.6 Summary
ContextL provides the following features:

e Layers are the basic construct that enables grouping
class and method definitions and activating them in
some dynamic scope of a program.

e Layered classes are classes that can have partial defi-
nitions in different layers. The slots of layered classes
can additionally be declared to be...

— ...layered: Such slots are accessed through the
layered slot access protocol.

— ...special: Such slots can have different bindings
in different threads at the same time.'®

1Slot definitions mentioned in the partial class definitions
here are merged with slot definitions of other layers when
the respective slot definitions have the same slot name, just
as is the case for merging slot definitions across superclasses
in plain CLOS.

12The presentation of layered slots is heavily simplified
for this paper, but the essential characteristics are kept.
The differences to the actual implementation in ContextL
are as follows: The general slot-writer is actually called
(setf slot-value-using-layer). The parameter list is
also slightly different in that it additionally contains the
first-class function to perform the actual slot write ac-
cess. This slot writer function is passed for technical rea-
sons, in order to ensure that :before methods on (setf
slot-value-using-layer) are actually performed before
the write access, that in turn is performed by the primary
method on (setf slot-value-using-layer), and :after
methods are accordingly performed afterwards. The other
layered slot accessors have similarly extended definitions.
Layered slot accessors are not described in further detail in
this paper. Fully functional demo code will be provided on
the ContextL website.

138pecial slots have already been described in [8, 9].

Furthermore, the accessor for a slot can be a layered
accessor which means that such a slot can only be
accessed when the respective layer is active in which
the corresponding class is defined.

e Layered functions are functions that can have differ-
ent methods associated with them for different layers.
Methods that are defined in a given layer are only ever
executed when the respective layer is active. Layered
accessors and the layered slot access functions are ac-
tually layered functions.'*

All these new constructs are integrated with the existing
Common Lisp Object System, and this is achieved by imple-
menting ContextL. purely on top of the CLOS Metaobject
Protocol. It is currently supported in seven major Com-
mon Lisp implementations and can be downloaded from
http://common-lisp.net/project/closer. This paper does not
provide any details on how ContextL is implemented but this
will be reported in a future publication. Note that the han-
dling of multiple inheritance and multiple dispatch is reused
from CLOS and not reimplemented in ContextL.®

Only classes and functions that are explicitly declared to be
layered can partake in layered activations of new partial def-
initions. This may be regarded as a restriction of ContextL
because one has to anticipate which classes and functions
should be amenable to context-specific changes. However
on the other hand, there would also arise a need to protect
some classes and functions from context-specific changes for
safety reasons, were layered classes and functions to be the
default when nothing else is explicitly specified. So this ef-
fectively boils down to the question whether context depen-
dency for classes and functions should be the default or not.
We prefer a programmer’s explicit decision in that regard,
and this also better fits the design decisions inherent to the
Common Lisp Object System. Note that this also requires
very little anticipation when compared to the more cumber-
some alternative approaches described in the introduction to
this paper. Furthermore, it is clear that one cannot expect
full unanticipated software evolution anyway but that the
inner workings of a program need careful design so that it
becomes adaptable to changing requirements from the out-
side. This has already been discovered and described as the
notion of Open Implementations in [20].

Yprecursors of layered functions are dynamically scoped
functions [7] and special functions [8] but they are funda-
mentally different in that they cannot be grouped into layers
and must be defined one at a time.

15For those who are well-versed in CLOS: With regard to
multiple inheritance, the superclasses of the root layer defi-
nition of a given class always come before the superclasses of
any other layer. The order of the other layers is randomly
chosen. If one requires a specific ordering of layers, this
can be achieved by way of layer inheritance, similar to class
inheritance but not further described in this paper. With re-
gard to multiple dispatch, the layer declaration for a method
is indeed a parameter to an internal secondary generic func-
tion and passed a representation of currently active layers.
The layer argument has least precedence in the argument
precedence order, so that methods defined in different lay-
ers can be interweaved. The ordering of methods of different
layers is determined by layer activation such that methods
of more recently activated layers have more precedence than
methods of less recent layers.

3. RELATED WORK
3.1 Multiple Inheritance

The basic notion that different partial classes can contribute
to a compound final class was one of the original motiva-
tions for Flavors, the first object system for a Lisp dialect
and one of the precursors of CLOS [5, 30]. In order to
achieve combinations of features, Flavors originated mul-
tiple inheritance so that a class can combine the function-
ality of several other classes by just inheriting from all of
them at the same time. As a motivating example, Howard
Cannon’s original proposal uses a graphical WINDOW class
that is then further extended to a WINDOW-WITH-BORDER,
WINDOW-WITH-LABEL, WINDOW-WITH-LABEL-AND-BORDER, and
so forth. It is clear that this leads to a combinatorial ex-
plosion of possibilities. ContextL avoids this combinatorial
explosion by deferring the combination of different layers to
runtime.

3.2 Aspect-oriented Programming
Aspect-oriented programming [24] is an umbrella term for a
family of approaches that support modularization of cross-
cutting concerns. A crosscutting concern is some function-
ality that should be exhibited by a program but that does
not fit well with its dominant decomposition (usually into
classes), like for example logging or notification. The ba-
sic concepts that are implicitly or explicitly common to all
aspect-oriented approaches are: join-points — the points in
the execution of a program where additional behavior can
be woven in; pointcuts — expressions that define sets of such
join-points; advice — the code that is to be woven in before,
after or around the join-points of a given pointcut.

Although Context-oriented Programming seems to have an
aspect-oriented feel to a certain degree, ContextL. does not
qualify as aspect-oriented. The main reason is that Con-
textL does not provide a notion of join-points or pointcuts.
The :before, :after and :around methods of CLOS con-
tribute to the definition of a generic function but not to
some additional behavior for a pointcut, unless one under-
stands a CLOS generic function as a degenerated form of
join-points and pointcuts. Furthermore, the layers in our
motivating example do not modularize a crosscutting con-
cern — the root layer already contains code for presenting
objects on the screen, and the different layers merely de-
fine variants of object presentation. This is fundamentally
different from the goal of aspect-oriented programming to
achieve a complete separation of crosscutting concerns.

Nevertheless, there exist a number of aspect-oriented ap-
proaches that allow for dynamic aspect weaving, most no-
tably Steamloom [3] and our AspectL [8] and AspectS [15].
These approaches share the notion that aspects should, or
at least can, be activated in the dynamic scope of a pro-
gram.'® Apparently, dynamic layer activation as in Con-
textL and aspect-oriented modularization are independent
concepts that may even turn out to be orthogonal. This
needs to be explored further in the future.

See [3] for a discussion of other approaches to dynamic as-
pect weaving.

16See [16] for a paper that shows how this can be achieved
in AspectS.

employer

employee

Figure 2: For some contexts, a person object can
be wrapped by an employee role that refers to an
employer object.

3.3 Subject-oriented Programming
Subject-oriented Programming [14] is one of the precursors
of Aspect-oriented Programming. The idea is that a pro-
gram should appear to have different class hierarchies from
different perspectives. The goal of Subject-oriented Pro-
gramming is to overcome the so-called “tyranny of the dom-
inant decomposition.” This is fundamentally different from
our approach: In ContextL, the structure of the different
layers must match each other. Partial class and method def-
initions in one layer can only augment existing definitions in
other layers if all these definitions refer to the (“globally”)
same layered classes and layered functions.

3.4 Delegation

Delegation, as defined in [23], is an inheritance mechanism
on the object level as opposed to inheritance at the class level
as provided by most mainstream programming languages. It
allows objects to refer to other superobjects that they can
implicitly send messages to when they do not know how to
respond to a message by themselves. This is similar to mes-
sage forwarding, as used in many design patterns, but with
the difference that messages sent to this or self in one of
the superobjects are evaluated in the context of the receiver
of the original message which is currently processed. This
leads to a proper form of overriding between objects. Object
inheritance has been used as a design principle for several
so-called prototype-based programming environments, most
notably Self [29], and has later been integrated into class-
based programing languages [4, 6, 21].

In principle, delegation can be used to achieve context-de-
pendent behavior of single objects by wrapping an object
with another one that implements the context-specific be-
havior. So for example, a person object could be wrapped
by an employee role that additionally sends a display mes-
sage to the employer object associated with the role when it
processes a display message itself (see Figure 2). However,
when one wants to add the address information to both the
person and the employer object later on and ensure that
a single display message prints that additional information
for both, one is lost: It is impossible to provide a wrapper
for the employer object only for some contexts but not for
others (see Figure 3).

ContextL solves this dilemma by grouping the context-spe-
cific behavior into layers.

Dynamic Languages Symposium’05, San Diego, CA, USA

Figure 3: When one additionally wants to add ad-
dress information for both person and employer, one
cannot do this in a context-specific way: It must
be either added so that all previous contexts are af-
fected, or it cannot be added at all.

3.5 Delegation Layers

Delegation layers, as in [26, 27] and also combined into a
class-based programming language in [25], are very similar
to our approach. Like in ContextL, delegation layers define
layers that group behavior for sets of objects in [27] and for
sets of classes in [25]. Unlike in ContextL, the hierarchy of
layers is fixed in those approaches. One can select a layer
from which to start a specific message send, but all the other
layers below are then predetermined by the original configu-
ration of layers. A change in the layer hierarchy has a global
effect for all subsequent message sends. In ContextL, the se-
lection and ordering of layers is not fixed but layers can be
arbitrarily activated and deactivated in the control flow of
a program, leading to an implicit ordering according to the
order of layer activations. Furthermore, the selection and
ordering of layers can vary across different threads.

3.6 Other Related Work

Related work for special slots is discussed in [8, 9]. Related
work for special functions, precursors for layered functions,
is discussed in [7, 8].

The term Context-oriented Programming has already been
used in two contexts. Gassanenko [11, 12] describes an
approach to add object-oriented programming concepts to
Forth without turning it into an actual object-oriented pro-
gramming language. Instead, a notion of context is added
that essentially boils down to some form of first-class envi-
ronments [13]. This allows code to behave differently when
executed in different environments. The description in Gas-
sanenko’s papers is very technical and it is very hard to tell
how much overlap, if any, exists with our approach. For ex-
ample, it is not clear whether Gassanenko’s contexts must
be fully defined or can be partial and combinable. The ex-
amples provided in [12] only cover fully specified, not partial
contexts. Furthermore, Gassanenko’s contexts seem to cover
functions only, neither state nor class definitions, the latter
due to the explicit goal not to turn Forth into a fully object-

oriented programming language. Therefore, it seems that
those contexts are most likely similar to dynamically scoped
functions [7], one of our own precursors to ContextL.

Keays and Rakotonirainy [18] use the term Context-oriented
Programming for an approach that separates code skeletons
from context-filling code stubs that complete the code skele-
ton to actually perform some behavior. The claimed advan-
tage is that the code stubs can vary depending on the con-
text, for example the device some code runs on. A proof-of-
concept implementation in Python and XML is described.
Their approach appears to be a reverse macro expansion
framework in which code skeletons and code stubs need to
be combined at runtime. Furthermore, there is no mention
whether different combinations of skeletons and stubs can
coexist at the same time. In contrast, ContextL is essen-
tially an extension of an object-oriented approach that does
not rely on runtime source code transformation. ContextL’s
root layer, whose behavior can be altered in other layers,
can already be fully operational, and different combinations
of different layers can be simultaneously active in multiple
threads.

4. CONCLUSIONS AND FUTURE WORK

ContextL is our extension to the Common Lisp Object Sys-
tem that allows for Context-oriented Programming. It pro-
vides layers, layered classes, layered and special slots with
possibly layered accessors, and layered functions. Layered
classes, slots and functions can be associated with specific
layers, and such layers can be activated in the control flow of
a program with dynamic scope, resulting in freely selectable
layer combinations. This allows us to associate behavior
with classes to which such behavior belongs while keeping
the freedom to change the behavior in context-specific ways.

In contrast to the more widely known class-based program-
ming languages, CLOS itself is centered on the generic-
function-based approach to object-oriented programming.
We are also working on systems implementing the key con-
cepts of Context-oriented Programming in class-based lan-
guages, such as ContextS for Smalltalk, ContextT for Tweak,
and ContextJ for Java. This will give us the opportunity
to understand better the core concepts of Context-oriented
Programming, as well as their variations.

Furthermore, we aim to explore the applicability of Con-
textL in various areas. For example, personalization, inter-
nationalization, ambient intelligence, context-sensitive safety
and security, and testing frameworks that require simulation
environments seem to be obvious candidates.

ContextL already provides a with-inactive-layers con-
struct that is similar to with-active-layers but ensures
that a set of layers is not active in the dynamic scope of that
construct. Useful applications of with-inactive-layers
will be described in future publications about ContextL.
Possible extensions of the ContextLh model include: A no-
tion of dynamic closures that enables capturing the cur-
rent dynamic class, slot and function bindings into a first-
class object and later reactivation of such captured bind-
ings. This would enable inheriting and distributing context-
specific layer combinations across several threads. Further-
more, it may be of interest in certain application domains to

incorporate layer-specific state as communication channels
between multiple concurrent activations of the same layers.
There are several possibilities to design language constructs
for dealing with such layer-specific state, but we have not
yet discovered good examples in which they could actually
be useful. Therefore, we have not committed ourselves to
one final design, but regard our own activities as work in
progress.

Last but not least, it has been a surprise to us that we
have apparently found a way to implement the functional-
ity described in this paper without any considerable perfor-
mance overhead, largely by discovering representations of
layers that trigger the advanced optimizations already there
in modern CLOS implementations. However, we first need
to carry out several benchmarks before reporting on this in
more detail. Some performance considerations related to
special slots are already discussed in [9].

ContextL can be downloaded from the ContextL section at
http://common-lisp.net/project/closer.

5. REFERENCES

[1] Daniel Bobrow and Ira Goldstein. Representing
Design Alternatives. Proceedings of the Conference on
Artificial Intelligence and the Simulation of Behavior.
Amsterdam, July 1980.

[2] Daniel Bobrow, Linda DeMichiel, Richard Gabriel,
Sonya Keene, Gregor Kiczales, David Moon. Common
Lisp Object System Specification. Lisp and Symbolic
Computation 1, 3-4 (January 1989), 245-394.

[3] Christoph Bockisch, Michael Haupt, Mira Mezini,
Klaus Ostermann. Virtual Machine Support for
Dynamic Join Points. AOSD 2004, Proceedings, ACM
Press.

[4] Martin Biichi and Wolfgang Weck. Generic Wrappers.
ECOOP 2000, Proceedings, Springer LNCS.

[5] Howard Cannon. Flavors — A Non-Hierarchical
Approach to Object-oriented Programming.
Unpublished draft, 1979, 1992, 2003.

[6] Pascal Costanza, Glinter Kniesel, Armin Cremers.
Lava — Spracherweiterungen fiir Delegation in Java.
JIT ’99 — Java-Informations-Tage 1999. Springer,
Informatik Aktuell, 1999.

[7] Pascal Costanza. Dynamically Scoped Functions as
the Essence of AOP. ECOOP 2003 Workshop on
Object-oriented Language Engineering for the
Post-Java Era, Darmstadt, Germany, July 22, 2003.
ACM Sigplan Notices 38, 8 (August 2003).

[8] Pascal Costanza. A Short Overview of AspectL.
European Interactive Workshop on Aspects in
Software (EIWAS’04), Berlin, Germany, September
23-24.

[9] Pascal Costanza. How to Make Lisp More Special.
International Lisp Conference 2005, Stanford.
Proceedings.

[10] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides. Design Patterns. Addison-Wesley, 1995.

[11] Michael Gassanenko. Context-oriented Programming:
Evolution of Vocabularies. Proceedings of the
euroFORTH’93 Conference. Marianske Lazne, Czech
Republic.

[12] Michael Gassenenko. Context-oriented Programming.
euroFORTH’98, Schloss Dagstuhl, Germany.

[13] David Gelernter, Suresh Jagannathan, Thomas
London. Environments as First Class Objects. POPL
'87, Proceedings.

[14] William Harrison and Harold Ossher. Subject-oriented
Programming — A Critique of Pure Objects. OOPSLA
’93, Proceedings, ACM Press.

[15] Robert Hirschfeld. AspectS — Aspect-oriented
Programming with Squeak. In M. Aksit, M. Mezini,
R. Unland (eds.). Objects, Components,
Architectures, Services, and Applications for a
Networked World. Springer LNCS 2003, 2003.

[16] Robert Hirschfeld and Pascal Costanza. Extending
Advice Activation in AspectS, European Interactive
Workshop on Aspects in Software (EIWAS 2005),
Brussels, Belgium, September 2005.

[17] Robert Hirschfeld, Katsuya Kawamura, Hendrik
Berndt. Dynamic Service Adaptation for Runtime
System Extensions. Wireless On-Demand Network
Systems, First IFIP TC6 Working Conference, WONS
2004, Proceedings, Springer LNCS 2928.

[18] Roger Keays and Andry Rakotonirainy.
Context-oriented Programming. International
Workshop on Data Engineering for Wireless and
Mobile Access, San Diego, USA, 2003. ACM Press.

[19] Gregor Kiczales, Jim des Riviéres, Daniel G. Bobrow.
The Art of the Metaobject Protocol. MIT Press, 1991.

[20] Gregor Kiczales. Towards a New Model of Abstraction
in Software Engineering. Proceedings of the
International Workshop on Reflection and Meta-Level
Architectures, 1992.

[21] Ginter Kniesel. Type-Safe Delegation for Run-Time
Component Adaptation. ECOOP ’99, Proceedings,
Springer LNCS 1628.

[22] Glenn Krasner and Stephen Pope. A Cookbook for
using the Model-View-Controller User Interface
Paradigm in Smalltalk-80. Journal of Object-oriented
Programming 1, 3 (August/September 1988).

[23] Henry Lieberman. Using Prototypical Objects to
Implement Shared Behavior in Object-oriented
Systems. OOPSLA ’86, Proceedings.

[24] Hidehiko Masuhara and Gregor Kiczales. Modeling
Crosscutting in Aspect-oriented Mechanisms. ECOOP
2003, Proceedings, Springer LNCS.

[25] Klaus Ostermann. Dynamically Composable
Collaborations with Delegation Layers. ECOOP 2002,
Proceedings, Springer LNCS.

[26]

Dynamic Languages Symposium’05, San Diego, CA, USA

Lee Salzman and Jonathan Aldrich. Prototypes with [29] David Ungar and Randall Smith. Self: The Power of
Multiple Dispatch: An Expressive and Dynamic Simplicity. OOPSLA ’87, Proceedings.

Object Model. ECOOP 2005, Proceedings, LNCS.
[30] Daniel Weinreb and David Moon. Flavors: Message

Randall Smith and David Ungar. A Simple and Passing in the Lisp Machine. AT Memo 602,
Unifying Approach to Subjective Objects. Theory and Massachusetts Institute of Technology, 1980.
Practice of Object Systems, 2, 3 1996.

Randall Smith, John Maloney, David Ungar. The
Self-4.0 User Interface: Manifesting a System-wide
Vision of Concreteness, Uniformity, and Flexibility.
OOPSLA ’95 Conference Proceedings, Austin, Texas,
October 1995.

10

