Archipelago

A Research Platform for Component Interaction in Distributed Applications

Eric Seckler
eric.seckler@hpi.uni-potsdam.de

Robert Hirschfeld
robert.hirschfeld@hpi.uni-potsdam.de

Software Architecture Group, Hasso Plattner Institute, University of Potsdam, Germany

ABSTRACT

Distributed applications consist of different parts, which in-
teract across distribution boundaries to achieve a common
goal. The complexity of these interactions can vary within
a single application and different interaction tasks require
different mechanisms to communicate, coordinate, or share
data or computation. We propose and evaluate Archipelago,
our research platform to investigate and better understand
object-oriented interaction in distributed applications. Ar-
chipelago is based on a shared object space that is repli-
cated between application parts, a replication technology
adopted from the Croquet project. We evaluate Archipe-
lago by implementing illustrative examples and argue that
our approach allows application parts to conveniently share
structured data and computation and enables the implemen-
tation of reusable and extensible interaction mechanisms.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Netw.]: Distributed
Systems— Distributed Applications; D.1.3 [Programming
Techniques]: Concurrent Programming— Distributed Pro-
gramming; D.2.11 [Software Eng.]: Software Architectures

Keywords

distributed applications, replication, object space, coordina-
tion, distribution boundary, tuple space, Croquet, Squeak

1. INTRODUCTION

A distributed application, such as a multi-player net-
worked game, typically consists of multiple parts, which
work together to achieve a common goal. For this pur-
pose, they need to coordinate their computation and share
or exchange data with each other. Interaction complexity
may vary within a single application. For example, sharing
positions of entities in a game can be easily solved with a
general-purpose mechanism, such as a tuple space [3], but
more complex shared data, such as sorted, range-queryable
game statistics, may require a custom solution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

REBLS ’14 Portland, USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

In this paper, we evaluate an object-oriented approach to
implementing these interactions, which is based on a repli-
cated object space within the runtime system of the different
application parts. The space can contain multiple active ob-
jects that can interact with each other and local objects.
These shared objects can be used to implement general-
purpose or application-specific shared data structures or co-
ordination mechanisms and other shared functionality.

We present our research platform Archipelago that is based
on Croquet [11], which keeps object spaces called Islands [12]
consistent by replicating object computation instead of ob-
ject state, that is, the operations performed on shared ob-
jects are synchronized and executed in the same order on
all object replicas. We repurpose and adapt Croquet’s Is-
lands for general use in distributed applications comprised
of computationally different parts.

We argue that our approach to object-oriented interac-
tions in distributed applications allows different application
parts to share structured data and computation and enables
the implementation of reusable, extensible, and customiz-
able coordination mechanisms and shared data structures.

Our contributions are as follows:

e Our approach is based on the transfer of Croquet’s
Islands for use in distributed applications with com-
putationally different parts. In this context, we inves-
tigate the use of replicated active objects for the inter-
action between such parts. Contrary to purely passive
replicated data, this allows us to exploit the benefits
of object-orientation, for example, to customize repli-
cated object behaviour.

e The implementation of Archipelago uses Croquet’s Is-
lands at its heart and adapts and extends them for
our use case. We particularly focus on how to provide
a convenient way for interaction between shared and
local objects. Therefore, we propose the use of bound-
ary objects and special proxy objects to encapsulate
the distribution boundary within shared objects and
allow them to interact with local objects.

e We evaluate our approach and the Archipelago plat-
form by implementing a peer-to-peer multi-player net-
worked game as an example application. We also show
how Archipelago can be used to implement a reusable
and extensible tuple space and how it can be used for
coordination and data sharing in the game.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces SpaceFight, an example application that
we use to motivate our approach. Section 3 provides con-
text by discussing different implementation architectures for

Robert Hirschfeld
Workshop on Reactive and Event-based Languages and Systems (REBLS) 2014
Co-located with SPLASH, October 21, 2014, Portland, Oregon, USA

a shared object space and the Croquet project. Section 4 de-
scribes the ideas of our approach and Section 5 its implemen-
tation. Section 6 shows how Archipelago can be used to im-
plement SpaceFight, which utilizes ArchSpaces, a reusable,
extensible tuple space for Archipelago. It further evaluates
and discusses our approach and its limitations. Section 7
presents related approaches. Finally, Section 8 concludes
this paper.

2. MOTIVATING EXAMPLE

We introduce SpaceFight, a networked multi-player game,
to discuss the ways in which different parts of a distributed
application communicate, coordinate and share data. Space-
Fight borrows from games such as SpaceWar or Asteroids.
Each player navigates a ship through an asteroid-filled re-
gion in space. A collision with an asteroids destroys a ship,
however, the ships can destroy asteroids or other ships by
firing missiles at them. Each player’s goal is to win the game
by outliving all other players’ ships.

SpaceFight also allows each player to customize, extend
or otherwise modify parts of the game. For example, players
can use custom controls to navigate their ships, customize
the user-interface to their taste, replace the manual controls
by autonomous strategies, or add weapon system upgrades.

The conceptual architecture of our game, therefore, is
a distributed peer-to-peer application consisting of compu-
tationally different parts: The players constitute the dis-
tributed components of this application, which communi-
cate with each other and share state and computation to
coordinate the game’s execution. To apply customizations
or modifications, players can extend the implementation of
their local game components.

We group the interaction mechanisms between the differ-
ent components into shared state, shared computation, and
general coordination tasks. Examples for shared state in-
clude the position and movement of game entities, such as
ships, asteroids, and missiles, general game state, such as the
game time, participating players, and their remaining lives,
as well as game statistics. Furthermore, there are certain
computations within the game execution whose effects have
to be consistent among all participants, such as the detection
of collisions, changing game states, and spawning new aster-
oids. In our peer-to-peer architecture, the responsibility for
these computations is shared amongst all participants; be-
cause of this, we regard them as shared. The components
not only need to coordinate the execution of shared compu-
tations, but also have to solve other coordination tasks, such
as recognising and reacting to game state changes, changes
in movement vectors of entities, or entity destructions.

Some of these interaction activities are rather simple,
while others are more complex. For example, the game state
can be held in a simple key-value or relational data structure
and the associated coordination tasks can be solved by de-
tecting changes to this data structure. A tuple space [5] is a
simple data and coordination structure that can be used for
these purposes: The game state can be stored as tuples and
dependents can be notified about changes to these tuples
through event-based subscriptions. However, not all activi-
ties are this simple. The participants of our game share re-
sult statistics between each other. These statistics are sorted
key-value pairs, but their lifetime surpasses a single game
instance, therefore all participants persist the statistics lo-
cally and contribute them to the shared statistics pool while

participant A participant B participant A participant B participant A participant B

£ 1% mLEd

£ T ¢ ol e [
i — e ® e

Bl e e d (e

participant C participant D
b) distribution

OO

participant C participant D participant C participant D

a) centralization c) replication

Figure 1: Implementation architectures for shared
objects in distributed applications. In each case,
shared data is accessed by different parts of the ap-
plication. Different objects are represented by dif-
ferent shapes or colors, relationships between them
by arrows. The gray area in the center of each pic-
ture illustrates the shared part of the application,
which can be accessed by crossing the distribution
boundary, for example, via remote procedure calls.

avoiding to add duplicate result entries. Furthermore, the
number of entries is comparatively high and the components
require predecessor and successor queries on the entries in
order to show other results around a specific player’s result.
Because of these properties, a custom tree-based data struc-
ture that supports such operations and duplicate detection
is more useful to store the statistics than a tuple space.

In summary, the participants share simple data and co-
ordination tasks, which can be solved by a general-purpose
model such as a tuple space, and more complex ones, for
which custom data structures are better suited. Further-
more, some computations are shared by all participants of
the game. We argue that a shared object space, which can
contain active objects, allows us to conveniently implement
custom shared structures and computations. We can also
use this object space to implement general-purpose struc-
tures, such as a tuple space, while enabling their extension
and customization to application-specific needs.

3. BACKGROUND

Before introducing our proposal, we provide some context
by describing some of the architectural choices we considered
for implementing shared objects and Croquet’s Islands [11],
which form the base for our implementation.

3.1 Architectures for Sharing Objects

For the design of a distributed application that uses shared
objects to communicate, coordinate, and share data, three
different architectures for the distribution of shared objects
come to mind, which can also be combined: centralization,
distribution, and replication (Figure 1).

Centralization. In a centralized architecture (Figure la),
all shared objects reside on a dedicated server. Operations
on these objects are usually executed as remote procedure
calls or their respective language equivalent. Therefore, the
other participants access the objects through some kind of
proxy object in their local runtime system, which performs
the remote calls and the underlying network message ex-
change with the server. As such, this approach is relatively
easy to implement, however the central server is both a bot-
tleneck for scalability and a single point of failure.

Distribution. The dedicated server of the centralized archi-
tecture can be replaced by distributing the objects amongst
the participants, so that each shared object resides with a
particular participant. In this distributed architecture (Fig-
ure 1b), participants can interact with shared objects that
reside locally via normal message sends of the programming
language and use proxies and remote procedure calls to ac-
cess objects that are located remotely. While this approach
is much more scalable than the centralized approach in terms
of performance, it is even less reliable, as each participants
becomes a single point of failure for the objects it hosts.

Replication. An alternative approach is to replicate all
shared objects with all participants (Figure 1lc). In this
case, participants can access objects locally, but changes to
objects have to be synchronized to all other participants
in order to maintain consistency in the system. Therefore,
participants typically also access shared objects through a
proxy object, which ensures synchronization and, with that,
consistency when performing operations on a shared object.
This replicated architecture is limited in scalability, as the
consistency synchronization involves all participants, how-
ever, it is very reliable and failure-tolerant, because copies
of all objects reside with each participant.

3.2 The Croquet Collaboration System

Croquet [11] aims to provide a 3D real-time collabora-
tion platform for multiple participating users. Applications
in Croquet are deployed into an object space fully repli-
cated between all participants. This object space is referred
to as an Island and can contain shared, replicated objects,
which can also exhibit behaviour. Croquet is based on the
Squeak/Smalltalk [6] environment and uses a replication
mechanism called TeaTime [11], which is based on replicat-
ing computation rather than synchronizing state. That is,
operations on a shared object are synchronized and executed
in the same order at all participants. TeaTime was originally
based on Reed’s work on object synchronization [10] and in-
tended to be a pure peer-to-peer architecture, however, the
current implementation of TeaTime in Croquet requires a
central message router to perform the synchronization tasks.

Because of the nature of applications in Croquet, the ob-
jects making up a Croquet application are usually all de-
ployed into the shared space and the resulting application
architecture consists of multiple identical participants in a
peer-to-peer setup. The only parts of such an application
that are not shared belong to the user-interface framework,
such as rendering primitives or device events.

4. ARCHIPELAGO

We argue that a replicated shared object space consti-
tutes a good abstraction to implement extensible coordi-
nation mechanisms as well as shared data structures and
shared computations in a distributed application, such as
the SpaceFight game presented in Section 2. Shared active
objects can combine both shared data and shared computa-
tions. By confining these shared objects to a separate region
in the application’s runtime system, that is, a shared object
space, the distribution boundary can be conveniently encap-
sulated by the platform’s infrastructure. Furthermore, repli-
cating shared objects between the participants of the shared
space makes these objects independent of the individual par-
ticipants’ availability and, therefore, more reliable.

] shared state

goooo

ooooo
shared object]

[—=]

] behaviour in time

k k k k consistency
synchronization
runtime of participant A network runtime of participant B

Figure 2: Shared object space within the runtime
systems of two participants: The objects within the
shared space are replicated and consistent for both
participants. All objects outside this space are local
to the respective participant.

To investigate this proposal, we present Archipelago, our
research platform for communication, coordination, and
sharing data and computation in distributed applications.
Shared objects are deployed into a replicated object space
and can then be accessed by all participants. With Croquet’s
Island as its core, Archipelago’s participants always share a
consistent view on objects in this space and can interact with
shared objects as if they were local. These objects are active
objects, that is, they can exhibit behaviour, and are inde-
pendent of individual participants. Figure 2 illustrates such
a shared space in the Archipelago platform. Many ideas be-
hind Archipelago are taken from or influenced by Croquet’s
Islands and TeaTime technologies. As we discuss in Sec-
tion 5, Archipelago adapts these ideas for use in distributed
applications comprised of computationally different parts.

4.1 Interacting with Shared Objects

Objects local to one particular participant have to be able
to interact with shared objects by sending messages to them.
The effects of these message sends have to be replicated
across all copies of a shared object, that is, the messages
have to cross a distribution boundary. Regarding this, two
aspects are of particular interest: the way in which the dis-
tribution boundary is crossed and the way arguments and
return values are passed for such message sends.

Distribution Boundary. Crossing the distribution bound-
ary should not be a completely transparent process, because
developers have to deal with different problems, such as
network latency and partial failure, when interacting with
a shared object [14]. We argue that while it is true that
crossing the distribution boundary should be explicit, the
main responsibility for this should lie with the developer of
a shared object. Therefore, the Archipelago platform allows
to encapsulate this boundary within the implementation of
a shared object: The developer of a shared object is able
to specify parts of its functionality that are to be executed
before crossing the boundary, that is, whose effects are not
replicated. We call this part of the functionality the shared
object’s local side, and the other parts its shared or replicated
stde. The developer can use the local side to handle the is-
sues related to crossing the boundary, for example, to handle
failures. This makes it possible to implement reusable ob-

register

Bl
message

direct interaction indirect interaction
Figure 3: Direct vs. indirect interaction with local
objects. We show the messages exchanged.

ject structures, such as coordination mechanisms and data
structures, that encapsulate the distribution boundary from
their users, while making it explicit to their developers.

Parameter Passing. We distinguish three different ways,
in which arguments to and return values from message sends
can be passed over the distribution boundary: by reference,
by value, or by migration. If passed by reference, the pa-
rameter will become a reference to an object valid on any
participant in the network. In our platform, this is only pos-
sible with shared objects, as references to local objects are
only valid on a single participant. Alternatively, a shared
copy of the argument value could be created and this copy
passed instead. In this case, the parameter value object will
be a separate object from the copy that is passed, that is,
later changes to this (local) object will not be reflected in
its copy and not visible to other participants and vice versa.
Another possibility is to pass the argument by copying it
into the shared space and replacing the original value object
with this migrated copy. This way, later changes performed
on the object are reflected in the shared space.

The Archipelago platform implements only passing by ref-
erence for arguments that are shared objects and passing by
value for arguments that are objects local to one participant.
Return values from replicated methods are passed by value
or reference: Objects of basic or immutable types are passed
by value, objects of other types by reference. However, we
have noticed that the intended parameter passing behaviour
can also vary depending on the message sent. Therefore, we
are still investigating whether a different parameter passing
policy is better suited, which integrates object migration
and allows the developer to specify the way that arguments
for calls of a specific method are to be passed.

4.2 Interacting with Local Objects

Not only local objects need to interact with shared ones,
but also shared objects have to be able to send messages to
local ones. Coordination mechanisms that allow for event-
based notifications of subscribers are an example for this:
They have to send messages as callbacks to local subscribers.
We are considering two different concepts for this interac-
tion: either based on direct or on indirect communication,
as illustrated in Figure 3.

For the direct approach, shared objects need to know of
local objects and can send them messages directly. This can
be implemented by allowing shared objects to maintain ref-
erences to local objects from their local side. Functionality
on the replicated side of a shared object can then have side
effects affecting these references on the local sides of all its
replicated copies. This direct approach allows flexible inter-
action with local objects, but means that the local side of
shared objects has to be exposed to the replicated side.

The indirect approach, on the other hand, has the advan-

tage that shared objects do not need to maintain references
to local objects outside the shared space; instead, this task
is taken over by the platform infrastructure. Here, local ob-
jects register themselves for events on shared objects and
shared objects signal events to the platform infrastructure.
We have observed that, for the implementation of ad-
vanced coordination mechanisms in the shared space, the
ability to interact with local objects directly is more con-
venient, because such mechanisms often implement custom
event subscription services, which, for example, require ad-
vanced matching strategies. Therefore, the Archipelago plat-
form allows shared objects to use both direct and indirect
communication for interaction with local objects.

S. IMPLEMENTATION

Traditional approaches to replicating objects are based
on replicating data: Whenever an operation changes the
state of a replicated object, the new state is replicated to
all copies. In order for this to work, the replication infras-
tructure has to detect changes to objects and incorporate a
locking mechanism to prevent concurrent conflicting changes
on the same object. Archipelago’s implementation is based
on replicating computation instead of data and, for this pur-
pose, makes use of the TeaTime replication technology from
the Croquet system. Replicating computation instead of
data can often be easier and more efficient, as, for example,
no locking is necessary and multiple changes to an object’s
state can be expressed with a single computation [12].

For use in Archipelago, we separated the Island and Tea-
Time technology from the Croquet-specific use-case of fully
replicated 3D collaboration applications and generalized it
for use in distributed applications comprised of computa-
tionally different parts. Because of this different use case,
the focus on the replication technology is different, too:
While for Croquet, the emphasis is on the interaction of
replicated objects amongst each other, for Archipelago, it is
on the way in which local objects interact with shared ones.

We first sketch the implementation of Islands and Tea-
Time and describe how shared objects are interacted with
in Croquet and then discuss our modifications and exten-
sions that adapt these mechanisms to our use case.

5.1 Replicated Objects via TeaTime

As described in Section 3.2, objects in Croquet are con-
tained within an object space called Island and their copies
are held consistent by replicating computation, that is, exe-
cuting the operations on these objects on all copies. There-
fore, the order of operations has to be synchronized and all
operations have to be deterministic.

The TeaTime architecture implements this mechanism.
Each Island replica is associated with a controller process,
which connects to a central message router. Messages sent
to an object inside the Island are not actually sent to the
object directly, but instead sent to the message router. This
router serializes the message order by assigning each mes-
sage a logical time stamp and relays these messages to all
Island replicas by sending them to the respective controllers.
The controller in turn schedules these messages for execu-
tion by adding them to a sorted message queue, which is
sequentially processed by the Island.

Furthermore, TeaTime allows shared objects to exhibit
behaviour by sending messages to themselves that are sched-
uled to be executed at some point in the future. It also

auto message Local state & Shared state &

maker proxy functionality ~ functionality
a r N N
messageA W 00080 DBBBD
______ - h Am m m [———]
message B E

[C)
local object boundary object

Figure 4: Boundary objects and auto message mak-
ers. Message A is executed on the local side of the
shared object, message B is replicated.

implements a mechanism that allows participants to join an
existing Island at any point in its execution. More details
about this can be found elsewhere [12].

5.2 Shared Objects in Croquet

Because message sends to shared objects have to be in-
tercepted and replicated, shared objects are accessed from
outside the Island via a proxy object called FarRef. Far-
Ref proxies allow users of a shared object to send messages
to a shared object that are either executed locally or repli-
cated: By sending a FarRef the message future followed by
the message to the shared object, the message is executed
replicated. A similar mechanism allows to execute a method
locally, which can be used, for example, to access local ob-
ject values without replicating the respective message to all
copies of the object.

Replicated message sends always return a new FarRef ob-
ject, which is a placeholder for the return value of the mes-
sage. Once the message is executed by the Island, the FarRef
will be filled with this value. Users can send more replicated
messages to this FarRef without waiting for the message to
be executed, but if they need to access a return value that
is of basic type, they need to wait for the execution to take
place by sending the FarRef the message wait and then re-
trieve the actual value by sending the value message.

For illustration, consider this interaction with a shared
Point object in Croquet to set and retrieve a coordinate:

sharedPoint future x: 10.

farRef := sharedPoint future x.
value := farRef wait; wvalue.

5.3 Encapsulating the Distribution Boundary

Interacting with shared objects through FarRefs requires
the users of the shared object to specify the distribution
boundary: The users determine which messages are sent lo-
cally and which are replicated. They further have to deter-
mine whether the return value of a replicated message is of
basic type and requires sending the wait and value messages
to access it. In order to conveniently use shared objects, Ar-
chipelago adds support for encapsulating the distribution
boundary within the implementation of the shared object
itself. Therefore, we propose two new concepts: boundary
objects and auto message makers, illustrated in Figure 4.

Boundary Objects. Boundary objects are shared objects
that encapsulate the distribution boundary. A boundary ob-
ject has two sides to it: a local and a shared one. Both sides

can contain both state and functionality. In our current im-
plementation, the two sides are not encapsulated from each
other, that is, local functionality can also access shared state
and functionality, and shared functionality can also access
local state and functionality. As local functionality is not
executed replicated, it must not modify any shared state.
Currently, we leave the responsibility for ensuring this to
the developer; for a discussion of this issue see Section 6.4.
The developer explicitly labels local state and functional-
ity by annotating methods and field variable accessors with
pragmas. State and functionality that is not labeled as such
is assumed to be shared. An example for this labelling is
shown in Listing 1.

Auto Message Makers. Auto message makers form the
counterpart to boundary objects and function as additional
proxy objects around FarRefs. They allow users of the
shared object to interact with it as if it was an ordinary
local object: Users can send messages to the auto message
maker that are then relayed to the shared object either as
replicated or local messages, depending on the object type
and the labelling of the method invoked by the message. The
return value of a replicated message is automatically either
wrapped into an auto message maker itself if it is a shared
object that should be passed by reference, or unwrapped
and passed back by value if it is of a basic type. In conse-
quence, users of shared objects that are accessed through a
auto message maker no longer have to use the special inter-
face of FarRefs with future, wait and value messages, and
the interaction with the shared Point could look just like the
interaction with a local one:

sharedPoint x: 10.
value := sharedPoint x.

5.4 Interacting with Local Objects

As described in Section 4.2, Archipelago allows two differ-
ent ways for shared objects to interact with local objects: by
direct and indirect communication. Croquet’s Island imple-
mentation already supports an indirect way for this interac-
tion: Local objects can register themselves as subscribers of
an event of a certain type at a shared object. Shared objects
can then signal these events with a number of arguments and
the platform infrastructure relays these to all subscribers.

However, to allow more flexible interaction with local ob-
jects, Archipelago also adds a way for shared objects, par-
ticularly boundary objects, to interact directly with local
objects. Therefore, references to local objects can be passed
to shared objects via messages that are executed locally
and can be stored in the local state of the boundary ob-
ject. The shared functionality of this object can then ac-
cess these references and exhibit side effects on these. This
way, shared objects can, for example, implement a custom
publish-subscribe mechanism, as we will show with our tuple
space implementation in the following section.

6. EVALUATION

We evaluate the Archipelago platform by using it to im-
plement the SpaceFight game described in Section 2. The
game uses ArchSpaces, a tuple space implementation for our
platform, for basic data sharing and coordination tasks and
further deploys custom structures and functionality to the
shared object space for more complex tasks.

TupleSpace tuples Tuple fields Field
0.* 0.* 1 1.%|__*type
+ write: aTuple + matches: aTuple + matches: aField
+ take: aTemplateTuple
+read: aTemplateTuple
+eval: aTuple I I I

ValuedField EvaluatingField FilteringField

+ filterBlock
+ matches: aField

+value + evalBlock

+ matches: aField + matches: aField

Figure 5: Class model of ArchSpaces.

6.1 ArchSpaces: Tuple Spaces in Archipelago

We built ArchSpaces as a general-purpose, reusable tuple
space for Squeak, which we then deployed to Archipelago.

A Simple Tuple Space for Squeak. ArchSpaces imple-
ments the write, take, read and eval operations of the
Linda interface [5]: write adds a new tuple by copying all
its values, take removes a tuple matching a given tuple tem-
plate, read is the non-destructive version of take and eval
takes a tuple whose fields can be evaluated in a new pro-
cess in the tuple space. We implement both blocking and
non-blocking versions of the take and read operations and
further extend the interface with features for event-based in-
teraction: Users can register event listeners for newly added
or removed tuples matching a given template.

ArchSpaces is based on an object-oriented tuple space
model, which is depicted in Figure 5. A tuple is represented
as an object of the Tuple class, which maintains an ordered
list of Field objects. The fields of tuples stored in the space
are all of the ValuedField type and store a value of a certain
type, tuples added by the eval operation can also include
EvaluatingFields storing a code block that is then eval-
uated to transform the field into a ValuedField. A tuple
template is also represented as a Tuple object, whose fields
can each be of three types: A Field filters for values of a
specific type or can act as a wildcard value, a ValuedField
filters for a specific value and a FilteringField allows fil-
tering based on a custom filter represented as a code block.

The general-purpose implementation of ArchSpaces uses a
simple ordered list to store all tuples contained in the space,
and performs a linear scan when asked to retrieve a tuple.

Deploying ArchSpaces to Archipelago. For the issues of
reusability and separation of concerns, the decision which tu-
ple space functionality should cross the distribution bound-
ary should be encapsulated from the users of ArchSpaces.
Because of this, we converted the TupleSpaces to become
boundary objects for the deployment of ArchSpaces to Ar-
chipelago. Users of the ArchSpaces implementation can then
obtain a reference to an auto message maker proxy for the
tuple space and interact with it in the same way as with
local objects.

For the implementation of the tuple space boundary ob-
ject, we specified which operations on a tuple space should
be performed locally: The read operation can be performed
without replicating its execution, as it does not have any
side-effects on the state of the tuple space. Further, the
event listener functionality belongs to the local side of the
object. Therefore, we labelled the instance variable holding
the list of event listeners as local state, and the methods that

Listing 1: Example for labelling of TupleSpace op-
erations: read is executed locally, write replicated.
TupleSpace>>write: aValueTuple

self tuples add: aValueTuple.
self fireWriteListenersFor: aValueTuple

TupleSpace>>read: aTemplateTuple
<executeLocally>
1 self tuples find: aTemplateTuple

add or remove event listeners as local functionality (List-
ing 1). All other operations on the tuple space are executed
replicated. When a write or take operation is executed, it
also accesses the local list of event listeners at each partici-
pant and sends event notifications to matching listeners.

However, there are two limitations of this deployment:
Listeners cannot be used by functionality that resides in-
side the Island, but only by objects residing outside of it.
The reason for this is that listeners outside the Island have
to be executed asynchronously, but functionality inside the
Island has to be deterministic and cannot use unordered
asynchrony. Furthermore, code blocks cannot easily be seri-
alized: This is only possible for code blocks that exclusively
access static values. Because of this, evaluating tuples and
custom filtering fields are very limited in functionality if the
tuple space is accessed from outside the Island.

To overcome part of these limitations, we further extended
ArchSpaces with support for services. A service is a special
kind of boundary object. Users of ArchSpaces can imple-
ment application-specific functionality in the shared space
as subclasses of the Service class and use call-back mech-
anisms for tuple space events provided through it. Services
can also replace evaluating tuples, because, as shared ob-
jects, they can exhibit behaviour similar to a process evalu-
ating a tuple. However, our current implementation of ser-
vices is limited in that they cannot use blocking operations:
As the services are executed within the Island’s message pro-
cessing loop, blocking operations currently result in blocking
further messages to be processed. We plan to investigate al-
ternative approaches to implement the blocking operations
for services, so that this restriction can be lifted.

6.2 SpaceFight: An Example Application

We use Archipelago and ArchSpaces to implement the
SpaceFight game described in Section 2. For the purpose of
this game, we customized the ArchSpaces implementation
and deployed application-specific functionality to Archipe-
lago. We first sketch the architecture of the game imple-
mentation and then discuss the customization of ArchSpaces
and the game’s shared functionality.

Implementation Architecture. The game architecture is
illustrated in Figure 6. We use a single Island for all shared
state and functionality between the participants of the game.
Components inside the Island include the extended tuple
space and services for game state changes, asteroid creation,
collision detection and statistics storage. As discussed in
Section 2, we use the tuple space, for example, to store val-
ues of the game state and position vectors and attributes of
game entities, but also for coordination tasks: In this con-
text, it functions as a mediator for a publish-subscribe event
pattern to decouple the different services from each other.
The game logic service, for example, listens for new tuples

shared object space

|- — —»| Game Logic Service [« ——m Game Logic Service

Tupl
Tuple 1o Collision Service -l S::cz [——m Collision Service

[——m Asteroid Service

[« ——m Asteroid Service

|
! |

I
T e T
| [l Tree | } 1l Tree
ot Statistics Service | Structure i | I 'm Statistics Service | Structure
| L | ! I ry
| fo——— e ———— e —— | ! | ——====T

| |

Py _ v ‘ LYy S N
| | Custom Ship Upgrade: - | }
| }“ |
| Laser Weapons User <,‘ } User | Custom Ul Ship
} Interface } Interface | Menu and Auto Pilot
} Joystick Controls - | Colors

|
|
| |
-P‘ Island Setup/Controlling | Island Setup/Controlling

participant A participant B

Figure 6: SpaceFight game architecture. Here, we
show the shared and local components in a setup
with two participants and their interactions.

describing entity collisions, which are written to the space
by the collision detection service.

The functionality that may not be the same for each player
resides outside the Island: the user interface, individual cus-
tomizations, such as autonomous piloting, custom ship de-
signs or weapon upgrades, and the control logic that sets up
or joins the Island. The game currently allows any player
to be the router of the Island, however, this player then be-
comes a single point of failure, therefore, it is also possible
to dedicate a different participant for this role. Here, the
central router of the croquet architecture becomes a major
limitation of the architecture; we discuss this further in Sec-
tion 6.5.

An Application-Specific Tuple Space. For our game, the
look-up performance of the tuple space is important: Read
or take operations are executed frequently, for example, dur-
ing the detection of collisions, and need to be fast in or-
der to achieve good responsiveness and frame rates of the
game. The Archipelago platform allows us to easily extend
the ArchSpaces implementation to fit these needs, because
the tuple space is implemented as an object-oriented struc-
ture in the application runtime. We exploit this to replace
the single list in the ArchSpaces implementation that stores
the tuples in a space by hashing the tuples into multiple
lists based on their number of fields. We implemented these
extensions by subclassing the TupleSpace class and making
changes to the internal tuple space functionality that adds
tuples to the list and performs the search for matching tuples
within the list.

As a result of using the generic tuple space interface for
coordination and sharing data, the users of the tuple space
are data-coupled, that is, they all need to know the exact
format of the tuples. This prevents encapsulating parts of a
tuple format from users and can lead to issues when the tuple
format evolves. Tuple spaces are therefore often accessed
through customized proxy objects that allow developers to
specify application-specific operations on the tuple space.
This way, the tuple format is encapsulated in the custom
proxy object and hidden from the user, which, for example,
is more flexible towards evolving tuple formats.

For the SpaceFight game, we extend our custom tuple
space class with such an application-specific interface. The
Archipelago architecture further allows us to execute parts of
this functionality behind the distribution boundary, group-

ing multiple operations on the tuple space within a single
replicated operation, which can reduce the underlying net-
work communication.

Application-Specific Functionality in the Island. As de-
scribed in Section 2, our game contains functionality that all
participants share the responsibility for and whose effects
have to be consistent amongst all participants. Archipelago
allows us to transfer the responsibility of executing this func-
tionality to the platform, by making it shared functionality
deployed to the Island. We have implemented the shared
functionality of our game as services of the tuple space, to
enable it to access the tuple space from within the Island.
These services detect game state conditions and react to
game state changes, randomly spawn asteroids on the map
and perform the task of detecting collisions.

We further use a custom shared tree structure for storing
SpaceFight statistics, as explained in Section 2. This struc-
ture is maintained by and accessed via the statistics service.
Participants export locally stored statistics into this struc-
ture when they join a new game and save a copy of the shared
statistics after each game round, and the user-interface can
use the structure to display results.

6.3 Discussion

With our implementation of the Archipelago platform that
is based on Croquet’s replication mechanism, sharing objects
is simple and efficient: Objects are deployed into an Island,
replicated at all participants and held consistent by repli-
cating computations on them. Generally, any object can be
shared and labelling or tagging for the deployment inside
an Island is only necessary for advanced boundary objects
with local and shared sides. Shared objects are indepen-
dent of the availability of individual participants, which is
important for applications like our SpaceFight game, where
participants can freely join or leave the Island.

By sharing objects, Archipelago allows to share struc-
tured data between different parts of a distributed appli-
cations. As objects in Archipelago can further be active
objects and exhibit behaviour, Archipelago makes it also
possible to deploy shared functionality to the Island. This
is especially convenient for peer-to-peer application architec-
tures, because no additional coordination between the peers
is necessary for determining who executes this functionality.

With the help of boundary objects and auto message mak-
ers, developers of shared objects can encapsulate the dis-
tribution boundary in the interaction with shared objects
within their implementation. This is useful for the im-
plementation of reusable coordination mechanisms or data
structures in Archipelago, such as our ArchSpaces tuple
space. Because these structures are implemented within
the same runtime system and with object-oriented princi-
ples, they are also easily extensible to application-specific
use cases, as we have shown by extending ArchSpaces for
use in SpaceFight.

In SpaceFight, we use tuple spaces as main coordination
medium, decoupling the different participants. We have
found that tuple spaces provide a good abstraction for typi-
cal coordination tasks and are especially convenient when
used with an event-based mechanism. By extending the
tuple space with an application-specific interface, we could
further reduce the data coupling of the participants and en-
capsulate tuple format knowledge.

6.4 Open Questions

During the implementation of Archipelago, we made a few
choices that we feel need further evaluation and investiga-
tion. We have identified the need for the encapsulation of
distribution boundaries for shared objects. Therefore, our
implementation of boundary objects makes this boundary
explicit within the implementation of a single shared ob-
ject. This gives the developer of a shared object a powerful
tool to implement the local side of a shared object, as it
can freely access the replicated state of the object; but at
the same time, this is also dangerous: functionality on the
local side of the object is in no way prevented from modi-
fying shared state, which would undermine the consistency
between the object replicas. We currently investigate meth-
ods that could prevent such modifications by means of the
platform infrastructure, such as statically or dynamically an-
alyzing local functionality for such breaches or sandboxing
local method executions, for example, by executing them in
a transactional context. An alternative to these approaches
would be to divide a shared object into two objects, a local
proxy object and the shared object. Then, the local object
would only be allowed to access shared state by means of
replicated interaction with the shared object, which comes
with the disadvantage that any non-modifying interactions
on shared state have to be replicated and replicated state
may have to be additionally cached in the proxy object for
performance reasons. This approach is similar to the Half
Object Plus Protocol pattern, which divides a shared object
into two halves residing in different address spaces and a
protocol in between them [4].

A similar issue exists for the direct interaction of shared
objects with local objects discussed in Section 4.2. Direct
interaction gives shared objects more flexibility, but also in-
curs a breach between the shared and local sides of a shared
object: The shared side needs to access locally stored ref-
erences and send messages to those objects. This makes it
possible that replicated functionality can send messages to
local objects and use their return values—the developer has
to make sure that the effect of the replicated method stays
the same at all object replicas, even if these return values
are different at different participants.

Another open issue is that of the way that parameters are
passed into the shared space, discussed in Section 4.1. Our
current implementation based only on passing local objects
by value may not suffice. For example, in some cases, such
as the dynamic addition of services at our tuple space imple-
mentation, passing by migration is closer to the semantics
of the message sent. Therefore, we currently also investigate
the support of passing by migration and ways to define the
parameter passing policy per message or method. We also
plan to evaluate different settings for the default behaviour.

6.5 Limitations

The most important limitation of the Archipelago plat-
form is its restriction to a single programming language.
While our focus has not yet been on portability, we believe
it to be difficult to accomplish, as all participants need the
source code of the shared objects to execute replicated meth-
ods. It may be possible to support multiple languages, for
example, by automatic translations of the source code.

Our current implementation also requires the source code
of all shared objects to be manually deployed to all partic-
ipants. This limitation could be solved by adding support

for mobile code to Archipelago: A participant could deploy
shared objects together with the source code that defines
their functionality, which can then be dynamically installed
in the runtime systems of other participants.

Furthermore, the message router of the TeaTime architec-
ture constitutes a single point of failure in the Archipelago
platform implementation, which counteracts the argument
of replicating shared objects for reliability reasons. How-
ever, we believe that a fully replicated implementation with
a distributed two-phase commit as originally intended by
the Croquet project and discussed in Reed’s original work
on the topic[10] can replace the central message router.

We also realize that we have yet to evaluate Archipelago
regarding the topics of scalability, fault-tolerance, and per-
formance, which are particularly important in the scope of
distributed applications and constitute topics of future work.

7. RELATED WORK

A popular approach to object-oriented interaction in dis-
tribution systems, exercised, for example, by CORBA [§],
Java RMI [9] and Jini [13], is based on a distributed archi-
tecture and is commonly referred to as the distributed objects
approach. In these platforms, each participant can export
objects by marking them as a special kind of object that
can be accessed remotely and then share exported objects
with other participants, usually by registering them with a
so called service registry component [2]. This component
maintains a list of objects with each of them providing some
form of service and their service description, so that other
participants can look up and find objects with the help of
this description. That is, they can obtain remote references
to shared objects through the service registry. As shared
objects are local to a specific participant, they can access its
local resources for their implementation. RMI and Jini fur-
ther allow the developer of a shared object to implement a
custom proxy object, a smart proxy, to encapsulate the dis-
tribution boundary, similar to the Half Object Plus Protocol
pattern described before. The smart proxy represents mo-
bile code and can be dynamically installed on clients when
the service is requested.

Contrary to Archipelago, shared objects in the distributed
objects approach are local to and dependent on a partic-
ular participant; however, many concepts are comparable.
Archipelago’s boundary objects have a similar purpose as
RMI/Jini smart proxies, but do not separate the proxy from
the shared object. The parameter passing semantics of RMI
and Jini are also similar to Archipelago’s - Shared objects
are usually passed by reference and other objects by value.
While in CORBA, the interface of shared objects has to be
specified in a special interface definition language, and in
RMI and Jini, it is specified as a separate Java interface,
shared objects in Archipelago do not require any separate
interface description and local state or functionality only has
to be labelled for advanced shared objects. This allows users
of Archipelago to easily share simple objects without further
labelling or interface description.

Other approaches similar to Archipelago include languages
for shared data structures, such as Orca [1], and mobile
distributed objects, such as Emerald [7]. These languages
typically have in common that the distribution boundary is
completely transparent. The Orca language, for example,
lets the application developer specify abstract object data
types and their operations and interface with these objects

as if they were local, while its run time system transparently
assures their distribution, synchronization and consistency
between the participants. Contrary to Archipelago, shared
objects in Orca are passive and their operations can only
access the object’s internal data.

In the Emerald system, all objects of a distributed appli-
cation are shared and mobile, that is, they can migrate their
location freely and transparently. Objects can be passive or
active. As in Orca, the distribution boundary in Emerald
is transparent to the developers, too. Archipelago, on the
other hand, makes this boundary explicit and allows its en-
capsulation. We also distinguish between shared objects and
objects local to a participant.

8. CONCLUSION AND FUTURE WORK

In this paper, we present our approach to interaction and
coordination between different parts of a distributed applica-
tion based on a replicated object space shared between them.
We evaluate Archipelago, our research platform implement-
ing this approach, in the context of the SpaceFight game as
an illustrative application. We also demonstrate how Archi-
pelago can be used to implement custom shared data struc-
tures and computations and extend and customize Arch-
Spaces, a general-purpose tuple space, to the application-
specific needs of SpaceFight.

During the project, we were reminded that encapsulat-
ing the distribution boundary from client or local objects is
important when providing for shared or replicated objects.
Furthermore, we try not to make the boundary completely
transparent but embrace that the developer of shared ob-
jects should be able to customize access to them. How-
ever, as discussed in the evaluation, our boundary object
implementation that supports this encapsulation currently
does not prevent developers from breaking replicated ob-
jects’ consistency. Furthermore, we have noted that param-
eter passing policies for the interaction with shared objects
needs more flexibility and reasonable defaults.

To analyse these issues further, we are planning to evalu-
ate Archipelago for building applications more complex than
SpaceFight. For example, the distributed parts of such an
application should be more versatile and require multiple
scopes of interaction between different sets of participants.
In this context, we would also like to evaluate Archipelago’s
capabilities regarding scalability and fault-tolerance, as well
as performance aspects. Another idea that requires further
evaluation is the use of replicated object spaces to imple-
ment the coordination of fully distributed data structures,
such as a distributed hash table. We would like to find
out whether replicated objects are suitable for this or which
other interesting alternatives to investigate.

Acknowledgments

We would like to thank the late Andreas Raab for many
engaging and insightful discussions throughout the years.

9. REFERENCES
[1] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum.
Orca: A Language for Parallel Programming of
Distributed Systems. IEEE Transactions on Software
Engineering, 18(3):190-205, March 1992.
[2] G. Bieber, L. Architect, and I. Ci. Introduction to
Service-Oriented Programming. In Openwings, 2001.

[3] N. Carriero and D. Gelernter. Linda in Context.
Communications of the ACM, 32(4):444-458, 1989.

[4] J. O. Coplien and D. C. Schmidt, editors. Pattern
Languages of Program Design. Addison-Wesley, 1995.

[5] D. Gelernter. Generative Communication in Linda.
ACM Transactions on Programming Languages and
Systems, 7(1):80-112, 1985.

[6] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the Future: The Story of Squeak, a
Practical Smalltalk Written in Itself. In Proceedings
OOPSLA 97, pages 318-326, 1997.

[7] E. Jul, H. Levy, N. Hutchinson, and A. Black.
Fine-grained Mobility in the Emerald System. ACM
Transactions on Computer Systems, 6(1):109-133,
1988.

[8] Object Management Group. The Common Object
Request Broker: Architecture and Specification
(Revision 3.3), November 2012.

[9] Oracle Inc. Java Remote Method Invocation -
Distributed Computing for Java.

[10] D. P. Reed. Naming and Synchronization in a
Decentralized Computer System. Thesis, Massachusetts
Institute of Technology, September 1978.

[11] D. A. Smith, A. C. Kay, A. Raab, and D. P. Reed.
Croquet—A Collaboration System Architecture. In
Conference on Creating, Connecting and Collaborating
through Computing (C5), pages 2-9, 2003.

[12] D. A. Smith, A. Raab, D. P. Reed, and A. C. Kay.
Croquet Programming—A Concise Guide (Draft 0.14).
Qwaq and Viewpoints Research Institute, 2006.

[13] J. Waldo. The Jini Architecture for Network-centric
Computing. Communications of the ACM,
42(7):76-82, July 1999.

[14] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall. A
Note on Distributed Computing. Technical Report
SMLI TR-94-29, Sun Microsystems Labs, 1994.

