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Abstract Software maps provide a general-purpose interactive user interface and information display in
software analytics. This paper classifies software maps as a containment-based treemap embedded into a 3D
attribute space and introduces respective terminology. It provides a comprehensive overview of advanced
visual metaphors and techniques, each suitable for interactive visual analytics tasks. The metaphors and
techniques are briefly described, located within a visualization pipeline model, and considered within a
software map design space. The general expressiveness and applicability of visual variables are detailed and
discussed. Consequent applications and use cases for different software system data and software engi-
neering data are discussed, arguing for the versatile use of software maps in visual software analytics.

Keywords Software visualization � Treemaps � Visual variables � Design space

1 Introduction

Treemaps denote a groupofwell-known,widely used, versatile techniques for visualizing information. They enable
the presentation of extensive, non-spatial, tree-structured data and reliably serve thematic maps’ familiarity, con-
venience, and informative value. In its most common 2D form, data aremapped to color and area. They can also be
embedded into the third dimension, e.g., using cuboids or pyramids (Turo and Johnson 1992), resulting in so-called
2.5D treemaps (Fig. 1) or 3D-embedded treemaps. These offer further possibilities formapping and overlaying data
or visual variables (Carpendale 2003). 2D and 2.5D treemaps alike can support visual analytics to ‘‘foster the
constructive evaluation, correction, and rapid improvement of our processes and models and—ultimately—the
improvement of our knowledge and our decisions’’ (Keim et al. 2008). Treemaps are a tool that is used in many
variations and different domains (Shneiderman 2009). For example, they have been used to depict file sys-
tems (Johnson andShneiderman1991), stockmarkets (Wattenberg 1999), controller performance data (Shah et al.
2005), health data (Chazard et al. 2006), demographics (Jern et al. 2009), business intelligence (Vliegen et al.
2006; Roberts and Laramee 2018), and software development (Merino et al. 2018). This has ultimately led to
treemaps being increasingly integrated into well-known charting tools, frameworks, and libraries.
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In software analytics, treemaps are used to depict software system and software engineering data,
resulting in so-called software maps (Limberger et al. 2019a). Software maps are a general-purpose
interactive user interface for information display in software analytics. Typically, a catalog of software map
themes compiles commonly used attribute selections and mappings to visual variables relevant to specific
tasks. A software map theme, hereinafter referred to as map theme, defines a selection of software infor-
mation dimensions mapped onto a software map’s visual variables. It portrays selected aspects of the
software information gathered and analyzed by software analytics processes. In a sense, a map theme
presents a topic or use-case-specific software map template that supports different stakeholders in software
engineering in data-driven decision making.

To advance towards the goals of visual software analytics, i.e., ‘‘(1) derive insight from massive,
dynamic, ambiguous, and often conflicting data, (2) detect the expected and discover the unexpected, (3)
provide timely, defensible, and understandable assessments, [and] (4) communicate assessment effectively
for action’’ (Keim et al. 2008), we extend on the recent work of Limberger et al. (2019a) and derive the
following research questions for software maps:

– How can data be depicted beyond the primary use of area, height, and color?
– To what extent can techniques be used individually and in combination?
– How does the data type impact the utilization of certain visual variables?

Fig. 1 An illustration of a 2.5D software map with a software metric mapped to the height of cuboids (leaf nodes) representing
software modules, thus making it a software map. Neither color nor area is used for attribute mapping. Instead, it shows the
expressiveness of additional visual cues, i.e., floating nodes and shadows, that can enhance the synthesized gestalt of a software
system

Fig. 2 Model of the visualization process (van Wijk 2005) consisting of a visualization pipeline (dos Santos and Brodlie 2004)
and a feedback loop for knowledge gathering and interactive user control. This model applies to visual software analytics using
software maps
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– What are helpful configurations and variations of software maps?

To answer these questions, we discuss advanced visual metaphors and techniques for software maps by
exploring the underlying visualization pipeline. A superimposed visualization process integrates a visual-
ization pipeline into a feedback loop with interactive user control of the various stages (van Wijk 2005).
Such a visualization pipeline is a sequence of three to four data processing stages with named inputs and
outputs that conceptualize the transformation process of data into images. This visualization process is well
understood, and there are a few variations of models of visualization pipelines: When using a data state
reference model, the stages can be referred to as transformations, namely (1) data transformation, (2)
visualization transformation, and (3) view or visual mapping transformation (Chi and Riedl 1998; Card
et al. 1999; Chi 2000). An extensive overview of specific transformations suitable for visualization purposes
was provided by Liu et al. (2017). A similar naming schema uses (1) data enrichment/enhancement, (2)
visualization mapping, and (3) rendering to describe the same process (Haber and McNabb 1990). This
schema was later refined to (1) data analysis, (2) filtering, (3) mapping, and (4) rendering (dos Santos and
Brodlie 2004). We use the latter model and refer to the first two stages as preprocessing and filtering.
Preprocessing and filtering cover, among others, analytics, selection, enrichment, transformation, and
resampling of raw data. The mapping stage maps abstract data to visual representations (visual variables and
configuration). Finally, rendering creates a visual representation using image synthesis (cf. Fig. 2).

Using this model, we provide an overview of advanced visual metaphors that have already been or can
be used in combination with software maps to approach the challenges mentioned above. We briefly
summarize each metaphor and technique, discuss it in the context of a stage, and describe everyday practices
based on our experience from research and industry projects. We discuss the extent to which each metaphor
or technique can be used to communicate different types of data and identify feasible combinations of
isolated techniques and possible interferences, spanning a design space of software maps.

The remainder of this paper is structured as follows: Sect. 2 outlines the concept of software maps. The
following sections cover algorithms and techniques applied for software maps. Section 3 covers filtering and
preprocessing techniques. Section 4 introduces layout algorithms associated with software maps. Design
decisions for mapping software data to visual primitives are discussed in Sect. 5. The rendering-related
techniques are discussed in Sect. 6. Configuration and assembly of software maps are discussed in Sect. 7,
and in Sect. 8, this paper concludes.

2 Definition and classification of software maps

The term software map is not uniquely defined in software cartography. Each variation, such as code
cities (Wettel and Lanza 2008), software cities (Steinbrückner and Lewerentz 2013), or thematic software
maps (Kuhn et al. 2008), focuses on their specific intended use, i.e., visualizing abundant software system
and process data and, thereby, providing a communication artifact for software engineering. ‘‘A single
graphic can convey a great deal of information about various aspects of a complex software system, such as
its structure, the degree of coupling and cohesion, growth patterns, defect rates, and so on’’ (Kuhn et al.
2008). In order to obtain a more precise, low-level definition of software maps, we propose a definition that
denotes them as a subset of treemaps using existing systematization approaches.

Schulz et al. (2011) identified the following axes for the design space of implicit hierarchy visualiza-
tions: dimensionality (either 2D or 3D), node representation (graphics primitives), edge representation
(inclusion, overlap, and adjacency), as well as hierarchical layout (subdivision and packing). Dübel et al.
(2014) differentiate between reference space and attribute space for a more precise classification—assuming
the validity of their classification is not affected by the non-spatial nature of treemaps. Recently, Scheibel
et al. (2020c) proposed a systematization of tree visualization techniques and treemaps, including space-
filling treemaps, containment treemaps, implicit edge-representation trees, and mapped trees.

Using these design spaces, the software map can be expressed as follows. For the spatialization of nodes
of a software map, we prefer subdivision or packing within a 2D reference space (R2).

The representation of edges is assumed to be implicit through nesting or inclusion, rendering a software
map’s underlying layout a containment treemap layout (Figs. 3 and 4). Some exceptions include a layout
that encodes the parent–child relationship using adjacency, resulting in implicit edge-representation trees as
software maps. Geometric adjacency in 2.5D maps can also be used (cf. Fig. 1), but due to their implica-
tions with height mapping, we suggest considering its use carefully (Limberger et al. 2018b); eventually, we
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use flat representations of inner nodes only for all map themes in order to reduce occlusion and allow for
particular representation of aggregates (level-of-detail). Techniques based on containment and overlap in 3D
are marginally helpful for large data sets due to added interaction complexity and hard-to-resolve occlusion.
Fortunately, this restriction does not exclude commonly used treemap-layouting algorithms based on
rectangular or polygonal shapes (Hahn and Döllner 2017). For the representation of leaf nodes, 2D graphics
primitives are common, e.g., Voronoi shapes or rectangles (A2). Embedded in 3D, they can be extruded,
optionally tapered, and thus use the third spatial dimension (A3). ‘‘Increasing the visual vocabulary can
provide for richer information resolution’’ (Turo and Johnson 1992) and allow for additional information
display. For these 2.5D software maps, we generally prefer graphical primitives of rectangular footprints
over more complex ones (cf. Fig. 25a)—depending on (1) the importance of stability for the respective map
theme and (2) whether or not rendering of more complex geometry is justifiable in terms of visual com-
plexity, implementation complexity, as well as interactivity and responsiveness of the visualization. Since
the reference space is still in R2, we support the terms 2.5D (Turo and Johnson 1992) and 3D-embedded to
avoid confusion with actual 3D treemaps that use 3D layouts for positioning graphical elements in a
3D reference space (R3).

With the attribute space and reference space being constrained, the typical characteristics of A2 �R2

and A3 �R2 visualizations adhere to software maps. Consequently, we define software maps as a subset of
2D and 2.5D containment treemaps—with some exceptions being implicit edge representation trees—for the
targeted mapping of abstract software system data and software engineering data as well as software
development data. This gives one outstanding benefit: their characteristics largely match these of

Fig. 3 Space-filling treemap T S

Fig. 4 Containment treemap T C
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ubiquitously available, interactive 2D and 2.5D (geo-spatial) maps. Furthermore, with this definition of
software maps, both visualization engineers and software engineers can rely on and build upon familiar (1)
interaction metaphors, (2) provisioning strategies, and (3) visualization metaphors, drawing on their habits
and experiences.

2.1 Data characteristics

Traditionally, visualizations targeting software analytics are required to handle three essential aspects of
software system data: static, dynamic, and evolving aspects (Diehl 2007). We use a broader scope for
software maps by including software development data and all stakeholders of the software development
process. The data typically covers mined, preprocessed data gathered from various sources:

– Software implementations: typically modularized, available as distributed tree-structured components
and source code units. In addition to topology information, metrics and other key performance indicators
(KPIs) are measured and derived by applying static source code analysis to the programmed artifacts,
namely source code, scripts, binaries, and documentation.

– Software executions (traces): e.g., analysis of run-time execution to capture and measure a software’s
behavior.

– Software development processes and evolution: e.g., analysis of the engineering work on the system
done by software developers. This data is usually available in revisioning systems and issue, bug, and
customer feedback tracking tools.

Even if measured precisely, the data (1) are prone to uncertainty, (2) are vague semantic normalization, (3)
lack standardized metrics and interpretations, and (4) are highly language-specific and, thus, highly
heterogeneous in large software systems. Furthermore, anonymization may be required, the resolution of
measurements is unnecessarily high, and the data quickly becomes extremely extensive and complex even
for medium-sized projects (metrics per file and per commit, every change with respect to issue tracking,
continuous integration). These characteristics should be considered when specifying map themes or
developing visualization techniques for visual information display using software maps. An overview of
visualization techniques for static aspects and their evolution, including visualization techniques besides
treemaps and software maps, is listed in surveys by Caserta and Zendra (2011) and Merino et al. (2016).

2.2 Preliminaries and assumptions

This paper does not provide a comprehensive set of design guidelines for creating treemaps regarding all
aspects of visualization design. Guidelines concerned with perception (Kong et al. 2010) or use of col-
or (Xie et al. 2018; Schloss et al. 2018; Quinan et al. 2019) are not specific to treemaps but relevant for
every visualization and, thus, not the focus of this paper. Especially for color, we suggest referring to
geographic, thematic maps and commonly used, sequential, diverging, and qualitative color schemes.

Fig. 5 Depiction of a software system with hundreds of thousands of software artifacts
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Our selection of discussed visualization techniques focuses on metaphors and techniques that cope with
the data characteristics within software engineering, i.e., volume and complexity of the data (Fig. 5).
Therefore, we prefer techniques that have already been introduced for software data and can handle data sets
with lots of data elements. Similarly, we focus on visualization techniques that entail abstract depictions,
i.e., we follow the approach of mapping abstract software data—data without any natural gestalt—to
abstract visual entities. This paper does not cover city visualizations or city-like metaphors (Knight and
Munro 1999; Balogh et al. 2015) that map abstract data to features of virtual 3D cities such as building
facades, car or pedestrian traffic, or street furniture.

2.3 Software maps and landscapes

As one example of a software project, the Qt 5.2.1 release from February 2014 concluded over 19 years of
development from over 1400 developers that created more than 120,000 commits. The entire functionality is
distributed over more than 145 000 source files with over 21,000,000 lines of code (Fig. 6). We see this
project as a large-sized software project, typical in industry contexts and, for now, widely used open-source
software. Although Qt contains various dependencies within its source code, the more recent approach
would be to use software packages, which hide a large part of the source code relevant when working on
projects. Much of the source code is present in today’s software through dependency on software packages.
This is important to keep in mind when exploring metrics using software maps. Software maps and,
generally, most depictions based on a software’s underlying hierarchy or structure tend to obfuscate a
software’s overall complexity since they only cover its top-most layer. The dependency tree of an NPM
package, for example, has an average depth of 4.39 and a size of 86.55 (Vaidya et al. 2019). This quickly
results in the tenth of thousands of additional source and configuration files (i.e., located in the node_-
modules directory) that are usually not incorporated in the software analysis.

Whether it is more or less adequate to focus on a slice of software or cover all of it depends on the task
and needs to be researched in more detail. Extending the idea of software maps to a Google-Earth-like
service to explore millions of software projects as a landscape, planet, or galaxy is tempting. From an
implementation perspective, available frameworks and tools need to scale to large and massive datasets.
This includes preprocessing and layouting (Scheibel et al. 2021), hardware-accelerated rendering, and
dynamic updates of the geometry (Trapp et al. 2013; Scheibel et al. 2017). Similarly, the deployment and
provisioning of data and visualization are domain and application-specific (Limberger et al. 2013, 2016b).
However, a generalized view of application scenarios allows to derive common characteristics and shared
approaches for visualization, including visualization services (Scheibel et al. 2020a). Based on these

Fig. 6 A software map depicting the source code of the Qt 5.2.1 release in 2014. The map contains over 145 000 leaf nodes
and covers most dependencies such as sqlite3 and assimp. The software data was extracted from the GitHub mirror github.com/
qt/qt5 with resolved submodules
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techniques, the foundations for a scalable and much more comprehensive exploration already exist. For the
following techniques in the phases of preprocessing, layouting, mapping, and rendering, implementations
should focus on scalability.

3 Preprocessing and filtering

The incoming data, also known as the problem or task data, is transformed and prepared for visualization
during preprocessing and filtering. This includes resampling, normalization, filtering outlier, and accumu-
lating weighted leaf-node data to inner nodes. The main goal is to prepare use-case-specific data aug-
mentation, value resolution, and data residence. The latter two are essential for visualization systems that
process large amounts of data.

3.1 Use-case-specific handling of data

Typical tasks for preparing the data for visualization result from the requirements of the visualization
techniques used or the use case at hand. Prevalent examples are area mapping in treemap layouting
algorithms where a value of an inner node is expected to be the sum of all children’s weights (Johnson and
Shneiderman 1991) and mapping of additional visual variables on inner nodes to display aggregated
information (Limberger et al. 2017b). When dealing with data entailing uncertainty, the aggregation of
values should employ an uncertainty model (Görtler et al. 2017). Especially for values that are used for area
mapping, there are additional techniques to manipulate the values, e.g., to allow for (1) user-controlled
sizes (Turo 1994), (2) scaling of otherwise invisible nodes (Csallner et al. 2003), (3) equalization of size
through ‘‘atrophication’’ (Bladh et al. 2004), (4) employing a degree-of-interest (Schlechtweg et al. 2004),
and (5) pre-allocating weights for the display of inner nodes (Yang et al. 2015).

Another example is the preprocessing of tree-structured topology. A common approach is to process the
topology through the filtering of nodes. This reduces the display of information, selecting relevant subtrees
and omitting irrelevant nodes (Veras and Collins 2017; Limberger et al. 2017b), e.g., detection and removal
of source code duplicates, generated code, automated activities, and filtering of irrelevant areas such as
third-party code. For the particular case of inner nodes having an inner node as a single child, tree pruning
can be applied to simplify the topology (Bladh et al. 2004).

3.2 Value resolution

While assembling software maps in practice, we encountered several challenges. These include handling
large amounts of data and ensuring reasonable memory usage in both main and graphics memory. Fortu-
nately, the required data resolution for the visualization is usually much lower than the resolution of the
input data. In these cases, we suggest reducing the data to a resolution appropriate for the map theme, e.g.,
attributes mapped to area, color, or height do not require a 32-bit floating-point resolution. Often, a
reduction of attribute resolution to a few bits can increase readability by means of discriminability and
emphasize the results of the preceding data analysis. This can also be supported from a perceptual point of
view: height with perspective foreshortening is hardly comparable on a per-pixel basis. The exact size of a
module within a software map should be of subordinate importance. Thus, most often, a transformation to a
categorical data type such as irrelevant, low, medium, and high (for color, height, or change) or lower-
outlier, below average, average, above average, and upper-outlier (for area) are easily comparable and
more effective (Wettel and Lanza 2007).

3.3 Streaming and level-of-detail

The major challenge is that industry software projects tend to be massive in terms of the number of modules,
code units, metrics, or activities. This is often ignored or only marginally covered in research but signifi-
cantly impacts visualization design and software map assembly. Software maps are likely to be streamed on-
demand (e.g., node by node, slice by slice). Loading millions of attribute values for nodes that should not
even be depicted, e.g., as they are out of scope or sub-pixel size, can decrease responsiveness and result in
visual clutter or memory shortages. It is advantageous to have a customizable, interactive level-of-de-
tail (Elmqvist and Fekete 2010; Limberger et al. 2017b) in both filtering and rendering that allows for
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dynamic detail (cf. Fig. 7). Furthermore, the software map should always support the concept of mental
maps (Liu and Stasko 2010), i.e., the overall layout should not change due to a dynamic level of detail.

4 Layout

The base layout for a software map can, for example, be derived from the hierarchical structure of the
software project that is captured in a tree-structured dataset. Software maps usually use inner nodes to depict
applications, modules, or source code units, i.e., source code files. The leaf nodes depict modules, source
code units, functions, events, developers, activity through commits, or associated data (Ardigò et al. 2021).
The position of each node is computed by a layout technique specified by the map theme, and a metric is
mapped to the size of the graphical primitive, e.g., lines-of-code or file size. This hierarchical structure is
processed by treemap layout algorithms, resulting in treemap layouts.

Treemap Layout Algorithms for Software Maps. There are many algorithms available and under current
research (Scheibel et al. 2020b). From them, mainly two-dimensional layouts are used for both 2D and 2.5D
software maps. As a prominent classification, ‘‘one can discern two major layout methodologies: subdivision
and packing’’ (Schulz et al. 2011). Packaging layouts use a spatial arrangement of child nodes based on
proximity and the definition of an enclosing space as a separate layout. Splitting layouts, in contrast, define a
space for the root node and dissect its layout for all of its child nodes. Another approach to differentiation is
the class of shapes and metaphor for hierarchical nesting that an algorithm selects for the nodes. We see the
coarse categories of rectangular splitting layouts, rectangular packing layouts, polygonal layouts, and
adjacency layouts for software maps.

Choice of Software Map Layout Algorithms. The choice of a layout algorithm for a software map may
depend on several factors and goals (Fig. 8). For example, the resulting whitespace can be the target for
reduction, create more compact software maps, create and maintain landmarks, or as space for flexibility
during layouting, e.g., allow for later insertions of nodes. The treemap layouts are a target for general
optimization for treemap layout metrics (Vernier et al. 2020). However, the one main parameter is the
choice of the leaf node type, as it dramatically influences the metaphor and general look of the software
map. This results in software maps using either strict structures (space-filling rectangular layouts) or uniform
leaf node shapes (packing layouts). The choice of algorithms and, thus, an underlying layout parameteri-
zation allow for different metaphors for the resulting visualization.

4.1 Rectangular splitting layouts

Treemap layout algorithms were coined in the early 1990s with the later called Slice’n’Dice algo-
rithm (Johnson and Shneiderman 1991). A couple of directions were researched to improve particular
properties of these rectangular splitting approaches, i.e., optimize aspect ratios, preserve the order of items,
and achieve stability over time (Bethge et al. 2017). However, this is still a trade-off for the current state of

(a) (b) (c) (d)

Fig. 7 Stepwise simplification of a software map using aggregation, ranging from no aggregation (left) to strong aggregation
(right). The level of aggregation can be controlled using nodes of interest or, as shown here, based on the tree level. Note that
outlier nodes, so-called landmarks, are preserved (Limberger et al. 2017b)
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the art, and thus, no optimal algorithm is found. For example, optimizing aspect ratios is best achieved with
a reordering of nodes (Bruls et al. 2000) as this gives flexibility in layouting the nodes (Fig. 9).

Other layout algorithms are based on space partitioning approaches, such as the ordered layouts by
Shneiderman and Wattenberg (2001) and Feng et al. (2019). Recent extensions are based on mathematical
proofs of minimal aspect ratios for a given set of weights (Nagamochi and Abe 2007) solved by linear
programming (Fügenschuh et al. 2014). Focusing more on the order of nodes, there are several algorithms
based on space-filling curves. Starting with the Strip treemap building, a Z-like space-filling
curve (Shneiderman and Wattenberg 2001), S-shapes, and spiral curves were introduced (Tu and Shen
2007). More sophisticated space-filling curves were applied to treemap layouting as well. As such, the
Hilbert and Moore curves allow for good stability over time (Tak and Cockburn 2013) and are now on par
with the majority of layout algorithms regarding the computation times (Scheibel et al. 2021).

4.2 Rectangular packing layouts

As an alternative approach to splitting, recursive packing can be used to derive treemap layouts. The most
basic algorithm for this is Bin Packing (Shneiderman 2009). An optimization to this is the Data Jewelry
Box algorithm (Yamaguchi and Itoh 2003), as it uses computational geometry to improve layout stability.
By applying the evolution of data to a rectangular treemap layout, the EvoCells algorithm adjusts the parent
rectangles for each change on leaf nodes by displacement and packing (Scheibel et al. 2018) (Fig. 10). For

Fig. 8 Mixed splitting layout for software maps including rectangular and polygonal shapes

Fig. 9 Splitting layout for software maps (also usable in 2.5D)
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packing layouts, reducing the whitespace between nodes has to be considered. If this whitespace should be
reduced, layout postprocessing can be used (Domrös et al. 2021).

4.3 Polygonal layouts

Next to rectangular layouts, software maps may be constructed using general polygonal layouts. Mainly
splitting algorithms are used to derive polygonal layouts, although they are not limited to this. For example,
software maps with convex shapes can be constructed using Voronoi tessellation, creating Voronoi tree-
maps (Balzer and Deussen 2005). Another approach is space partitioning, which is used with polygonal
partitions de Berg et al. (2013) or a divide-and-conquer approach Liang et al. (2015). The Voronoi variants
can be used to derive orthogonal Voronoi treemaps Wang et al. (2022)—using non-convex orthogonal
shapes—or build upon the layout to derive map-like visualizations, e.g., the CodeSurveyor (Hawes et al.
2015). When following the approach of space-filling curves for non-rectangular layouts, the Gosper curve
can be used to create GosperMaps, which are especially stable over time (Auber et al. 2013).

A prominent extension of software maps is adjacency layouts (Fig. 11). Most of them are derived from
one-dimensional treemap layouts. Using an extension to one dimension creates Icicle Plots and Flame
Graphs (Gregg 2016), and a projection using polar coordinates results in Sunburst Views (Stasko et al.
2000) and Bundle Views (Holten 2006). Although a basic packing algorithm, the EvoStreets layout results
in a software map using adjacency (Steinbrückner and Lewerentz 2013). These layouts are convenient at the
coarser levels of a software entity hierarchy, e.g., to display whole landscapes of software projects. The

Fig. 10 EvoCells: a packing layout for software maps

Fig. 11 An example for a adjacency layout for treemaps: a Sunburst view depicting a software system
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nature of their layout allows for the explicit and complete depiction of inner nodes. The additional
whitespace can be used for additional mapping of inter-node relations (Holten 2006).

4.4 Layout stability

One of the biggest challenges for software maps is stability over time, i.e., node positions remain stable over
time. This is advantageous for the visual-data-correspondence (Kindlmann and Scheidegger 2014) and for
maintaining a mental map (Archambault et al. 2011). Stability is achieved by maintaining topology changes
and weight changes of the underlying hierarchy. Suppose the time range of interest is in the past. In that
case, a multi-revision hierarchy can be computed (Tu and Shen 2007), allowing for stable positions of nodes
as they can be predetermined using a layout that incorporates all nodes with their maximum weight Pfahler
et al. (2020). Suppose the software map is used to visualize ongoing processes and continuously evolving
data. In that case, an initial layout can be incrementally evolved based on the topology changes, resulting in
nodes growing, shrinking, appearing, and disappearing (Scheibel et al. 2018). Moreover, Kokash et al.
(2014) proposed an approach that ensures uniform treemap layouts over time by applying an explicit
splitting scheme. A similar approach is the layout of the treemap using only local modifications (Sondag
et al. 2018) by applying local swaps and approximating the layout of the previous instance. As an
improvement to this, the Greedy Insertion approach operates on the derived layout tree and inserts new
nodes next to the element with the worst aspect ratio (Vernier et al. 2018).

5 Mapping

The mapping stage transforms pre-processed and filtered data, e.g., attribute values, into depictable and
reversibly encoded graphical primitives and scenes. This is a fundamental step for efficient encoding of
input data and should address human capacities and abilities to decode a depiction (Ware 2012). There is not
necessarily an explicit representation of the resulting visualization object in memory. The result may only be
volatile during visualization, especially from an implementation point-of-view: the distinction between
mapping and rendering sustains more on a conceptual level (Trapp et al. 2013; Scheibel et al. 2017). In this
section, visual variables and additional techniques available for attribute mapping are briefly described and
discussed. An overview of visual variables (not techniques in general) is provided and summarized in
Table 1. In it, each visual variable is classified with respect to the stage typically responsible as well as its

Table 1 Legend: M—Mapping | R – Rendering | � – Supported | � – Partially supported

Visual variable Node Dim. Data type

Stage Inner node Leaf node 2D 2.5D Nominal Ordinal Interval Ratio

Area (foot print, size) M � � � � � � �
Color R � � � � � � � �
Height M � � � � � �
Transparency R � � � � � � �
Light emission (glow) R � � � � � � �
Stacking M � � � � � �
Stacking (global layer) M � � � � � �
Segments M � � � � � � � �
Shape type M � � � � �
Shape parameter M � � � � � � �
In situ (change, diff) M � � � �
Contour width R � � � � � � �
Contour color R � � � � � � � �
(Contour) stippling R � � � � � � � �
Sketchy contour R � � � � � � � �
Surface pattern (texture) R � � � � � � � �
Surface noise (texture) R � � � � � � � �
Surface shading (texture) R � � � � � � �
(Surface) hatching R � � � � � � � �
Nesting-level margin R � � � � � �
Color weaving R � � � � � �
Height threshold R � � � � � � �
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applicability to (1) inner nodes and leaf nodes, (2) 2D and 2.5D software maps, and (3) the data type it most
certainly can convey.

5.1 Use of height

We utilize the height of cuboids by extrusion of the 2D shape (Bladh et al. 2004; Choi et al. 2011) as
secondary visual variable (Fig. 12). The idea is to convey information in the order of decreasing importance
for the task: (1) color, (2) height, and (3) other visual variables. For 2.5D software maps, pyramid-like
shapes can be used to further encode an attribute or reduce occlusion (Turo and Johnson 1992). When
depicting evolving data with accustomed map themes, height seems to allow for an intuitive encoding of
data changes by means of growing or increasing versus shrinking or decreasing, respectively. Height,
however, should not be used to depict negative or diverging scales directly, as this would result in
downward-facing cuboids. Although suggested several times, we prefer to refine the map theme to transform
or map relevant ranges of values of attributes to make a salient but expected use of visual variables: cuboids
are high when the underlying data is interesting. In contrast to that, if a negative value range is relevant, it is
mapped inversely to height. If positive values are relevant, the absolute value could be mapped to height and
the sign to color, shape, or texture. Finally, the orientation of the leaf node’s geometry (Langelier et al.
2005) and the type, employing poly cylinders (Marcus et al. 2003) and three-dimensional glyphs (Boccuzzo
and Gall 2007) are further suitable as visual variables.

5.2 Juxtaposing and complex shapes

For a visual display of multiple states or sub-elements, data vases, stacked cuboids, or segmenting/frag-
menting can be used. In remembrance of stacked bar charts, the extruded polytopes can be subdivided in
height, allowing for the depiction of subcategories and their share of the overall height (Itoh et al. 2006;
Giereth et al. 2008). This process can further be utilized, e.g., to encode evolution using evolution segments
(Steinbrückner and Lewerentz 2013) and data vases (Thakur and Rhyne 2009). Small multiples can be used
for ‘‘the comparison of multiple software map themes and revisions simultaneously on a single screen’’
(Scheibel et al. 2016). We found this especially useful for the generation of an overview as well as
exploration and identification of map theme variations for software map assembly.

5.3 Mixed projections

Recently, an approach for focus-sensitive use of 2D and 2.5D treemaps was presented. ‘‘The technique
operates by tilting the graphical elements representing inner nodes using affine transformations and ani-
mated state transitions’’ (Limberger et al. 2017c). This allows for on-demand separation of high-detail focus
areas and context areas (Fig. 13). It further reduces occlusion issues—which might occur for a particular
data set or map theme—and the complexity of navigation. Whenever occlusion becomes an issue, this

Fig. 12 Using height as a visual variable by extruding the 2D shapes up (2.5D)
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usually hints at an inappropriate scaling, camera angle, or suboptimal map theme specification. In almost all
cases, occlusion issues can be resolved by applying simple mitigation strategies.

For software analytics, mixed projection can facilitate communication of the source code modules that
target change for the current sprint. In this example, the context is the other source code files present in the
project. Similarly, mixed projection can be used if the height mapping is irrelevant for the context but highly
relevant for focus, e.g., using the estimated time to invest for a source code module to be mapped on height.
Another technique to combine aggregated and detailed views with reduced occlusion is the lifted
map (Chaudhuri and Shen 2009).

5.4 Depicting change

Many software map themes are designed to facilitate understanding of the evolution of the underlying data
sets (Fig. 14). This eventually requires for visual comparison of (1) multiple visual variables for (2) multiple
points in time over (3) large time ranges. Therefore, Tu and Shen (2007) introduced contrast treemaps. Their
approach could be applied within visual software analytics by encoding two different states of the attribute
mapped to area and color. This idea was extended by in situ templates (Limberger et al. 2019b), which
allow for the visual encoding of former and latter states on a per-cuboid basis for rectangular 2.5D software
maps (cf. Fig. 15). Specifically, basic and more complex templates were introduced to simultaneously
depict changes in more than one visual variable, including area, color, and height. Although not discussed in
the paper, the templates allow for the comparison of additional per-node visual variables as well. The visual

Fig. 13 Inner node tilted into 2.5D (mixed projection) combined with a local histogram

Fig. 14 In situ template depicting changes in height
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quality and expressiveness thereby depend on the available rendering techniques, e.g., procedural texturing
and transparency are accounted for by several templates (Limberger et al. 2021).

In practice, most comparison templates would result in a complex mapping and should be used for
complex tasks or expert systems only. For example, depicting area changes in combinations with others is
challenging to perceive. However, they allow for a convenient encoding of changes in height that are usually
mapped from secondary information such as the number of authors or the size of domain logic. Another use
is to depict changes in color for preliminary information, i.e., the most prominent indicator for the primary
purpose of the map theme, such as the maintainability or faultiness of a software module.

5.5 Depicting relations

For an emphasis on the topology with respect to the nested structure of nodes, cushion shading (van Wijk
and van de Wetering 1999) or hierarchical stippling (Sondag et al. 2020), variations of margins or padding,
as well extruded, stacked inner nodes (Bladh et al. 2004) can be applied. If other relations (e.g., Fig. 16) of
nodes in addition to their tree-structured topology are of interest (e.g., functional dependencies or often-
coinciding changes during the development process), edges or edge bundles can be superimposed to soft-
ware maps (Holten 2006; Steinbeck et al. 2019). This approach, however, is visually constrained by the
number of depicted relations and data set size. Superimposing relations using tubes on top of 2.5D treemaps
introduces additional clutter and visual complexity not inherent to the treemap metaphor.

6 Rendering

In this stage, the visualization object is transformed into images using (real-time) image synthesis. Although
the mapping stage is usually aware of the available visual variables and metaphors, it only provides
appropriate attribute values, descriptions of graphic primitives, and additional data for rendering. As a result
of the rendering stage, the mapped attributes should be visually encoded in the output image.

Fig. 15 A set of in situ templates to depict changes of up to three attributes using three or more visual variables (Limberger
et al. 2019b). Left: templates for color-only changes. Middle: templates for color and height changes. Right: templates for
changes in all area, height, and color

Fig. 16 Modules included by another module are connected using directed tubes (textured with procedurally generated arrows)
in 3D
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6.1 Utilizing texture patterns

Different texture patterns can be applied to encode categorical data (Molli et al. 2001) (Fig. 17). Exemplary
attributes for texture pattern mapping are (the abstract) file type (e.g., source code, documentation,
deployment), associated teams, or budgets. Alternatively, texture intensity was suggested as a visual vari-
able for scales with a natural zero (Holten et al. 2005). With most modern rendering engines supporting
physical-based materials, textures can be used to enable visual variables based on their metalness or
roughness (see natural metaphors). In the past, we predominantly used procedural textures to depict quality
measures (e.g., degree of documentation, error-proneness), complexity measures (incoming or outgoing
dependencies, mixed-use of third-party dependencies), and development process indicators (e.g., number of
authors). Procedural texturing can further be used to superimpose rulers or stripes, making the height
effectively countable and increasing the accuracy of comparability. Another approach is to use procedural
textures to encode underlying data distributions (Limberger et al. 2020).

6.2 Utilizing emissive light

Emissive lighting can be an intuitive metaphor for activity: if something lights up, something is going on
(Fig. 18). We used this to display development activity, e.g., through commits per day or the number of
issues referencing a module. This visual variable can also be used to emphasize (highlight) nodes due to user
interactions such as filtering and selection or to highlight system activity (Dashuber and Philippsen 2021).
However, today’s real-time rendering systems are often incapable of rendering convincing light emissions,
making this visual variable challenging to use.

6.3 Using sketchy rendering

For the visual display of uncertainty, fuzzy drawing styles can be applied. For example, node contour width,
as well as multiplexed frequency and amplitude, could be parameterized (Görtler et al. 2017) and used to
indicate vagueness. In addition, pencil-like outlines and hatching of surfaces can be combined into a single
visual variable, i.e., sketchiness. Mapping data to sketchiness is instrumental in encoding ‘‘uncertainty,
imprecision, or vagueness’’ (Limberger et al. 2016a). It allows to encode varying degrees of uncertainty and
can be used in addition to color (Fig. 19). For example, it can display measurement inaccuracies (incomplete
or estimated data) or target data that is yet to be discussed or implemented (i.e., targets for complexity,
coverage, performance, or other quality measures).

6.4 Utilizing transparency

Regarding geometric processing of inner nodes, some approaches extrude the layout as well, creating
platforms (Andrews 1995) or pyramid frustums (Andrews 2002), and placing child nodes on top on the

Fig. 17 Top faces textured with patterns (nominal mapping)
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platforms. Instead of stacking, there are approaches for nested depiction as well, e.g., full spheres (Balzer
et al. 2004) and hemispheres (Balzer and Deussen 2004) in combination with transparency. Other uses of
transparency are (1) to reduce occlusion and (2) to encode different node states (Luboschik and Schumann
2008). Transparency can further be used to depict removed or planned components, goals, and irrelevant
nodes or enhance the expressiveness and quality of texturing (Fig. 20). The most relevant obstacle to using
transparency is its implementation complexity: especially for web-based rendering clients, modern strategies
such as order-independent transparency cannot easily be implemented due to limited graphics APIs and
device capabilities. One solution is to use stochastic dithering combined with multi-frame sam-
pling (Limberger et al. 2017a).

6.5 Depicting aggregates and structure

As previously discussed for the preprocessing and filtering stages, aggregation is an essential technique for
software maps (cf. Fig. 21). In the context of rendering, we suggest adhering to aggregation guideli-
nes (Elmqvist and Fekete 2010). For example, the depiction should discern leaf nodes from aggregated ones.
In addition, small charts, diagrams, or glyphs encoding information of the underlying data can be expressed
on top or within aggregates (Soares et al. 2020). Likewise, noise or color weaving (Hagh-Shenas et al.
2007) as well as nesting-level contours—multiple contours that hint at the depth of the aggregated sub-tree,
i.e., the number of an aggregate’s subjacent hierarchy levels—can be used as well (Limberger et al. 2017b).

Fig. 18 Emissive light (glow) as a visual variable in 2.5D

Fig. 19 Sketchy outlines and hatching to depict uncertainty
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The aggregation should summarize contextual data of low variation for software maps to provide orientation
without distraction. Aggregation can further extend user control and interaction, e.g., folding and unfolding,
as well as dynamically scaling the rendering load to comply with performance constraints.

6.6 Height-based filtering

For 2.5D software maps, a reference surface, a height reference (Fig. 22) can be used to ‘‘facilitate accurate
identification of highest nodes as well as similar nodes [...]. Furthermore, it allows filtering and selection of
nodes based on their height and depicts filtered and unselected notes in a clean way without introducing
additional visual clutter’’ (Limberger et al. 2018b). Depending on the renderer’s capabilities and the already
occupied visual variables, one of the various approaches for the visual display of the height reference can be
applied, e.g., intersection, stilts, explicit surface, closed surface, and implicit surface. Using user-induced
aggregation (by means of folding and unfolding) in combination with an interactive height reference can
provide a sufficient foundation for exploration-heavy tasks and map themes for single software maps and
whole software map landscapes.

Fig. 20 Transparency (stochastic) as a visual variable in 2.5D

Fig. 21 Aggregation and nesting-level contours in a 2D treemap
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6.7 Using natural metaphors

Natural metaphors are based on the idea that ‘‘when faced with unfamiliar concepts, our cognitive system
searches for the best mapping between the unknown concept and existing knowledge of other
domains’’ (Zhang 2008). To this end, natural metaphors, such as physical-based materials (e.g., rust, radiant
emittance, roughness, and shininess; Fig. 23) or weather phenomena (e.g., rain, clouds, fire, dust, snow)
were suggested to ‘‘emotionalize the visual communication by providing memorable visualizations’’
(Würfel et al. 2015). These metaphors can be used to depict change predictions or deviations from expected
values on a secondary visual variable while considering knowledge or best practices on preattentive pro-
cessing of, e.g., numerical information (Few 2004; Hesse et al. 2017). However, weather phenomena
require sophisticated rendering techniques, renderers, and an interactive context. Further, their use might be
inappropriate in certain professional contexts and even distracting for the map theme.

7 Configuration of software maps

When assembling use-case-specific map themes, implementation and provisioning have to be considered.
For example, most visual variables have to be tweaked for the actual screen size, pixel density, and number
or average size of nodes. In addition, all visual variables used have to be (re)adjusted within the context of
their specific combination and their intended task. A few general remarks are provided in the following,

Fig. 22 Reference surface for height-based filtering in 2.5D

Fig. 23 Surface condition (rusty, shiny) as visual variable

266 D. Limberger et al.



which can be considered regardless of the specific visual variables used to assemble more effective map
themes.

7.1 Labeling and text

More than twenty years ago, Fekete and Plaisant stated that ‘‘a major limiting factor to the widespread use of
information visualization is the difficulty of labeling information abundant displays’’ (Fekete and Plaisant
1999). At the time of writing, this is still a ‘‘major limiting factor’’ today in most visualizations. Different
techniques that augment treemaps with text have been proposed and evaluated for treemaps. The prominent
approach is the usage of the nodes’ surface to integrate labels in terms of internal annotations (Limberger
et al. 2017b) (Fig. 24). This approach usually affects the layout computation if applied to inner nodes as
well (Liu et al. 2008). The complementary approach, external labeling, is not treemap-specific but induces
common problems such as ‘‘overlaps and data occlusion’’ (Fekete and Plaisant 1999). Typically, external
labels are positioned as hovered text in proximity to its node (Slingsby et al. 2008) or a connected line to
indicate association (Bladh et al. 2004). Additionally, the size of the label may be used to encode impor-
tance (Jadeja and Muthu 2017).

One challenge remains: Integrating techniques that allow for dynamic, interactive, adaptive, and high-
quality text display in 3D scenes. To this end, the Open Label Library (OpenLL) project is an essential step
toward a low-level, implementation-aware specification for dynamic, hardware-accelerated rendering and
smart, adaptive placement of text (Limberger et al. 2018a). Users should be allowed to not only read a text
but select, copy and paste, and change within their 3D visualization.

7.2 Visual cues

Visual cues can increase the effectiveness of visualization. They can be associated with certain visual
variables to convey information either more effectively or at all. Apart from that, visual cues can be added to
the visual variables used. Shadows, cushion shading, paddings and margins, or shading, for example, can
significantly impact the readability of software maps. For example, a 2.5D treemap that does not employ
padding or some form of lighting or shading will be much harder to read. Likewise, missing shadows or
outlines can make it hard to perceive the topology or differentiate individual nodes from one another. At the
same time, it is not necessarily helpful for the rendering to strive for as much realism as possible since this
often can cause visual clutter (e.g., the use of reflections can be somewhat distracting). In any case, the
visual cues should be adjusted carefully to the map theme. The combined use of information visualization
and visual cues with a claim to reality is an open field in research.

Fig. 24 Enhancing treemaps using dynamic text placement
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7.3 Assembling treemaps

When assembling a map theme, we usually gather all input characteristics (data types, data resolution, etc.)
and specify the use case(s) and related tasks as clearly as possible. The resulting software maps differ in
their used metaphors and visual variables (Fig. 25). For example, does the task consist of stepwise
exploration or subsequent queries that could be addressed within the visualization directly
(overview?detail, primary and secondary concerns, or root cause analysis)? Is the visualization part of a
multiple-linked-view setup, preceded by other investigations, or part of a broader analytics process? What
are the time and frequency the user needs to complete the task or use the visualization, respectively?

In most cases, our software maps first and foremost assist the user in identifying regions or nodes of
interest. Then, additional visual variables are employed for subsequent exploration of the relevant data for
those nodes. Tables 1 and 2 are intended to facilitate the identification of promising visual variables and
combinations most appropriate for the task. Whether or not the visual variables can be used depends most
certainly on the limitations of the targeted devices and used frameworks. As stated before, transparency,
emissive lighting, and similar, technically demanding visual variables are highly convenient but still hard to
implement for interactive use.

8 Conclusions

This paper reviewed advanced visual metaphors and visualization techniques for software maps. A brief
discussion of each metaphor and technique is extended by common practices and own experiences by the
authors. Notably, the presented techniques are modular and can be used in combination in an on-demand
manner without conflicting with other techniques. This way, the software map can be used for a wide range
of use cases. The approaches can visually scale from small to large and even massive data sets and allow for
mapping multiple attributes for data-driven decision-making. To summarize, we argue that the software map
is a highly versatile tool in visual software analytics.

For future work, we foremost acknowledge the current state of evaluation for treemaps and software
maps (Fiedler et al. 2020). This motivates further evaluation of the proposed metaphors and techniques by
means of user studies and studies in industry contexts. Further, we want to evaluate the applicability of the
advanced metaphors and techniques to other 2D and 2.5D information visualization techniques. This
includes visualization techniques from the classes of implicit edge representation trees and mapped trees for
hierarchically structured software data (Scheibel et al. 2020c) and topic maps for unstructured or otherwise-
structured software data Atzberger et al. (2021).

(a) (b)

Fig. 25 Two examples for complex software map assemblies: a aggregation and internal labeling (Limberger et al. 2017b).
The resulting space from aggregating nodes is used to embed labels into the software map and b a semi-transparent information
overlay to superimpose and emphasize additional information
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Limberger D, Gropler A, Buschmann S, Döllner J, Wasty B (2018a) OpenLL: an API for dynamic 2D and 3D labeling. In:
Proceedings of the 22nd International Conference on Information Visualisation, IEEE, IV ’18, https://doi.org/10.1109/iV.
2018.00039
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