Probabilistic Graph Programming for Randomized and Evolutionary Algorithms

Timothy Atkinson Detlef Plump Susan Stepney

University of York
Introduction to GP 2
Graph Programming Language GP 2

- Experimental language for graphs.
- Rule-based visual manipulation of graphs.
- Computationally complete.
- Non-deterministic.
An Example: Transitive Closure

A graph is *transitive* if for every directed path \(v_1 \leadsto v_2 \) where \(v_1 \neq v_2 \) there is an edge \(v_1 \rightarrow v_2 \).

Main := link!

\[
\text{link}(a, b, c, d, e: \text{list})
\]

where not edge(1, 3)
An Example: Transitive Closure
P-GP 2:
A Probabilistic Extension of GP 2
Non-determinism in GP 2

- Calling rule-set \mathcal{R} on graph G is non-deterministic in GP 2:

$$G \Rightarrow_{\mathcal{R}} H_i \in \{H \mid G \Rightarrow_{r_i,g} H \text{ and } r_i \in \mathcal{R}\}$$

- We extend GP 2’s syntax to allow a programmer to specify a probability distribution over these outcomes.

- This allows a programmer to specify randomized algorithms, a powerful concept used in broader computer science (see [1]).
A rule-set is executed probabilistically by calling it within square brackets:

\[[r_1, r_2 \ldots r_n] \]

A rule-set called using conventional curly brackets is executed ‘non-deterministically’ as in GP 2:

\{r_1, r_2 \ldots r_n\}

Our extension P-GP 2 is conservative; all existing GP 2 programs are valid and will be executed as before.
A rule-set \mathcal{R} called on host graph G is executed by:

1. Probabilistically pick a rule $r_i \in \mathcal{R}$ according to a weighted distribution.

2. Probabilistically pick a match g for rule r_i according to a uniform distribution.

3. Execute (r_i, g) on G:

$$G \Rightarrow_{r_i,g} H$$
We choose a rule first, using a weighted distribution, from the set of rules with valid matches; \mathcal{R}^G. Each rule r_i has an associated real-valued positive weight given by $w(r_i)$ - specified in square brackets after the rule declaration:

```
grow_loop(n:int) [3.0]
```

Then the probability of choosing r_i from \mathcal{R}^G is

$$\frac{w(r_i)}{\sum_{r_x \in \mathcal{R}^G} w(r_x)}$$
Once rule r_i has been chosen, we choose a match for r_i with uniform probability from the set of valid matches G^r_i. Some match g is chosen with probability

$$
\frac{1}{|G^r_i|}
$$

Yielding an overall definition of the probability distribution P_{G^R} over the set of all possible rule-match pairs G^R:

$$
P_{G^R}(r_i, g) = \frac{w(r_i)}{\sum_{r_x \in \mathcal{R}^G} w(r_x)} \times \frac{1}{|G^r_i|}
$$
Related Work

Other approaches look at *modeling* e.g. Probabilistic GTS (discrete) [2] and Stochastic GTS (continuous) [3]. These are single graph transformation systems with probability distributions over outcomes.

We look at *programming*; sequential graph transformation systems that *algorithmically* transform a graph.
Applications I:
Karger’s Algorithm
• Karger’s algorithm [4] is a probabilistic algorithm for computing the minimum cut of a graph with a known lower bound probability of success.

• The minimum cut of a graph is a minimal set of edges to remove from a graph to produce two disconnected sub-graphs.

• General idea is to repeatedly contract (merge) adjacent nodes until only 2 nodes remain.
Karger’s Algorithm
Consider a global minimum cut of \(c \) edges of graph \(G \) with \(n \) nodes and \(e \) edges:

- The minimum degree of \(G \) must be at least \(c \), and therefore \(e \geq \frac{n \cdot c}{2} \).
- The probability of contracting some edge in the minimum cut is therefore
 \[
 \frac{c}{e} \leq \frac{c}{\frac{n \cdot c}{2}} = \frac{2}{n}
 \]
- The probability of producing the minimum cut (by \textit{never} contracting some edge in the minimum cut) is bounded by:
 \[
 p_n \geq \prod_{i=3}^{n} 1 - \frac{2}{i} = \frac{2}{n(n-1)}
 \]
Karger’s Algorithm in P-GP 2

Main := (three_node; [pick_pair]; delete_edge!; redirect!; cleanup)!

three_node(a,b,c:list)

pick_pair(a,b:list; n:int)

delete_edge(a,b:list; n:int)

redirect(a,b,c:list; n:int)

cleanup(a,b:list)
\[p_n \geq \frac{2}{8(8-1)} = \frac{1}{28} \]
Applications II:

$G(n, p)$ Model for Random Graphs
The $G(n, p)$ Model

The $G(n, p)$ [5] model randomly generates graphs (V, E, s, t) such that:

- $|V| = n$.
- For each pair in $V \times V$, an edge exists with probability p.
Sampling the $G(n, p)$ model in P-GP 2

Main := (pick_edge; [keep_edge, delete_edge])!; unmark_edge!

- **pick_edge(a,b,c:list)**
 - Expects, as input, a fully connected graph with n nodes.

- **unmark_edge(a,b,c:list)**

- **keep_edge(a,b,c:list) [p]**

- **delete_edge(a,b,c:list) [1.0 - p]**
A graph with M edges occurs with probability

$$p^M(1 - p)^{\binom{n}{2} - M}$$

$G(n, 0.4)$, with probability 0.0207:
Applications III:
Evolving Graphs by Graph Programming
Why Evolve Graphs?

Graphs are ubiquitous:
(Neural/Bayesian) Networks, (Quantum) Circuits, Syntax Trees etc.

Evolutionary Algorithms iteratively explore poorly understood domains.

P-GP 2 mutations (hopefully) introduce innovation
Surviving Graphs repopulate
Fitness function selects and removes least fit Graphs

In this work we focus on digital circuit benchmarks.
An Evolutionary Algorithm for learning graphs:

\[o_2 = (i_2 \downarrow i_1) \lor (i_2 \lor i_1) \]
Main := try ([pick_edge]; mark_output!; [mutate_edge]; unmark!)

pick_edge(a, b, c:list)

mark_output(a, b, c:list)

unmark(a:list)

mutate_edge(a, b, c, d:list; s:string)

where s != "OUT"
Edge Mutations
Edge Mutations: [pick_edge]
Edge Mutations: mark_output!

```
 Edge Mutations: mark_output!

```

```graphml
<graph>
  <node id="o1" label="O_1"/>
  <node id="o2" label="O_2"/>
  <node id="i1" label="i_1"/>
  <node id="i2" label="i_2"/>
  <node id="AND" label="AND"/>
  <node id="OR" label="OR"/>
  <node id="NOR" label="NOR"/>
  <edge source="i1" target="AND"/>
  <edge source="AND" target="OR"/>
  <edge source="OR" target="NOR"/>
  <edge source="NOR" target="OR"/>
  <edge source="OR" target="AND"/>
  <edge source="AND" target="OR"/>
  <edge source="OR" target="AND"/>```
Edge Mutations: [mutate_edge]
Edge Mutations: unmark!
EGGP vs. CGP

CGP is a standard algorithm for evolving directed acyclic graphs, and was originally designed for evolving circuits [6].

<table>
<thead>
<tr>
<th>Problem</th>
<th>EGGP Median Evaluations</th>
<th>CGP Median Evaluations</th>
<th>p</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-Bit Odd Parity</td>
<td>38,790</td>
<td>96,372</td>
<td>$10^{-18}$</td>
<td>0.86</td>
</tr>
<tr>
<td>6-Bit Odd Parity</td>
<td>68,032</td>
<td>502,335</td>
<td>$10^{-31}$</td>
<td>0.97</td>
</tr>
<tr>
<td>7-Bit Odd Parity</td>
<td>158,852</td>
<td>1,722,377</td>
<td>$10^{-33}$</td>
<td>0.99</td>
</tr>
<tr>
<td>8-Bit Odd Parity</td>
<td>315,810</td>
<td>7,617,310</td>
<td>$10^{-34}$</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Results from Digital Circuit benchmarks for CGP and EGGP. The $p$ value is from the two-tailed Mann-Whitney $U$ test. Where $p < 0.05$, the effect size from the Vargha-Delaney A test is shown; large effect sizes ($A > 0.71$) are shown in **bold**.
Conclusion
Conclusion

Contributions:

- Extended GP 2 to allow probabilistic rule-call execution.
- Implemented 3 distinct & previously impossible probabilistic graph programs using P-GP 2.

Future Work:

- What other randomized algorithms can we now implement?
- What other randomized algorithms can’t we implement?
- Investigate efficiency of matching strategies e.g. incremental pattern matching.
Thank you!

P-GP 2:
https://github.com/UoYCS-plasma/P-GP2

EGGP:
https://github.com/UoYCS-plasma/EGGP
Rajeev Motwani and Prabhakar Raghavan.  
*Randomized Algorithms.*  

Christian Krause and Holger Giese.  
**Probabilistic graph transformation systems.**  

Reiko Heckel, Georgios Lajios, and Sebastian Menge.  
**Stochastic graph transformation systems.**  
David R. Karger.

**Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm.**

E. N. Gilbert.

**Random graphs.**

Julian F. Miller, editor.

**Cartesian Genetic Programming.**