A systematic approach to constructing families of incremental topology control algorithms using graph transformation

Presentation at ICGT 2018
Toulouse, France, 2018-06-25

Roland Kluge
roland.kluge@es.tu-darmstadt.de
with Michael Stein, Gergely Varró, Andy Schürr, Matthias Hollick, Max Mühlhäuser
Supported by the Cooperative Research Center 1053 "MAKI" – https://tiny.cc/MAKI

Example: da_sense – A hybrid sensor network for Smart Cities ("Digitalstadt Darmstadt") (I)

An Urban Management Platform based on heterogeneous sensor networks
- Traffic: static at traffic lights
- Temperature: mobile on trams
- Noise: mobile via Android app

http://www.da-sense.de/
Example: da_sense – A hybrid sensor network for Smart Cities ("Digitalstadt Darmstadt") (II)

An Urban Management Platform based on heterogeneous sensor networks

- Traffic: static at traffic lights
- Temperature: mobile on trams
- Noise: mobile via Android app

Image Sources:
- Tram: "Die Transparente Stadt" https://www.youtube.com/watch?v=3imyRNylZKo
- Android screenshots and map: http://www.da-sense.de/
Graph-based topology model for Wireless Sensor Networks

Transmission range of n_1

Wireless node n_1

Wireless link e_{12} with link weight $w(e_{12})$

TelosB sensor node
48kB ROM,
10kB RAM,
2xAA battery

Topology control sparsens topologies to improve non-functional property
Topology control by example: kTC algorithm

kTC rule:
"Inactivate a link if (and only if) it is
(i) the weight-maximal link in a triangle and
(ii) at least k-times longer than the weight-minimal link in the triangle."

Input topology

Output topology

- **Active**
- **Inactive**

- Reduced transmission range of n_1

$k=1.2$
The curse of low abstraction in traditional communication system development

Theorem V.1. \(G_{\text{KTC}} \subseteq G_{\text{GG}} \), or equivalently, the diametrical circle of any two nodes \(u, v \in G_{\text{KTC}} \) is empty.

Proof: We will show that \((u, v) \notin G_{\text{GG}} \) implies that \((u, v) \notin G_{\text{KTC}} \). Pick \((u, v) \in G - G_{\text{GG}} \). Then there must exist a \(w \in G \) such that \(w \) lies inside the diametrical circle of \(u \) and \(v \). By the assumption of the UDG, \((u, v) \in G \) implies that \((u, v) \in G_{\text{KTC}} \). Without loss of generality, assume \(u \) and \(v \) are oriented horizontally. The maximum value of \(\min(d(u, w), d(v, w)) \) is then attained on the top or bottom of the diametrical circle where \(d(u, w) = d(v, w) \). The maximum ratio of \(d(u, w) \) to \(d(v, w) \) is thus \(\sqrt{2} \). Since KTC is only defined for \(k < \sqrt{2} \), the edge \((u, v) \) is also discarded by KTC.

Corollary V.2. \(G_{\text{KTC}} \) is planar.

Proof: The Gabriel Graph \(G_{\text{GG}} \) is planar.

Theorem V.3. \(G_{\text{KTC}} = G_{\text{KTC}} \) whenever \(k = 1 \).

Proof: For clarity, we ignore the tie-breaking case, where both XTC and KTC discard the same edge based on IDs. In XTC an edge \((u, v) \) is removed if there is a node \(w \) with \(d(u, w) < d(u, v) \) and \(d(v, w) < d(u, v) \). Nodes \(u, v, \) and \(w \) form a triangle where \((u, v) \) is the longest edge. When \(k = 1 \), KTC exactly lengthens the longest edge.

Corollary V.4. \(G_{\text{XTC}} \subseteq G_{\text{KTC}} \).

Proof: Increasing \(k \) only adds edges.

Image Sources: FlockLab https://www.flocklab.ethz.ch/wiki/chrome/site/wiki_public/observer/outdoor_1.jpg

Kluge et al. | Real-Time Systems Lab | Prof. Dr. Andy Schürr | A systematic approach to constructing families of incremental topology control algorithms using graph transformation
Goal: Support the correct-by-construction development of topology control algorithms

How to specify consistency (declaratively)?
- Formalization, proofs, ...

How to operationalize consistency preservation?
- Localization

(i) Specification:
- Graph theory, ...

(ii) Simulation:
- C, Java, ...

(iii) Testbed:
- C, C++, ...

Limitations ✓
Constraints ✓

How to ensure transparency/traceability?

Model

Code

Iteration

Extensible code gen.

Level of abstraction
MAKI for a better Future Internet
Multi-Mechanismen-Adaption für das Künftige Internet

C: Communication systems
(concrete self-adaptive systems)

B: Adaptation mechanisms
(reusable components for adaptive systems)

A: Construction methods
(models, design patterns, languages)

- Network topologies and topology adaptation
- Specification languages
- Software engineering

P2P Streaming
Mesh Hybrid Tree

C/S Streaming
DASH HLS ...

1. filter()
2. max()
3. join(
4. match(TP, T1, self <- e0 -> n1,
5. n1 <- e1 -> n2),
6. match(TP, T3, self <- e2 -> n3)),
7. e0.weight),
8. count(
9. match(TP, T2, self - e3 -> n4)) = 0
10. execute every match:
11. at(self, TP, T2) add neighbor(n1)

https://www.maki.tu-darmstadt.de/
Unstructured consistency specification

Unstructured formulation

kTC: "Inactivate a link if (and only if) it is
(i) the weight-maximal link in a triangle and
(ii) at least k-times longer than the weight-minimal link in the triangle."

Structured formulation

\[\varphi(e_{12}, e_{13}, e_{32}) = \]
\[\wedge w(e_{12}) > \max(w(e_{13}), w(e_{23})) \wedge w(e_{12}) > k \cdot \min(w(e_{13}), w(e_{23})) \]

Problem 1: Implicit, unstructured, or informal specification of constraints.
Topography control algorithms form families

— Family: common structural pattern
— Algorithm: refinement based on attribute constraints

Problem 2: Insufficient usage of relationships among topology control algorithms
TC Algorithm families are Dynamic Software Product Lines

Advantages: Reuse in of predicates, spec. of topology control reconfiguration

\[
\varphi(e_{12}, e_{13}, e_{32}) = \\
w(e_{12}) > \max(w(e_{13}), w(e_{23})) \wedge \\
w(e_{12}) > k \cdot \min(w(e_{13}), w(e_{23}))
\]
Graph constraints for specifying local consistency properties

"Each inactive link should be part of a triangle for which φ holds"

"No active link should be part of a triangle for which φ holds"

Advantages: expressiveness, formal + domain-specific + operationalizeable
Example: Fulfilled and violated constraints

Example:

\[\varphi(e_{ab}, e_{ac}, e_{cb}) \]

Fulfilled constraints:

\[\varphi(e_{ab}, e_{ac}, e_{cb}) \]

Violated constraints:

\[\varphi(e_{ab}, e_{ac}, e_{cb}) \]
Enforcing and preserving consistency

Consistency enforcement: Recover from any inconsistent state

Consistency preservation: Weak and strong consistency
Recap on consistency preservation

Global consistency properties

implies

Local consistency properties (declarative)

preserves

Topology control algorithm specification (operationalized)

Generic
Algorithm-specific

→ e.g., connectivity
→ e.g., "no ϕ-triangles"

Global consistency properties

implies

Local consistency properties (declarative)

preserves

Topology control algorithm specification (operationalized)

?
Specifying algorithmic implementation using Story-Driven Modeling [FNT+98]

1. Start
2. Find unmarked link
3. Try activating e_{12}
4a. If successful, continue.
4b. If unsuccessful, try inactivating e_{12}
5. Continue in any case.
6. Terminate if no more unmarked links exist.

Spec. Sim. Test.

Kluge et al. | Real-Time Systems Lab | Prof. Dr. Andy Schürr | A systematic approach to constructing families of incremental topology control algorithms using graph transformation
Rule applications may violate consistency!

Apply

\[R_a(e_{12} : \text{Link}) \]

LHS \[e_{12} \]

RHS \[e_{12} \]

at link \(e_{13} \)

\[\varphi(e_{ab}, e_{ac}, e_{cb}) \]
Ensuring inductive consistency preservation

Pairwise refinement

\[R_x \]
\[C_y \]

Repeat for all \((R_x, C_y)\) pairs

Example: Refining \(R_a\) based on \(C_a\)

Advantages: mechanical algorithm, existing tool support

\[\text{Spec.} \quad \text{Sim.} \quad \text{Test.} \]

Refined algorithm specification

Advantages: inductive invariant, strong consistency on termination

Required: proof of termination
Topologies are never stable: Context events and dynamic topology control

Context events (CEs) reflect environmental influences

Example: Link removal rule

\[
\begin{array}{c|c}
\text{LHS} & \text{RHS} \\
1 & 2 \\
\end{array}
\]

- Remove \(e_{12} \)
- Remove \(e_{21} \)

Obstacle

TC

R

-e(\(e_{12} \) : Link)
Context event handlers: Anticipating consistency violation

\[R_e(e_{12} : \text{Link}) \]

\[
\begin{array}{c|c}
\text{LHS} & \text{RHS} \\
\hline
1 & 2 \\
\end{array}
\]

\[R_e(e_{12} : \text{Link}) \]

\[
\begin{array}{c|c}
\text{LHS} & \text{RHS} \\
\hline
1 & 2 \\
\end{array}
\]

\[\text{PAC}_{e,i,2} \]

\[\text{PAC}_{e,i,6} \]

\[\text{Spec.} \quad \text{Sim.} \quad \text{Test.} \]
Consistency preservation by context event handling

— Context event handler for R_e

handle-$R_e(e_{12}: \text{Link})$

— Achieved consistency preservation

Pending context event

Remove e_{12}

Inactivate e_{13}
Recap on specification phase

- **Global consistency properties**
 - Generic
 - Algorithm-specific
 - e.g., connectivity
 - e.g., "no \(\varphi \)-triangles"

- **Local consistency properties** (declarative)

- **Topological control algorithm specification** (operationalized)

- **[HW95, DV14]**
Tool support for simulation and testbed

Simulation

Java API

C Code

Testbed

Spec. Sim. Test.

Ongoing Work: From centralized to distributed topology control algorithm specifications

Centralized-global perspective of TC:
TC: sequential
Topology: global, consistent view

TC: distributed
Topology: local consistent view

Distributed-local perspective of TC:
TC: distributed
Topology: local, inconsistent + monitoring
Computation model

Goal: Characterize concurrent execution + identify potential problems

- **Atomic actions**: rule applications and synchronized view of topology
- **Interleaved execution**: no two events at same point in time
- **Vertex-centric**: A node has 1 process and 1 local-view model

Centralized execution

- TC
- Antic.
- CE
- TC
- Antic.
- CE
- Antic.
- CE
- TC

Distributed execution

1. T
2. T
3. A
4. A
5. A
6. A
7. A
8. A
9. A
10. T

Global control flow

Per-node control flow ("happened-before")
Example: Non-termination of context handling

Pending context event

Liveness problem due to Mutual dependency (necessary)
Return to same state (sufficient)
Take-Home Messages

Goal: Overcome curse of low abstraction in dev. of topology adaptations

Result: Correct-by-construction development methodology TC algorithm families

Ongoing work: Toward distributed-local topology control specifications

(i) **Specification:** Graph theory, ...
(ii) **Simulation:** C++, Java, ...
(iii) **Testbed:** C, Assembler-like, ...

Summary:
- Formalization, proofs, ...
- Localization
- Extensible code gen.
- Feedback & refinement

Supplementary material on GitHub
References

- **eMoflon/cMoflon logos**: Work of the eMoflon developer team. Subject to Fair Use conditions.
- **Peerfact logo**: Multimedia Communications Lab (KOM), TU Darmstadt, https://www.kom.tu-darmstadt.de
- **Henshin logo**: https://www.eclipse.org/henshin/
- **EMF logo**: https://www.eclipse.org/modeling/emf/
- **Android logo**: https://developer.android.com/distribute/marketing-tools/brand-guidelines "The Android robot is reproduced or modified from work created and shared by Google and used according to terms described in the Creative Commons 3.0 Attribution License."
- **TelosB Sensor node**: Wiki Commons, CC-BY-3.0, by Jbasic, https://commons.wikimedia.org/wiki/File:TelosB.jpg
- **Writing Hand**: CC-BY-3.0 US, Rediffusion, https://thenounproject.com/search/?q=hand%20drawing&i=29383
- **Gears**: CC-BY-3.0 US, Pedro Santos https://thenounproject.com/search/?q=gear&i=1030299
- **GitHub Logo**: CC-BY-3.0, Dave Gandy, http://www.flaticon.com/free-icon/github-logo_25231