
A Design Methodology for Self-Optimizing Systems

Jürgen Gausemeier, Ursula Frank, Andreas Schmidt, Daniel Steffen
Heinz Nixdorf Institute, University of Paderborn

Fürstenallee 11, D-33102, Germany
Phone.: +49 (0) 5251/60-6262, Fax: +49 (0) 5251/60-6268

E-Mail: {Juergen.Gausemeier, Ursula.Frank, Andreas.Schmidt, Daniel.Steffen}@hni.upb.de

Holger Giese, Florian Klein, Matthias Tichy
Software Engineering Group, University of Paderborn

Warburger Str. 100, D-33098 Paderborn, Germany
Phone.: +49 (0) 5251/60-3312, Fax: +49 (0) 5251/60-3530

E-Mail: {hg, fklein, mtt}@uni-paderborn.de

Abstract

Innovative self-optimizing systems which go far beyond current approaches for mechatronic

products become possible when systems are enabled to optimize their own behavior at run-

time. Such self-optimizing systems are characterized by their ability to endogenously modify

their objectives in response to changing conditions and autonomously adapt their parameters

and structure and as a result their behavior to fulfill their objectives. This paper outlines a

systematic approach for the development of self-optimizing systems. The approach helps to

reduce the considerable additional development efforts resulting from self-optimization by

employing different forms of patterns throughout the whole development process to enable

the reuse of design knowledge. At first, the employed notion of patterns covers the multiple

disciplines involved as well as different phases of the development process. In addition, the

patterns are used to enable a systematic transition between the different milestones of

conceptual design such as the function hierarchy, the active structure, and the construction

and component structure. The approach is presented using the example of autonomously

driving shuttles which self-optimize their behavior.

1. Introduction

The integration of advanced information technology offers considerable potential for

innovations in the field of conventional mechanical engineering. Most modern mechanical

engineering products already rely on the close interaction between mechanical engineering,

electronical engineering, software engineering and control engineering that is known as

 Page 2 of 23

“mechatronics”. The aim of mechatronics is to improve the behavior of technical systems by

using sensors to obtain information about the environment and the system itself and

processing this information to enable the system to adapt to its current situation.

Given the tremendous pace of development in information technology, we can identify further

options that go far beyond mechatronics – systems with inherent intelligence. We call such

systems “self-optimizing”. Self-optimization can be characterized by the presence of the three

joint actions of self-optimization (cf. [FGK+04], p. 22): (1) analyze current situation, (2)

determine objectives, and (3) adapt system behavior. A self-optimizing system is thus capable

to analyze and detect relevant modifications of the environment or the system itself, to

endogenously modify its objectives in response to changing influence on the technical system

from its surroundings, the user, or the system itself, and to autonomously adapt its behavior

by means of parameter changes or structure changes to achieve its objectives.

The paradigm of self-optimization opens up fascinating prospects for mechanical engineering

and its associated fields. The challenge is to effectively design such self-optimizing systems.

Typically, self-optimizing systems are characterized by the high interconnectivity of its

system elements and to other self-optimizing systems. To enable autonomous adaptation of

their behavior, self-optimizing systems need to have a high degree of freedom concerning

alternative structures and configurations. This implies a shift of decisions that are

conventionally made at design-time towards the deployment phase of the product itself. In the

Collaborative Research Center 614, “Self-Optimizing Concepts and Structures in Mechanical

Engineering” (cf. [SFB-ol]), we are developing a novel design methodology for self-

optimizing systems which addresses this challenge. A very important aspect of the design of

self-optimizing systems constitutes the specification of their behavior. We make use of the

general observation that the most successful reusable building blocks for the interaction and

structuring of complex system at the design level are patterns. Patterns are best characterized

by a problem specific structuring and interaction of elements (cf. [AIS+77]). Each pattern

often defines a partial view on the system in form of a set of roles which has to be realized by

the different system elements. This concept has found widespread use for the development of

complex systems. Design patterns [GHJ+96] and architectural patterns [BMR+96] are very

successfully employed in software engineering. In mechanical engineering and electrical

engineering a slightly more general form of patterns – so called active principles are

frequently used (cf. [PB03]).

 Page 3 of 23

This paper describes our approach by means of an example of autonomously driving shuttles

as parts of a novel transportation system - the New Railway Technology Paderborn [NBP-ol]

project. These shuttles practice self-optimization by exchanging their experience to improve

performance.

We will first review relevant related work for development processes and pattern notions in

Section 2. Then, the development process and its elements are outlined in Section 3. The

conceptual design which rests upon the application of so-called active patterns for self-

optimization follows (Section 4). In Section 5, the elaboration of the conceptual design for the

software by means of design patterns and rigorously defined coordination patterns is

presented. A final conclusion closes the paper.

2. Related Work

Each domain that participate in the development of self-optimizing systems – mechanical

engineering, electrical engineering and software engineering – apply an own specific domain

dependant developmentprocess model, e.g. in mechanical engineering [Rot00] and [PB03], in

digital electronics [Esc93] and in software engineering [Pre94] and [PB96]. For the

development of mechatronic systems, the domain-dependent process models are not sufficient

because they do not consider the synergetic collaboration of the domains with each other. The

key-aspect is within an integrative, cross-domain development process. There are several

approaches for the development of mechatronic systems where the VDI guideline 2206 and

the process model of Isermann constitute two of the most important models.

VDI guideline 2206 “A design methodology for mechatronic systems” depicts the current

consensus of the experts. The result of the first step - the integrative conceptual design - is a

domain-spanning conception of the desired system by all domain-experts, the so-called

principle solution. Based on the principle solution, the subsequent elaboration takes place in

parallel. The emergence of a functioning product that fulfils all requirements is guaranteed by

frequent reconciliations and a coordinated system integration phase [VDI04].

Isermann is focussing on systems with intelligent control which for example include error

detection and adaptation. He proposes an approach for the system design that assumes a

mechanic basic-construction. In an analysis-step, potentials for optimization are identified

which realize functions easier and more cost-efficient on the basis of digital electronics.

Models for the evaluation of the behavior are composed and an information processing is

build up which consists of controlling elements and also in parts optimizing elements [Ise99].

 Page 4 of 23

The Collaborative Research Center 241 “Integrated Mechatronic Systems” (IMES) has

demonstrated the potential of mechatronics to increase performance on several systems

([IBH02], [GSS+00]).

None of today’s approaches are suited for the development of self-optimizing systems. New

requirements for the design methodology result from the paradigm of self-optimization: self-

optimization allows for autonomous decisions at runtime. Not all imaginable behavior needs

to be anticipated before – a great amount of functionality is realized by the use of software

which initiates and implements coordination-, adaptation- and transformation-processes of the

systems. All of this needs to be considered already at the beginning of product development

process. In the course of the work of SFB 614, appropriate approaches for the development of

self-optimizing systems are developed. They are based on the design methodology for

mechatronic systems.

An important aspect of our design methodology is the use of patterns to describe intelligent

behavior of self-optimizing systems in a generalized domain- and application-independent

way and to reuse already successfully applied design knowledge in new contexts. This way

we regard patterns as reusable building blocks for complex system design processes. [LRS01]

brings forward requirements for the discovery, characterization and catalogue of patterns as a

core of the methodology for software adaptivity. However, only patterns for the late

development phases of knowledge-based systems are investigated, such as self-monitoring,

self-diagnosis and self-recovery. Neither there is a concept on how to apply patterns in the

early phases, e.g. when designing the active structure and the principle solution, nor are the

proposed patterns adequate for a cross-domain design of self-optimizing systems.

The Unified Problem-Solving Method Description Language (UPML) brings forward a

concept and specification for the reuse of so-called “problem-solving methods” in the domain

of artificial intelligence [GFR+04]. UPML specifies abstract patterns for problem-solving

processes which describe intelligent behavior. However, the behavior is based on inference-

processes in the sense of rule-based systems only. The approach cannot model a wide range of

intelligent behavior beyond the inference mechanisms. Furthermore, there is no concept for

the combination of the patterns with real mechatronic systems.

Patterns which are to be used for the software of mechatronic or self-optimizing systems must

exhibit special properties. These properties include honoring real-time requirements,

appropriate abstraction, formal semantics, and design for verification.

 Page 5 of 23

Patterns for the design of adaptive and safety critical software systems are presented in

[SFO03]. Those patterns do not respect the real-time requirements of mechatronics. They

additionally lack a formal specification.

Design patterns in the software engineering domain have typically been specified informally

[GHJ+96]. The usage of informally specified patterns for safety critical software is not

appropriate, since the behavior of the resulting software systems is not foreseeable. In the last

years, formal pattern specifications (such as [KFG04], [KFG+03], [SH04]) have been

introduced to overcome this problem. The structure as well as the behavior of the patterns

must be formally specified. Based on these formal specifications, verification techniques like

model checking are applicable. Verification techniques allow for proving that the software

does behave in accordance with its specifications.

In [SH04], patterns are formally specified on a programming language level. For the

considered domain, patterns should be specified on a modeling level, as the abstraction which

is provided by the models allows for easier verification.

The Role-Based Metamodeling Language (RBML) [KFG04] is a formal pattern specification

notation which can be used to express domain-specific patterns. In this approach, a pattern

specification consists of (1) a static pattern specification which describes the structure of the

pattern and (2) an interaction pattern specification which describes constraints on the allowed

interaction between the structural pattern elements. The RBML approach does not support the

specification of behavior which conforms to real-time requirements. In addition, the employed

refinement notion [KFG+03] allows arbitrary refinement and thus does not enable

compositional verification techniques.

Besides the observed lack of appropriate pattern notions for the principle solution as well as

elaboration phase, all existing approaches are restricted to either the mechanical engineering

or software engineering domain. However, for the intended development of self-optimizing

systems the seamless support for reuse of design know-how in form of patterns is required

such that the transitions between results of “key milestones” of the development process, like

requirements, principle solution, and elaboration phase can efficiently be bridged.

 Page 6 of 23

3. Definition and Use of Solution Patterns

The demonstrator of our overall research-project is a rail-bound transportation system

consisting of autonomous shuttle-vehicles for the transport of persons and goods. Several

concepts of self-optimization are validated by means of the transportation system example.

The shuttles shall use the existing railway system, travel in single- or convoy drive-mode and

behave optimal in any situation. Among others, to behave optimal may mean to achieve best

comfort for the passengers. Technically speaking, comfort depends on the movement and the

acceleration of the shuttle-chassis which must be minimized by the implementation of

appropriate compensation measures. The minimization of the acceleration is carried out by an

active suspension/tilt module. Conventional control uses a so-called “skyhook”-approach for

the dampening of the active suspension/tilt module. This approach allows the suspension/tilt

module to adjust to the track-profile in such a way that the shuttle-chassis moves along a

predefined straightened trajectory. However, once the preset trajectory is implemented in

operational mode, this approach does not consider changes in the track-profile which

inevitably occur because of wear-out of the tracks or the like. The aim of a self-optimizing

solution is to provide experience-based trajectories for the shuttles in operational mode and to

make this approach efficient by the cooperation within a whole shuttle community.

The development of self-optimizing systems of the complexity such as the New Railway

Technology Paderborn project can be compared with the design-procedure of mechatronic

systems e.g. in the automobile or aerospace industry. Fundamental decisions are taken in the

early phases of the development process. A domain-spanning conceptual design phase

constitutes how the system is going to be constructed and how the functionality can be

achieved. After that a elaboration of the particular modules is conducted. The requirements

are the starting point of the conceptual design phase. The functionality of the product is

extracted and described in a solution-independent way with the help of a function hierarchy.

Solutions of the participating domains are searched for. These solutions result in a principle

solution that specifies the aimed product concept by a set of coherent partial models.

Essentially, these models are the active structure, which describes the connectivity of the

system elements, the raw construction and component structure which designates the shape of

the single elements and their position in space and the behavior of the system.

Starting from the principle solution, the partial solutions are concretized with applying

domain-specific methodologies. In the case of software controlling the self-optimization

behavior, the development is carried out with the help of active patterns for self-optimization

 Page 7 of 23

(APSO) which specify schemas for the system-behavior. APSO are selected at conceptual

design phase and realized by well-proven software patterns later on.

Different types of solutions are applied for the design of self-optimizing systems. We have

developed a classification schema for these solutions and their concretization levels. As a

superordinated concept we use the term pattern or solution pattern. According to [AIS+77] a

pattern describes a recurrent problem within our environment and the core of a solution for

this problem. The core of the solution pattern is specified by the characteristics of its elements

and their collaboration. In our context, solution patterns are applied to work-out product

concepts, drafts, realizations and implementations; they lead to mechanical and software

components. Figure 1 depicts the overall classification scheme.

Solution PatternSolution Pattern

Active Pattern for
Self-Optimization

Active Pattern for
Self-OptimizationActive Principle of

mechanical engin.
Active Principle of
mechanical engin.

Pattern of
control engineering

Pattern of
control engineeringSoftware Pattern

(esp. Coordination Pattern)

Software Pattern
(esp. Coordination Pattern)

Active Principle of
electrical engin.

Active Principle of
electrical engin.

Active Principle
(based on

physical effects)

Active Principle
(based on

physical effects)
Pattern of Informa-

tion Processing
Pattern of Informa-

tion Processing

System Element System Element System Element System Element

Element of the Active Structure

Component Component Component Software
Component

Software
Component

Software
Component

Element of the Construction Structure Element of the Component Structure

In
cr

ea
si

ng
C

on
cr

et
iz

at
io

n

Figure 1: Categories of Patterns

We differentiate solution patterns that are based upon physical effects and patterns that

contain information processing. We call solution patterns that rely on physical effects as

“Active Principles”. In particular, active principles of mechanical engineering and electrical

engineering are relevant for self-optimizing systems. According to the definition of Pahl /

Beitz [PB03] active principles describe the relationship of physical effects and material and

geometrical characteristics (active geometry, active motions and material properties).

To a great extend, self-optimization is realized by information technology. We subsume

pattern of control engineering, self-optimization and software engineering under the general

term of “Pattern of Information Processing”. Software patterns consist of a problem-solution

 Page 8 of 23

pair which makes well-proven software engineering knowledge applicable for new problem

contexts. Patterns of control engineering specify how a plant is modelled, influenced or

quantities are measured and observed. Active patterns for self-optimization (APSO) depict

schematic solutions for the self-optimization process as described in [FGK+04]. We use the

following terms at the elaboration phase: system elements constitute the elements of the active

structure which is designed at the phase of conceptual design. They represent parts of the

system which are not developed in detail, yet. After a further concretization, system elements

with a spatial geometry are transformed into components of the construction structure and

software-containing elements are transformed into software components of the component-

structure. Figure 2 depicts at which phases of the design process solution patterns are applied

and how they relate to each other.

generate
force

carry
load

transmit
force

Function Hierarchy Active Structure Construction Structure

Hinge

Cylinder

Arbor

SE Hydraulic Cylinder

select
parameter

Knowledge-
Base

Controller
APSO Knowledge

Use

AP
Cylinder

AP Arbor

AP
Hinge

Lower Beam

Upper Beam Hydraulic Cylinder

Component Structure

Controller

Know-
ledge-
Base

Know-
ledge-
Base

Legend
Function

Solution Pattern

System Element

Component

Logical Grouping

Energy Flow

Information Flow
Compliance

Increasing Concretization

SP Distributed
Knowledge

Controller

Affiliation

Figure 2: Transitions from Functions to Components

The design methodology is based upon two basic steps - first the conceptual design, here

reduced to the transition from the function hierarchy to the active structure; second the

elaboration which describes the transition from the active structure to the construction and

component structure. Starting point for the first step is the function hierarchy, which specifies

the product functionality. The function hierarchy primarily results from the requirements.

Solutions are determined for specific functions. These may be active principles, software

patterns, patterns of control engineering, active patterns for self-optimization or solution

 Page 9 of 23

elements, if already known. By solution elements we understand a realized and well-proven

solution for the fulfilment of one or more functions. In general, this means a module, a

component, a group of components or a software component, which relies on one or more

solution patterns. The linkage of all system elements by means of energy-, material-, and

information-flow leads to the active structure. The active structure describes the physical and

logical interaction between all participating system elements. Already known solution

elements are treated as system elements within the active structure. Furthermore, ideas about

the shape of the system arise. Therefore system elements with a spatial geometry are going to

be concretized towards modules and components and are positioned in space under special

consideration of geometric constraints. Thus, details about the number, shape, position,

alignment and type of active surface and active location can be made. The subsequent

elaboration develops the construction structure with geometry-determining components and

component groups. In parallel, information-processing system elements are concretized,

assembled to software components and depicted in the component structure. This is done on

the basis of software patterns where applicable. The development of software for self-

optimization using active patterns of self-optimization is detailed in the following sections.

4. Active Patterns for Self-Optimization

Active patterns for self-optimization (APSO) realize functions of self-optimization1. APSO

constitute templates which specify generally accepted, autonomous and intelligent behaviour

of self-optimizing systems with the help of principle-concepts, application-scenarios,

structures, behaviour and methods (Figure 3). APSO cover the whole self-optimization process

or only parts of it. Essential is the fact that system statechanges are caused, supported and / or

deployed by autonomous, intelligent behaviour. APSO are iteratively concretized throughout

the whole system development process.

The principle concept characterizes the basic idea of the APSO. It is used to allow the engineer

an intuitive access to the APSO.

Application-scenarios depict situations in which the APSO have already been applied

successfully in the past. Those scenarios shall help the engineer to select an appropriate APSO

for the task at hand.

1 Apart from conventional functions of mechanical engineering, we research so-called functions of

self-optimization such as autonomous planning, cooperation, and learning for the description of the
functionality of self-optimizing systems.

 Page 10 of 23

The structure specifies necessary participating system elements and their relations among

each other. One or more behavior models describe adaptation processes, which an APSO shall

execute.

Active Pattern for
Self-Optimization

APSO

Methods
Realization of the specified behavior by

methods such as Case-Based
Reasoning, Neuro-Fuzzy Deduction or

Reinforcement Learning

Structure
Necessary participating system

elements and their relations

A

Principle-Concept
Generally understandable

description for the selection of
APSO

query

answer

Knowledge
Carrier

Knowledge
User

Knowledge
User

Knowledge
Carrier

Knowledge-
Base

Knowledge
Ontologie

Case-Based Reasoning

Past
Solution

Adapted
Solution

Current
Problem

CBR-
Process

Behavior
Specification of selfoptimization-process,

in particular state-changes

Target
State

Current
State Adaptation process

1. Query
knowledge

2. Explore
environment

3. Learn
results

Application-Scenario
Applications where APSO have been

successfully applied.

Track-
section y

Track-
section x

Knowledge-
Base

Knowledge-
Base

Knowledge-
Base

Figure 3: The Active Pattern for Self-Optimization „Experience-Based Exploration“

The focus is on the modelling of autonomous intelligent behavior, which activates, supports

and/or executes the statechange. The following example is based on an adaptation process

consisting of three activities:

1. Query knowledge: Knowledge of other systems is used to better achieve a task at

hand.

2. Explore environment: The environment of the system is explored to enrich and extent

the queried knowledge such that new experience is build up.

3. Learn results: New experience that was made when exploring the environment is

learned and distributed among the participating system elements so that the

knowledge-level of the whole system is continually increased with time passing by.

Finally it is shown how a system is transformed from a given current state to a desired target-

state by the use of specific methods, e.g. Case-Based Reasoning for the query and adaptation

of knowledge.

 Page 11 of 23

In the course of the conceptual design phase the experience-based exploration of trajectories

is elaborated in the application-scenario “Cooperative Learning when Driving on a Track”.

Starting point is the active structure of a rail-bound transportation system. Figure 4. shows an

extract of the active structure where shuttles drive on track-segments that power and direct the

shuttles. The active structure also describes how track deviations affect shuttles negatively.

According to the above mentioned task, the function hierarchy of the conventional rail-bound

transportation system is extended by functions of self-optimization like “Determine Track-

profile”, “Calculate Trajectory”, and “Adapt Behavior”.

Shuttle

Switch

Track
Segment

Convoy
0..*coordinatesDistance

Coordination

2..* consists of

dr
iv

es
 o

n

0.
.2

dr
iv

es
 o

n
3

1..2

po
w

er
s

an
d

di
re

ct
s

co
or

di
na

te
s*

*

Segment
Control 1..10

1..3

*

connects
connectscoordinates

D
ev

ia
tio

n
of

 T
ra

ck

 Application Scenario
„Cooperative Learning when
Driving on a Track“

Legend

Set of system elements

Logical grouping

Logical relation

Direction of reading

x..y Number of elements that
are in relation with each
other

Effect

Undesirable effect

Undesirable logical
relation

Figure 4: Extract of an Active Structure for a Rail-bound Transportation System

The active pattern for self-optimization is converted into the active structure as follows.

According to the structure aspect of the APSO at least one knowledge carrier and one

knowledge user is necessary. The upper part of figure 5 depicts the realization of the active

patterns for self-optimization at the type-level. The middle part shows the instantiated active

structure for this application-scenario. Decisive for the solution is that shuttle Sh2 changes its

state on the grounds of the access to the experience of others. In this case, the internal states

are based on a mental state-space model2. The state-change is achieved by the above

mentioned three activities: 1. query knowledge, 2. explore the environment – here: exploring

the track-profile, and 3. learn from results and distribute the experience among all other

system elements such as shuttles and switches.

2 Mental state-space models are used in the domains of epistemology and artificial intelligence to model thought
processes such as planning and problem solving (cf. [MA02]).

 Page 12 of 23

Behavior: 1. Query Knowledge
 2. Explore Environment
 3. Learn Results

Method: Case-Based Reasoning

Shuttle

Switch

Track
Segment

Convoy
0..*coordinatesDistance

Coordination

2..* consists of

3

1..2

*

*

Segment
Control 1..10

1..3

1..2

*

connects
connectscoordinates

Shuttle Sh1
Knowledge

Carrier

Shuttle Sh2
Knowledge User

Segment
Control x
Knowledge

Carrier

Track-
segment x

Knowledge
Carrier

Active Structure „Cooperative Learning when Driving
on a Track“ (instantiated)

Active Structure „Rail-Bound Transportation System“ (extract)

Application Scenario
„Cooperative Learning when
Driving on a Track“

Legend

System element

Set of system elements

Logical grouping

Energyflow

Informationflow

Logical relation

Direction of reading

x..y
Number of elements that
are in relation with each
other

Influence

Undesirable influence

Undesirable logical
relation

Undesirable
energyflow

APSO
Experience-Based

Exploration

Link to applied
solution patterns
Link to methods that
shall be used

Link to a behavior that
shall be implemented

Query
Segment X

Knowledge-
Base

CBR-Process

Current
problem

Past
Solution

Adapted
Solution S1

S0

S2

Knowledge
Segment X

Figure 5: Active Structure for „Cooperative Learning when Driving on a Track“

The lower part of figure 5 depicts components of the active pattern of self-optimization

“Experience-based Exploration” where above mentioned activities are carried out by the

method of Case-Based Reasoning. This method provides a multi-criteria search for similar

problems as well as the adaptation of historic solutions to the current situation. This way the

knowledge of shuttle Sh1 in terms of successfully deployed past trajectories is used for the

adaptation of the behavior of shuttle Sh2. Starting in state S0, this initial knowledge is the

basis for the exploration of an optimum trajectory. The exploration activity may lead to one of

the two subsequent states S1 and S2. Shuttle Sh2 of the active structure contains links to the

 Page 13 of 23

applied APSO and the semi-formal specification of the behavior as well as to the deployed

method. The exploration of reference trajectories in a multi-agent system setting is detailed in

[SSO+04].

5. Elaboration – From the Principle Solution to the Component Structure

In order to realize the transition from the active structure to the component structure, (1) the

relevant elements of the active structure are mapped to a corresponding UML component

architecture, (2) active pattern present in the active structure have to be realized by related

software patterns, and (3) additional requirements might be realized by additional software

pattern (e.g., to enable the exchange of software at run-time).

Here, we further consider step (2) and present how to realize the above employed active

pattern for self-optimization named “Experience-Based Exploration” in the software design.

At first, we have to identify the corresponding general, reusable design pattern describing the

main actors and sequences of events at the information processing level. Based on this, we

have to identify in a second step the related more detailed coordination pattern which also

fulfills the domain specific requirements. We also have to make sure that the relevant timing

constraints are present and that the pattern can be subject to formal verification.

Design Pattern

Abstracting from the physical aspects of the system and focusing on the knowledge-related

interactions, we have the Knowledge Carrier, the Knowledge Users and the Subject Matter as

the principal elements (roles) of the pattern. The Knowledge Carrier has knowledge about a

specific Subject Matter. The Knowledge Users ask the Knowledge Carrier about the Subject

Matter and use the obtained information to guide them in their exploration. They may report

their experiences back to the Knowledge Carrier. These relationships are documented by a

UML Class Diagram (see Figure 6).

 Page 14 of 23

Knowledge
User

Subject
Matter 11

*

explores

knows

Knowledge
Carrier

1

*

1

informs

Figure 6: Class Diagram Specifying the Main Actors and their Relationships

Nonetheless, a more detailed description of the interactions is required in order for the pattern

to be useful. The exchanges between the objects, or rather the roles they are playing, are thus

documented by means of one or more scenarios. Scenarios are idealized sequences of

concrete messages passed between roles that serve to illustrate desirable behavior.

The most important generic scenario for this pattern is depicted by the UML Sequence

Diagram in Figure 7. It describes a Knowledge Carrier tailoring an optimized response to the

specific query of a Knowledge User, who then proceeds to explore the Subject Matter based

on this recommendation. The resulting experiences are sent back to the Knowledge Carrier,

who processes them and makes them available for future users. The diagram is annotated with

comments in bold face that point out the abstract steps (Query, Exploration, Learning) and the

characteristic joint actions of self-optimization, (1) analyze current situation, (2) determine

objectives, and (3) adapt system behavior.

Our application-scenario “Cooperative learning when driving on a track” can be seen as a

specific instantiation of this pattern. The shuttle receives a trajectory encoded as a

mathematical function that allows it to adapt its active suspension to the actual profile of the

current track section. The parameters of the trajectory can be adapted online in order to fine-

tune it in accordance with the current objectives, e.g. weighting efficiency against perceived

comfort. The trajectory is based on the experiences of the shuttles that have previously used

the track section.

The corresponding self-optimization process is distributed between the shuttles and the track

section. The shuttle analyzes its current status concerning preferences and objectives, payload,

and energy reserves (first analysis of the current situation) and communicates the results to

the track section. Based on the communicated configuration and the stored experiences, the

 Page 15 of 23

track section now computes a suitably optimized trajectory reflecting the shuttle’s preferences

with respect to its objectives (determination of objectives) and transmits it to the shuttle.

: Knowledge Carrier: Subject Matter

query()

use()

sendExperience()

Exploration

Adapt system behavior

Analyze current situation

adapt()

evaluate()

processExperience()

Query experience

: Knowledge User

Determine objectives

computeReply()

Learning

Analyze current situation
checkStatus()

reply()

Figure 7: An Idealized Exchange between Knowledge Carrier and Knowledge User

The shuttle adapts the reference input for the active suspension system based on the trajectory

(adaptation of the system behavior). After leaving the track section, the shuttle analyses the

perceived comfort and the expended energy (second analysis of the current situation) and

transmits its experiences back to the track section. The new experience is incorporated into

the track section’s repository and thus used in the trajectory optimization of subsequent

shuttles. The optimization process thus depends on a distributed analysis of the current

situation – the assessment of the shuttle’s state by the shuttle itself (first analysis of the

current situation) and the reports about the track profile by the preceding shuttles (second

analysis of the current situation).

 Page 16 of 23

Coordination Pattern

Based on the design pattern, we can now derive a coordination pattern [GTB+03] that

precisely defines the behavior that is required of the actors. While the more informal scenario

captures the underlying idea in an intuitively accessible form, it does not specify which

behavior is required and which is optional or incidental, nor does it provide any timing

information. It is therefore insufficient as the sole specification of the – typically safety-

critical – software of a mechatronic system. Coordination patterns are specifically suited to

this task, as they allow the specification of verifiable real-time requirements. The diagram in

Figure 8 describes the abstract structure of the derived coordination pattern. The two roles are

linked by a connector representing the communication channel. On the conceptual level, the

roles are linked by the communication protocol which is specified in the behavior of the two

roles.

CarrierUser

Experience Sharing

Figure 8: The Actors are Mapped to Roles of a Coordination Pattern

Our approach is based on the current UML 2.0 specification [OMG03], which in turn is based

on ROOM [SGW94] and UML/RT [SR98]. Structure is specified using component diagrams;

behavior is specified by a real-time variant of UML state machines called Real-Time

Statecharts [BG03].

Real-Time coordination patterns (in short coordination patterns) as in Figure 8 capture the

coordination behavior between abstract entities. They are subsequently applied to

components, which need to implement the required coordination behavior in a way that

respects all specified constraints. Coordination patterns consist of a number of abstract entities

(roles) and their coordination behavior (role behavior). The role structure is specified by

component diagrams; roles are displayed as ports. Communication between roles is indicated

by connectors between the participating roles.

Each role of the coordination pattern is specified by a protocol state machine, i.e. a Real-Time

Statechart without side effects other than message sending. As the focus of coordination

 Page 17 of 23

patterns is on the exact specification of the (safe) interaction between components, they

largely abstract from internal behavior that is irrelevant for the determination of

communication behavior. Important steps like analysis, determination of goals or learning

therefore do not explicitly figure in the specification, but are abstracted into non-deterministic

behavior, bounded by appropriate time guards.

The User queries the Carrier for data which encode the experience. If it does not receive a

reply before a certain deadline, the user has to handle the situation without this information.

If, however, the information is provided in time, the user employs it and sends feedback based

on the gathered experience (see Figure 9).

Waiting

t d0 ref�

No Reference
available

Reference
available

/ carrier.sendExperience()

/ carrier.query()

[,]d drol roh

user.reply() /

Figure 9: The Real Time Behavior of the User

The Carrier basically waits for requests by users and the experiences they send as feedback

(see Figure 10).

carrier.sendExperience() /

carrier.query() / user.reply()

[,d dmin ref]

Waiting

Figure 10: The Real Time Behavior of the Carrier

The behavior of the connector role is also specified by Real-Time Statecharts. The connector

models the assumed properties of the communication channels like message losses, message

delays, etc.

Safety critical constraints on the behavior are the final part of a coordination pattern

specification. The constraints are written in OCL-RT [FM02] or a temporal logic (ATCTL).

 Page 18 of 23

In order to ensure that no unsafe behavior due to a violation of the constraints may occur, the

model checker Uppaal [LPY97] is used to verify that all constraints for the specified behavior

hold under the assumed channel behavior [BGH+04]. If the constraints hold, the pattern

specification is valid and is stored in a pattern library for future reuse.

The software of a self-optimizing system consists of a number of components, which are

connected via ports and channels. The components are developed by reusing some of the

verified coordination patterns, which are stored in the pattern library. First, an appropriate

coordination pattern is loaded from the pattern library. The roles of the pattern are added to

the component as ports. A refinement of the role behavior is then added as parallel state to the

behavior of the component. The refinement must respect certain restrictions in order that the

results of the pattern verification still hold for the component. A component typically does not

only refine one pattern role. Instead several different pattern roles are refined and added to the

component behavior. Typically, a synchronization behavior is also added which coordinates

between the refined roles.

Real-Time Statecharts are used for the specification of discrete event-based behavior. As

mechatronic and self-optimize systems contain continuous behavior, continuous controllers

are added to the components [BTG04, GBS+04]. The states of the discrete behavior are

annotated by controller structures. Only, the controllers are executed during runtime which

are associated with the current state of the Real-Time Statechart. This integration of

continuous behavior (controllers) and discrete event-based behavior (Real-Time Statecharts)

is specified using hybrid components and Hybrid Statecharts. Special fading functions are

used for the specification of switching between the states and the annotated controller

structures.

Track SectionShuttle

Experience Sharing

User Carrier

Figure 11: Shuttle and Registry Implement the Coordination Pattern

Based on the system structure, we define the components Shuttle and Track Section and apply

the coordination pattern Experience Sharing to them. The Shuttle acts as the Knowledge User,

 Page 19 of 23

the Track Section as the Knowledge Carrier. The pattern thus specifies the way shuttle and

track section exchange reference trajectories and gathered experiences. The relevant part of

the component structure in specified by the component diagram in Figure 11.

The Shuttle (Knowledge User) queries the Track Section (Knowledge Carrier) for a reference

trajectory. If it does not receive a reply before a certain deadline, the shuttle assumes that no

trajectory is available and switches to a robust controller that can safely operate the active

suspension system without a reference trajectory, albeit in a less comfortable and efficient

manner. If, however, the trajectory is provided in time, the shuttle uses it for traversing the

track section and sends feedback based on the experience gathered through its sensors to the

track section (see Figure 9).

NoInputAvailable

:BC[Robust] :Sensor[Off]

AllInputsAvailable

:BC[Reference] :Sensor[On]

SensorAvailable

:BC[Absolute] :Sensor[On]

TrajectoryAvailable

:BC[Robust] :Sensor[Off]

[sensorFails][sensorFails] [sensorEnabled] [sensorEnabled]

[referenceAvaiable]

[noReference]

[referenceAvaiable]

[noReference]

d1

d2

d1

d2

/ carrier.sendExperience()

/ carrier.query()

[,]d drol roh

user.reply() /No Reference
available

Waiting
t d0 ref�

Reference
available

/ carrier.sendExperience()

/ carrier.query()

[,]d drol roh

user.reply() /No Reference
available

Waiting
t d0 ref�

Reference
available

Figure 12: Composition of the Shuttle Component

 Page 20 of 23

The Shuttle component is defined by combining and refining all applicable coordination

patterns (see Figure 12). In order to allow the shuttle to obtain the trajectory for the upcoming

track section in time while still communicating with the current section, the experience

sharing pattern is executed twice in parallel. It is refined by specifying additional internal

communications where before there were only non-deterministic constraints.

The Hybrid Statechart in the diagram’s upper half specifies which controller should be active,

depending on the available inputs. When data from the acceleration sensor is available, the

Absolute controller may be used. If additionally the Track Section has provided a trajectory,

the Reference controller is activated. When the required inputs fail, the system needs to

quickly switch back to the Robust controller to ensure safe behavior (see [GBS+04]).

During the elaboration phase the active patterns for self-optimization, which are part of the

principle solution, are refined using design patterns and subsequently coordination patterns.

These coordination patterns further enable the development of systems of interacting hybrid

software components which can be compositionally verified to ensure safety.

6. Conclusion

Self-optimization makes innovative mechanical systems possible which go far beyond current

approaches for mechatronics. The outlined approach addresses this challenge by means of a

specifically tailored design methodology. It main elements are a development process

adjusted to the specific needs of self-optimizing systems, the exploration of design

alternatives during the principle design, the reuse of the building blocks for self-optimization

in form of active patterns of self-optimization in the principle solution, and their subsequent

refinement during the elaboration of the information processing with coordination patterns

within UML component diagrams.

The additional development efforts for self-optimizing systems can be drastically reduced as

the generalized pattern concept is employed throughout the whole development process to

enable the reuse of design knowledge. The application of the pattern covers the multiple

disciplines involved such as mechanical engineering and software engineering as well as

different phases such as the conceptual design and the elaboration. Furthermore, it bridges the

results of the different phases as the active patterns are used to derive an adequate active

structure from the function hierarchy and enable to derive the UML design by refining the

active structure and included active patterns by means of component structures and

coordination patterns.

 Page 21 of 23

References

[AIS+77] ALEXANDER, C.; ISHIKAWA, S.; SILVERSTEIN, M.; JACOBSON, M.; FIKSDAHL-KING, I.; ANGEL,
A.: A Pattern Language. Oxford University Press, New York, 1977

[BG03] BURMESTER, S.; GIESE, H.: The Fujaba Real-Time Statechart PlugIn. In Proc. of the Fujaba
Days 2003, Kassel, Germany, October 2003

[BGH+04] BURMESTER, S.; GIESE, H.; HIRSCH, M.; SCHILLING, D.: Incremental design and formal
verification with UML/RT in the FUJABA real-time tool suite. In Proc. of the International
Workshop on Specification and validation of UML models for Real Time and embedded
Systems, SVERTS2004, Satellite Event of the 7th International Conference on the Unified
Modeling Language, UML2004, October 2004

[BMR+96] BUSCHMANN, F.; MEUNIER, R.; ROHNERT, H.; SOMMERLAD, P.: Pattern-Oriented Software
Architecture - A System of Patterns. Wiley, 1996

[BTG04] BURMESTER, S.; TICHY, M.; GIESE, H.: Modeling Reconfigurable Mechatronic Systems with
Mechatronic UML. In Proc. of Model Driven Architecture: Foundations and Applications
(MDAFA 2004), Linköping, Sweden, June 2004

[Esc93] ESCHERMANN, B.: Funktionaler Entwurf digitaler Schaltungen - Methoden und CAD-Techni-
ken. Springer Verlag, Berlin, 1993

[FGK+04] FRANK, U.; GIESE, H.; KLEIN, F.; OBERSCHELP, O.; SCHMIDT, A.; SCHULZ, B.; VÖCKING, H.;
WITTING, K.; GAUSEMEIER, J. (Hrsg.): Selbstoptimierende Systeme des Maschinenbaus -
Definitionen und Konzepte. HNI-Verlagsschriftenreihe Band 155, Paderborn, 2004

[FM02] FLAKE, S.; MUELLER, W.: An OCL Extension for Real-Time Constraints. In Object Modeling
with the OCL: The Rationale behind the Object Constraint Language, volume 2263 of LNCS,
pages 150–171. Springer, February 2002

[GBS+04] GIESE, H.; BURMESTER, S.; SCHÄFER, W.; OBERSCHELP, O.: Modular Design and Verification
of Component-Based Mechatronic Systems with Online-Reconfiguration. In Proc. of 12th
ACM SIGSOFT Foundations of Software Engineering 2004 (FSE 2004), Newport Beach,
USA. ACM, November 2004

[GFR+04] GAUSEMEIER, J.; FRANK, U.; REDENIUS, A.; STEFFEN, D.: Development of Self-Optimizing
Systems. In: Proceedings of, Mechatronics & Robotics 2004 (MechRob 2004 (IEEE)). 13.-15.
September 2004, Sascha Eysoldt Verlag, Aachen, 2004

[GHJ+96] GAMMA, E.; HELM, R.; JOHNSON, R.; VLISSIDES, S, J.: Entwurfsmuster. Addison-Wesley,
Bonn, 1996

[GTB+03] GIESE, H.; TICHY, M.; BURMESTER, S.; SCHÄFER, W.; FLAKE, S.: Towards the Compositional
Verification of Real-Time UML Designs. In Proc. of the European Software Engineering
Conference (ESEC), Helsinki, Finland, pages 38–47. ACM Press, September 2003

[GSS+00] GRUBER, S.; SEMSCH, M.; STROTHJOHANN, F.; BREUER, B.: Elements of an Mechatronic
Vehicle Corner. In: 1st IFAC Conference on Mechatronic Systems. Darmstadt, 2000

[IBH02] ISERMANN, R.; BREUER, B.; HARTNAGEL, H.L. (Hrsg.): Mechatronische Systeme für den
Maschinenbau - Ergebnisse aus dem Sonderforschungsbereich 241 „Integrierte mechanisch
elektronische Systeme für den Maschinenbau (IMES)“. WILEY-VCH Verlag GmbH,
Weinheim, 2002

[Ise99] ISERMANN, R.: Mechatronische Systeme - Grundlagen. Springer Verlag, Berlin, 1999

 Page 22 of 23

[KFG+03] KIM, D.-K.; FRANCE, R.; GHOSH, S.; SONG, E.: A UML-Based Metamodeling Language to
Specify Design Patterns. In: Proceedings of the 2nd Workshop in Software Model
Engineering (WiSME, UML 2003 Workshop). San Francisco, USA, 2003

[KFG04] KIM, D.-K.; FRANCE, R.; GHOSH, S.: A UML-based language for specifying domain-specific
patterns. In: Journal of Visual Languages and Computing 15 (2004). Nr. 3–4, S. 265–289

[LPY97] LARSEN, K.; PETTERSSON, P.; YI, W.: UPPAAL in a Nutshell. Springer International Journal
of Software Tools for Technology, 1(1), 1997

[LRS01] LADDAGA, R.; ROBERTSON, P.; SHROBE, H.: Results of the Second International Workshop on
Self-adaptive Software. In: Robertson, P.; Shrobe, H.; Laddaga, R. (Eds.): The Second
International Workshop on Self-Adaptive Software (IWSAS 2001), LNCS 1936, 2001.
Springer-Verlag, Berlin, Heidelberg, 2001

[MA02] MEYSTEL, M.A.; ALBUS, J.S.: Intelligent Systems - Architecture, Design and Control. Wiley
Series on Intelligent Systems, John Wiley & Sons, New York, 2002

[NBP-ol] Homepage of the New Railway Technology Paderborn project (NBP), http://nbp-
www.upb.de/en/index.php

[OMG03] OBJECT MANAGEMENT GROUP. UML 2.0 Superstructure Specification, 2003. Document
ptc/03-08-02

[PB96] POMBERGER, G.; BLASCHEK, G.: Software-Engineering. Carl Hanser Verlag, 2. Auflage,
München, Wien, 1996

[PB03] PAHL G. BEITZ W.: Konstruktionslehre – Methoden und Anwendungen, Springer-Verlag,
5. Auflage, Berlin, 2003

[Pre94] PRESSMANN, R.S.: Software Engineering - a practioneer´s approach. McGraw-Hill, 3. Auf-
lage, 1994

[Rot00] ROTH, K.-H.: Konstruieren mit Konstruktionskatalogen. Band 1 Konstruktionslehre, Springer
Verlag, 3. Auflage, Berlin, 2000

[SFB-ol] Homepage of the Collaborative Research Center 614 „ Self-Optimizing Concepts and
Structures in Mechanical Engineering”, http://www.sfb614.de/eng/index_e.htm

[SFO03] STEINBERG, R.; FJELLHEIM, R.; OLSEN, S.A.: Design pattern for safety-critical
knowledgebased systems. In: Vermesan, A.; Coenen, F. (Hrsg.): Validation and Verification
of Knowledge Based Systems - Theory, Tools, Practice. Kluwer Academic Publishers,
Boston, 2003, S. 131–147

[SGW94] SELIC, B.; GULLEKSON, G.; WARD, P.: Real-Time Object-Oriented Modeling. John Wiley &
Sons, Inc., 1994

[SH04] SOUNDARAJAN, N.; HALLSTROM, J.O.: Responsibilities and Rewards: Specifying Design
Patterns. In: Proceedings of the 26th International Conference on Software Engineering.
Edinburgh, Scotland, IEEE Computer Society, 2004, S. 666–675

[SR98] SELIC, B.; RUMBAUGH, J.: Using UML for Modeling Complex Real-Time Systems.
Techreport, ObjectTime Limited, 1998

[SSO+04] SCHEIDELER, P.; OBERSCHELP, O.; SCHMIDT, A.; HESTERMEYER, T.: Distributed Optimization
of Reference Trajectories for Active Suspension with Multi-Agent Systems. In: Proceedings
of 18th European Simulation Multi-Conference (ESM 2004). 13.-16.Juni 2004, Magdeburg,
Deutschland

 Page 23 of 23

[VDI04] The Association of Engineers (VDI): Design methodology for mechatronic systems. VDI
2206, VDI Guidelines, Beuth Verlag, 2004

ACKNOWLEDGEMENT

This contribution was developed in the course of the Collaborative Research Center “Self-

Optimizing Concepts and Structures in Mechanical Engineering” (Speaker: Prof. Gausemeier)

funded by the German Research Foundation (DFG) under grant number SFB614.

