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Abstract 

Innovative self-optimizing systems which go far beyond current approaches for mechatronic 

products become possible when systems are enabled to optimize their own behavior at run-

time. Such self-optimizing systems are characterized by their ability to endogenously modify 

their objectives in response to changing conditions and autonomously adapt their parameters 

and structure and as a result their behavior to fulfill their objectives. This paper outlines a 

systematic approach for the development of self-optimizing systems. The approach helps to 

reduce the considerable additional development efforts resulting from self-optimization by 

employing different forms of patterns throughout the whole development process to enable 

the reuse of design knowledge. At first, the employed notion of patterns covers the multiple 

disciplines involved as well as different phases of the development process. In addition, the 

patterns are used to enable a systematic transition between the different milestones of 

conceptual design such as the function hierarchy, the active structure, and the construction 

and component structure. The approach is presented using the example of autonomously 

driving shuttles which self-optimize their behavior. 

1. Introduction 

The integration of advanced information technology offers considerable potential for 

innovations in the field of conventional mechanical engineering. Most modern mechanical 

engineering products already rely on the close interaction between mechanical engineering, 

electronical engineering, software engineering and control engineering that is known as 
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“mechatronics”. The aim of mechatronics is to improve the behavior of technical systems by 

using sensors to obtain information about the environment and the system itself and 

processing this information to enable the system to adapt to its current situation.  

Given the tremendous pace of development in information technology, we can identify further 

options that go far beyond mechatronics – systems with inherent intelligence. We call such 

systems “self-optimizing”. Self-optimization can be characterized by the presence of the three 

joint actions of self-optimization (cf. [FGK+04], p. 22): (1) analyze current situation, (2) 

determine objectives, and (3) adapt system behavior. A self-optimizing system is thus capable 

to analyze and detect relevant modifications of the environment or the system itself, to 

endogenously modify its objectives in response to changing influence on the technical system 

from its surroundings, the user, or the system itself, and to autonomously adapt its behavior 

by means of parameter changes or structure changes to achieve its objectives. 

The paradigm of self-optimization opens up fascinating prospects for mechanical engineering 

and its associated fields. The challenge is to effectively design such self-optimizing systems. 

Typically, self-optimizing systems are characterized by the high interconnectivity of its 

system elements and to other self-optimizing systems. To enable autonomous adaptation of 

their behavior, self-optimizing systems need to have a high degree of freedom concerning 

alternative structures and configurations. This implies a shift of decisions that are 

conventionally made at design-time towards the deployment phase of the product itself. In the 

Collaborative Research Center 614, “Self-Optimizing Concepts and Structures in Mechanical 

Engineering” (cf. [SFB-ol]), we are developing a novel design methodology for self-

optimizing systems which addresses this challenge. A very important aspect of the design of 

self-optimizing systems constitutes the specification of their behavior.  We make use of the 

general observation that the most successful reusable building blocks for the interaction and 

structuring of complex system at the design level are patterns. Patterns are best characterized 

by a problem specific structuring and interaction of elements (cf. [AIS+77]). Each pattern 

often defines a partial view on the system in form of a set of roles which has to be realized by 

the different system elements. This concept has found widespread use for the development of 

complex systems. Design patterns [GHJ+96] and architectural patterns [BMR+96] are very 

successfully employed in software engineering. In mechanical engineering and electrical 

engineering a slightly more general form of patterns – so called active principles are 

frequently used (cf. [PB03]).  
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This paper describes our approach by means of an example of autonomously driving shuttles 

as parts of a novel transportation system - the New Railway Technology Paderborn [NBP-ol] 

project. These shuttles practice self-optimization by exchanging their experience to improve 

performance. 

We will first review relevant related work for development processes and pattern notions in 

Section 2. Then, the development process and its elements are outlined in Section 3. The 

conceptual design which rests upon the application of so-called active patterns for self-

optimization follows (Section 4). In Section 5, the elaboration of the conceptual design for the 

software by means of design patterns and rigorously defined coordination patterns is 

presented. A final conclusion closes the paper. 

2. Related Work 

Each domain that participate in the development of self-optimizing systems – mechanical 

engineering, electrical engineering and software engineering – apply an own specific domain 

dependant developmentprocess model, e.g. in mechanical engineering [Rot00] and [PB03], in 

digital electronics [Esc93] and in software engineering [Pre94] and [PB96]. For the 

development of mechatronic systems, the domain-dependent process models are not sufficient 

because they do not consider the synergetic collaboration of the domains with each other. The 

key-aspect is within an integrative, cross-domain development process. There are several 

approaches for the development of mechatronic systems where the VDI guideline 2206 and 

the process model of Isermann constitute two of the most important models. 

VDI guideline 2206 “A design methodology for mechatronic systems” depicts the current 

consensus of the experts. The result of the first step - the integrative conceptual design - is a 

domain-spanning conception of the desired system by all domain-experts, the so-called 

principle solution. Based on the principle solution, the subsequent elaboration takes place in 

parallel. The emergence of a functioning product that fulfils all requirements is guaranteed by 

frequent reconciliations and a coordinated system integration phase [VDI04].   

Isermann is focussing on systems with intelligent control which for example include error 

detection and adaptation. He proposes an approach for the system design that assumes a 

mechanic basic-construction. In an analysis-step, potentials for optimization are identified 

which realize functions easier and more cost-efficient on the basis of digital electronics. 

Models for the evaluation of the behavior are composed and an information processing is 

build up which consists of controlling elements and also in parts optimizing elements [Ise99]. 
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The Collaborative Research Center 241 “Integrated Mechatronic Systems” (IMES) has 

demonstrated the potential of mechatronics to increase performance on several systems 

([IBH02], [GSS+00]).  

None of today’s approaches are suited for the development of self-optimizing systems. New 

requirements for the design methodology result from the paradigm of self-optimization: self-

optimization allows for autonomous decisions at runtime. Not all imaginable behavior needs 

to be anticipated before – a great amount of functionality is realized by the use of software 

which initiates and implements coordination-, adaptation- and transformation-processes of the 

systems. All of this needs to be considered already at the beginning of product development 

process. In the course of the work of SFB 614, appropriate approaches for the development of 

self-optimizing systems are developed. They are based on the design methodology for 

mechatronic systems.  

An important aspect of our design methodology is the use of patterns to describe intelligent 

behavior of self-optimizing systems in a generalized domain- and application-independent 

way and to reuse already successfully applied design knowledge in new contexts. This way 

we regard patterns as reusable building blocks for complex system design processes. [LRS01] 

brings forward requirements for the discovery, characterization and catalogue of patterns as a 

core of the methodology for software adaptivity. However, only patterns for the late 

development phases of knowledge-based systems are investigated, such as self-monitoring, 

self-diagnosis and self-recovery. Neither there is a concept on how to apply patterns in the 

early phases, e.g. when designing the active structure and the principle solution, nor are the 

proposed patterns adequate for a cross-domain design of self-optimizing systems.  

The Unified Problem-Solving Method Description Language (UPML) brings forward a 

concept and specification for the reuse of so-called “problem-solving methods” in the domain 

of artificial intelligence [GFR+04]. UPML specifies abstract patterns for problem-solving 

processes which describe intelligent behavior. However, the behavior is based on inference-

processes in the sense of rule-based systems only. The approach cannot model a wide range of 

intelligent behavior beyond the inference mechanisms. Furthermore, there is no concept for 

the combination of the patterns with real mechatronic systems.  

Patterns which are to be used for the software of mechatronic or self-optimizing systems must 

exhibit special properties. These properties include honoring real-time requirements, 

appropriate abstraction, formal semantics, and design for verification. 
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Patterns for the design of adaptive and safety critical software systems are presented in 

[SFO03]. Those patterns do not respect the real-time requirements of mechatronics. They 

additionally lack a formal specification. 

Design patterns in the software engineering domain have typically been specified informally 

[GHJ+96]. The usage of informally specified patterns for safety critical software is not 

appropriate, since the behavior of the resulting software systems is not foreseeable. In the last 

years, formal pattern specifications (such as [KFG04], [KFG+03], [SH04]) have been 

introduced to overcome this problem. The structure as well as the behavior of the patterns 

must be formally specified. Based on these formal specifications, verification techniques like 

model checking are applicable. Verification techniques allow for proving that the software 

does behave in accordance with its specifications. 

In [SH04], patterns are formally specified on a programming language level. For the 

considered domain, patterns should be specified on a modeling level, as the abstraction which 

is provided by the models allows for easier verification. 

The Role-Based Metamodeling Language (RBML) [KFG04] is a formal pattern specification 

notation which can be used to express domain-specific patterns. In this approach, a pattern 

specification consists of (1) a static pattern specification which describes the structure of the 

pattern and (2) an interaction pattern specification which describes constraints on the allowed 

interaction between the structural pattern elements. The RBML approach does not support the 

specification of behavior which conforms to real-time requirements. In addition, the employed 

refinement notion [KFG+03] allows arbitrary refinement and thus does not enable 

compositional verification techniques. 

Besides the observed lack of appropriate pattern notions for the principle solution as well as 

elaboration phase, all existing approaches are restricted to either the mechanical engineering 

or software engineering domain. However, for the intended development of self-optimizing 

systems the seamless support for reuse of design know-how in form of patterns is required 

such that the transitions between results of “key milestones” of the development process, like 

requirements, principle solution, and elaboration phase can efficiently be bridged. 
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3. Definition and Use of Solution Patterns 

The demonstrator of our overall research-project is a rail-bound transportation system 

consisting of autonomous shuttle-vehicles for the transport of persons and goods. Several 

concepts of self-optimization are validated by means of the transportation system example. 

The shuttles shall use the existing railway system, travel in single- or convoy drive-mode and 

behave optimal in any situation. Among others, to behave optimal may mean to achieve best 

comfort for the passengers. Technically speaking, comfort depends on the movement and the 

acceleration of the shuttle-chassis which must be minimized by the implementation of 

appropriate compensation measures. The minimization of the acceleration is carried out by an 

active suspension/tilt module. Conventional control uses a so-called “skyhook”-approach for 

the dampening of the active suspension/tilt module. This approach allows the suspension/tilt 

module to adjust to the track-profile in such a way that the shuttle-chassis moves along a 

predefined straightened trajectory. However, once the preset trajectory is implemented in 

operational mode, this approach does not consider changes in the track-profile which 

inevitably occur because of wear-out of the tracks or the like. The aim of a self-optimizing 

solution is to provide experience-based trajectories for the shuttles in operational mode and to 

make this approach efficient by the cooperation within a whole shuttle community. 

The development of self-optimizing systems of the complexity such as the New Railway 

Technology Paderborn project can be compared with the design-procedure of mechatronic 

systems e.g. in the automobile or aerospace industry. Fundamental decisions are taken in the 

early phases of the development process. A domain-spanning conceptual design phase 

constitutes how the system is going to be constructed and how the functionality can be 

achieved. After that a elaboration of the particular modules is conducted. The requirements 

are the starting point of the conceptual design phase. The functionality of the product is 

extracted and described in a solution-independent way with the help of a function hierarchy. 

Solutions of the participating domains are searched for. These solutions result in a principle 

solution that specifies the aimed product concept by a set of coherent partial models. 

Essentially, these models are the active structure, which describes the connectivity of the 

system elements, the raw construction and component structure which designates the shape of 

the single elements and their position in space and the behavior of the system. 

Starting from the principle solution, the partial solutions are concretized with applying 

domain-specific methodologies. In the case of software controlling the self-optimization 

behavior, the development is carried out with the help of active patterns for self-optimization 
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(APSO) which specify schemas for the system-behavior. APSO are selected at conceptual 

design phase and realized by well-proven software patterns later on. 

Different types of solutions are applied for the design of self-optimizing systems. We have 

developed a classification schema for these solutions and their concretization levels. As a 

superordinated concept we use the term pattern or solution pattern. According to [AIS+77] a 

pattern describes a recurrent problem within our environment and the core of a solution for 

this problem. The core of the solution pattern is specified by the characteristics of its elements 

and their collaboration. In our context, solution patterns are applied to work-out product 

concepts, drafts, realizations and implementations; they lead to mechanical and software 

components. Figure 1 depicts the overall classification scheme. 
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Figure 1: Categories of Patterns 

We differentiate solution patterns that are based upon physical effects and patterns that 

contain information processing. We call solution patterns that rely on physical effects as 

“Active Principles”. In particular, active principles of mechanical engineering and electrical 

engineering are relevant for self-optimizing systems. According to the definition of Pahl / 

Beitz [PB03] active principles describe the relationship of physical effects and material and 

geometrical characteristics (active geometry, active motions and material properties). 

To a great extend, self-optimization is realized by information technology. We subsume 

pattern of control engineering, self-optimization and software engineering under the general 

term of “Pattern of Information Processing”. Software patterns consist of a problem-solution 
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pair which makes well-proven software engineering knowledge applicable for new problem 

contexts. Patterns of control engineering specify how a plant is modelled, influenced or 

quantities are measured and observed. Active patterns for self-optimization (APSO) depict 

schematic solutions for the self-optimization process as described in [FGK+04]. We use the 

following terms at the elaboration phase: system elements constitute the elements of the active 

structure which is designed at the phase of conceptual design. They represent parts of the 

system which are not developed in detail, yet. After a further concretization, system elements 

with a spatial geometry are transformed into components of the construction structure and 

software-containing elements are transformed into software components of the component-

structure. Figure 2 depicts at which phases of the design process solution patterns are applied 

and how they relate to each other.  
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Figure 2: Transitions from Functions to Components 

The design methodology is based upon two basic steps - first the conceptual design, here 

reduced to the transition from the function hierarchy to the active structure; second the 

elaboration which describes the transition from the active structure to the construction and 

component structure. Starting point for the first step is the function hierarchy, which specifies 

the product functionality. The function hierarchy primarily results from the requirements. 

Solutions are determined for specific functions. These may be active principles, software 

patterns, patterns of control engineering, active patterns for self-optimization or solution 
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elements, if already known. By solution elements we understand a realized and well-proven 

solution for the fulfilment of one or more functions. In general, this means a module, a 

component, a group of components or a software component, which relies on one or more 

solution patterns. The linkage of all system elements by means of energy-, material-, and 

information-flow leads to the active structure. The active structure describes the physical and 

logical interaction between all participating system elements. Already known solution 

elements are treated as system elements within the active structure. Furthermore, ideas about 

the shape of the system arise. Therefore system elements with a spatial geometry are going to 

be concretized towards modules and components and are positioned in space under special 

consideration of geometric constraints. Thus, details about the number, shape, position, 

alignment and type of active surface and active location can be made. The subsequent 

elaboration develops the construction structure with geometry-determining components and 

component groups. In parallel, information-processing system elements are concretized, 

assembled to software components and depicted in the component structure. This is done on 

the basis of software patterns where applicable. The development of software for self-

optimization using active patterns of self-optimization is detailed in the following sections.   

4. Active Patterns for Self-Optimization 

Active patterns for self-optimization (APSO) realize functions of self-optimization1. APSO 

constitute templates which specify generally accepted, autonomous and intelligent behaviour 

of self-optimizing systems with the help of principle-concepts, application-scenarios, 

structures, behaviour and methods (Figure 3). APSO cover the whole self-optimization process 

or only parts of it. Essential is the fact that system statechanges are caused, supported and / or 

deployed by autonomous, intelligent behaviour. APSO are iteratively concretized throughout 

the whole system development process.  

The principle concept characterizes the basic idea of the APSO. It is used to allow the engineer 

an intuitive access to the APSO.  

Application-scenarios depict situations in which the APSO have already been applied 

successfully in the past. Those scenarios shall help the engineer to select an appropriate APSO 

for the task at hand.  

                                                 
1 Apart from conventional functions of mechanical engineering, we research so-called functions of  

self-optimization such as autonomous planning, cooperation, and learning for the description of the 
functionality of self-optimizing systems. 
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The structure specifies necessary participating system elements and their relations among 

each other. One or more behavior models describe adaptation processes, which an APSO shall 

execute.  

Active Pattern for 
Self-Optimization

APSO

Methods
Realization of the specified behavior by

methods such as Case-Based 
Reasoning, Neuro-Fuzzy Deduction or

Reinforcement Learning

Structure
Necessary participating system 

elements and their relations

A

Principle-Concept
Generally understandable

description for the selection of 
APSO

query

answer

Knowledge
Carrier

Knowledge
User

Knowledge
User

Knowledge
Carrier

Knowledge-
Base

Knowledge
Ontologie

Case-Based Reasoning

Past
Solution

Adapted
Solution

Current
Problem

CBR-
Process

Behavior
Specification of selfoptimization-process, 

in particular state-changes

Target
State

Current
State Adaptation process

1. Query 
knowledge

2. Explore
environment

3. Learn
results

Application-Scenario
Applications where APSO have been

successfully applied.

Track-
section y

Track-
section x

Knowledge-
Base

Knowledge-
Base

Knowledge-
Base

 

Figure 3: The Active Pattern for Self-Optimization „Experience-Based Exploration“ 

The focus is on the modelling of autonomous intelligent behavior, which activates, supports 

and/or executes the statechange. The following example is based on an adaptation process 

consisting of three activities: 

1. Query knowledge: Knowledge of other systems is used to better achieve a task at 

hand. 

2. Explore environment: The environment of the system is explored to enrich and extent 

the queried knowledge such that new experience is build up. 

3. Learn results: New experience that was made when exploring the environment is 

learned and distributed among the participating system elements so that the 

knowledge-level of the whole system is continually increased with time passing by. 

Finally it is shown how a system is transformed from a given current state to a desired target-

state by the use of specific methods, e.g. Case-Based Reasoning for the query and adaptation 

of knowledge. 
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In the course of the conceptual design phase the experience-based exploration of trajectories 

is elaborated in the application-scenario “Cooperative Learning when Driving on a Track”. 

Starting point is the active structure of a rail-bound transportation system. Figure 4. shows an 

extract of the active structure where shuttles drive on track-segments that power and direct the 

shuttles. The active structure also describes how track deviations affect shuttles negatively.  

According to the above mentioned task, the function hierarchy of the conventional rail-bound 

transportation system is extended by functions of self-optimization like “Determine Track-

profile”, “Calculate Trajectory”, and “Adapt Behavior”.  
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Figure 4: Extract of an Active Structure for a Rail-bound Transportation System 

The active pattern for self-optimization is converted into the active structure as follows. 

According to the structure aspect of the APSO at least one knowledge carrier and one 

knowledge user is necessary. The upper part of figure 5 depicts the realization of the active 

patterns for self-optimization at the type-level. The middle part shows the instantiated active 

structure for this application-scenario. Decisive for the solution is that shuttle Sh2 changes its 

state on the grounds of the access to the experience of others. In this case, the internal states 

are based on a mental state-space model2. The state-change is achieved by the above 

mentioned three activities: 1. query knowledge, 2. explore the environment – here: exploring 

the track-profile, and 3. learn from results and distribute the experience among all other 

system elements such as shuttles and switches.  

                                                 
2 Mental state-space models are used in the domains of epistemology and artificial intelligence to model thought 
processes such as planning and problem solving (cf. [MA02]).  
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Behavior: 1. Query Knowledge
     2. Explore Environment
     3. Learn Results

Method: Case-Based Reasoning
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Figure 5: Active Structure for „Cooperative Learning when Driving on a Track“ 

The lower part of figure 5 depicts components of the active pattern of self-optimization 

“Experience-based Exploration” where above mentioned activities are carried out by the 

method of Case-Based Reasoning. This method provides a multi-criteria search for similar 

problems as well as the adaptation of historic solutions to the current situation. This way the 

knowledge of shuttle Sh1 in terms of successfully deployed past trajectories is used for the 

adaptation of the behavior of shuttle Sh2. Starting in state S0, this initial knowledge is the 

basis for the exploration of an optimum trajectory. The exploration activity may lead to one of 

the two subsequent states S1 and S2. Shuttle Sh2 of the active structure contains links to the 
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applied APSO and the semi-formal specification of the behavior as well as to the deployed 

method. The exploration of reference trajectories in a multi-agent system setting is detailed in 

[SSO+04]. 

5. Elaboration – From the Principle Solution to the Component Structure 

In order to realize the transition from the active structure to the component structure, (1) the 

relevant elements of the active structure are mapped to a corresponding UML component 

architecture, (2) active pattern present in the active structure have to be realized by related 

software patterns, and (3) additional requirements might be realized by additional software 

pattern (e.g., to enable the exchange of software at run-time).  

Here, we further consider step (2) and present how to realize the above employed active 

pattern for self-optimization named “Experience-Based Exploration” in the software design. 

At first, we have to identify the corresponding general, reusable design pattern describing the 

main actors and sequences of events at the information processing level. Based on this, we 

have to identify in a second step the related more detailed coordination pattern which also 

fulfills the domain specific requirements. We also have to make sure that the relevant timing 

constraints are present and that the pattern can be subject to formal verification.  

Design Pattern 

Abstracting from the physical aspects of the system and focusing on the knowledge-related 

interactions, we have the Knowledge Carrier, the Knowledge Users and the Subject Matter as 

the principal elements (roles) of the pattern. The Knowledge Carrier has knowledge about a 

specific Subject Matter. The Knowledge Users ask the Knowledge Carrier about the Subject 

Matter and use the obtained information to guide them in their exploration. They may report 

their experiences back to the Knowledge Carrier. These relationships are documented by a 

UML Class Diagram (see Figure 6). 
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Figure 6: Class Diagram Specifying the Main Actors and their Relationships 

Nonetheless, a more detailed description of the interactions is required in order for the pattern 

to be useful. The exchanges between the objects, or rather the roles they are playing, are thus 

documented by means of one or more scenarios. Scenarios are idealized sequences of 

concrete messages passed between roles that serve to illustrate desirable behavior. 

The most important generic scenario for this pattern is depicted by the UML Sequence 

Diagram in Figure 7. It describes a Knowledge Carrier tailoring an optimized response to the 

specific query of a Knowledge User, who then proceeds to explore the Subject Matter based 

on this recommendation. The resulting experiences are sent back to the Knowledge Carrier, 

who processes them and makes them available for future users. The diagram is annotated with 

comments in bold face that point out the abstract steps (Query, Exploration, Learning) and the 

characteristic joint actions of self-optimization, (1) analyze current situation, (2) determine 

objectives, and (3) adapt system behavior. 

Our application-scenario “Cooperative learning when driving on a track” can be seen as a 

specific instantiation of this pattern. The shuttle receives a trajectory encoded as a 

mathematical function that allows it to adapt its active suspension to the actual profile of the 

current track section. The parameters of the trajectory can be adapted online in order to fine-

tune it in accordance with the current objectives, e.g. weighting efficiency against perceived 

comfort. The trajectory is based on the experiences of the shuttles that have previously used 

the track section.  

The corresponding self-optimization process is distributed between the shuttles and the track 

section. The shuttle analyzes its current status concerning preferences and objectives, payload, 

and energy reserves (first analysis of the current situation) and communicates the results to 

the track section. Based on the communicated configuration and the stored experiences, the 
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track section now computes a suitably optimized trajectory reflecting the shuttle’s preferences 

with respect to its objectives (determination of objectives) and transmits it to the shuttle. 
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Figure 7: An Idealized Exchange between Knowledge Carrier and Knowledge User 

The shuttle adapts the reference input for the active suspension system based on the trajectory 

(adaptation of the system behavior). After leaving the track section, the shuttle analyses the 

perceived comfort and the expended energy (second analysis of the current situation) and 

transmits its experiences back to the track section. The new experience is incorporated into 

the track section’s repository and thus used in the trajectory optimization of subsequent 

shuttles. The optimization process thus depends on a distributed analysis of the current 

situation – the assessment of the shuttle’s state by the shuttle itself (first analysis of the 

current situation) and the reports about the track profile by the preceding shuttles (second 

analysis of the current situation). 
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Coordination Pattern 

Based on the design pattern, we can now derive a coordination pattern [GTB+03] that 

precisely defines the behavior that is required of the actors. While the more informal scenario 

captures the underlying idea in an intuitively accessible form, it does not specify which 

behavior is required and which is optional or incidental, nor does it provide any timing 

information. It is therefore insufficient as the sole specification of the – typically safety-

critical – software of a mechatronic system. Coordination patterns are specifically suited to 

this task, as they allow the specification of verifiable real-time requirements. The diagram in 

Figure 8 describes the abstract structure of the derived coordination pattern. The two roles are 

linked by a connector representing the communication channel. On the conceptual level, the 

roles are linked by the communication protocol which is specified in the behavior of  the two 

roles. 

CarrierUser

Experience Sharing

 

Figure 8: The Actors are Mapped to Roles of a Coordination Pattern  

Our approach is based on the current UML 2.0 specification [OMG03], which in turn is based 

on ROOM [SGW94] and UML/RT [SR98]. Structure is specified using component diagrams; 

behavior is specified by a real-time variant of UML state machines called Real-Time 

Statecharts [BG03]. 

Real-Time coordination patterns (in short coordination patterns) as in Figure 8 capture the 

coordination behavior between abstract entities. They are subsequently applied to 

components, which need to implement the required coordination behavior in a way that 

respects all specified constraints. Coordination patterns consist of a number of abstract entities 

(roles) and their coordination behavior (role behavior). The role structure is specified by 

component diagrams; roles are displayed as ports. Communication between roles is indicated 

by connectors between the participating roles.  

Each role of the coordination pattern is specified by a protocol state machine, i.e. a Real-Time 

Statechart without side effects other than message sending. As the focus of coordination 
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patterns is on the exact specification of the (safe) interaction between components, they 

largely abstract from internal behavior that is irrelevant for the determination of 

communication behavior. Important steps like analysis, determination of goals or learning 

therefore do not explicitly figure in the specification, but are abstracted into non-deterministic 

behavior, bounded by appropriate time guards. 

The User queries the Carrier for data which encode the experience. If it does not receive a 

reply before a certain deadline, the user has to handle the situation without this information. 

If, however, the information is provided in time, the user employs it and sends feedback based 

on the gathered experience (see Figure 9). 

Waiting

t d0 ref�

No Reference
available

Reference
available

/ carrier.sendExperience()

/ carrier.query()

[ , ]d drol roh

user.reply() /

 

Figure 9: The Real Time Behavior of the User 

The Carrier basically waits for requests by users and the experiences they send as feedback 

(see Figure 10). 

carrier.sendExperience() /

carrier.query() / user.reply()

[ ,d dmin ref]

Waiting

 

Figure 10: The Real Time Behavior of the Carrier 

The behavior of the connector role is also specified by Real-Time Statecharts. The connector 

models the assumed properties of the communication channels like message losses, message 

delays, etc.  

Safety critical constraints on the behavior are the final part of a coordination pattern 

specification. The constraints are written in OCL-RT [FM02] or a temporal logic (ATCTL). 
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In order to ensure that no unsafe behavior due to a violation of the constraints may occur, the 

model checker Uppaal [LPY97] is used to verify that all constraints for the specified behavior 

hold under the assumed channel behavior [BGH+04]. If the constraints hold, the pattern 

specification is valid and is stored in a pattern library for future reuse. 

The software of a self-optimizing system consists of a number of components, which are 

connected via ports and channels. The components are developed by reusing some of the 

verified coordination patterns, which are stored in the pattern library. First, an appropriate 

coordination pattern is loaded from the pattern library. The roles of the pattern are added to 

the component as ports. A refinement of the role behavior is then added as parallel state to the 

behavior of the component. The refinement must respect certain restrictions in order that the 

results of the pattern verification still hold for the component. A component typically does not 

only refine one pattern role. Instead several different pattern roles are refined and added to the 

component behavior. Typically, a synchronization behavior is also added which coordinates 

between the refined roles. 

Real-Time Statecharts are used for the specification of discrete event-based behavior. As 

mechatronic and self-optimize systems contain continuous behavior, continuous controllers 

are added to the components [BTG04, GBS+04]. The states of the discrete behavior are 

annotated by controller structures. Only, the controllers are executed during runtime which 

are associated with the current state of the Real-Time Statechart. This integration of 

continuous behavior (controllers) and discrete event-based behavior (Real-Time Statecharts) 

is specified using hybrid components and Hybrid Statecharts. Special fading functions are 

used for the specification of switching between the states and the annotated controller 

structures.  

Track SectionShuttle

Experience Sharing

User Carrier
 

Figure 11: Shuttle and Registry Implement the Coordination Pattern 

Based on the system structure, we define the components Shuttle and Track Section and apply 

the coordination pattern Experience Sharing to them. The Shuttle acts as the Knowledge User, 
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the Track Section as the Knowledge Carrier. The pattern thus specifies the way shuttle and 

track section exchange reference trajectories and gathered experiences. The relevant part of 

the component structure in specified by the component diagram in Figure 11. 

The Shuttle (Knowledge User) queries the Track Section (Knowledge Carrier) for a reference 

trajectory. If it does not receive a reply before a certain deadline, the shuttle assumes that no 

trajectory is available and switches to a robust controller that can safely operate the active 

suspension system without a reference trajectory, albeit in a less comfortable and efficient 

manner. If, however, the trajectory is provided in time, the shuttle uses it for traversing the 

track section and sends feedback based on the experience gathered through its sensors to the 

track section (see Figure 9). 

NoInputAvailable

:BC[Robust] :Sensor[Off]

AllInputsAvailable

:BC[Reference] :Sensor[On]

SensorAvailable

:BC[Absolute] :Sensor[On]

TrajectoryAvailable

:BC[Robust] :Sensor[Off]

[sensorFails][sensorFails] [sensorEnabled] [sensorEnabled]

[referenceAvaiable]

[noReference]

[referenceAvaiable]

[noReference]

d1

d2

d1

d2

/ carrier.sendExperience()

/ carrier.query()

[ , ]d drol roh

user.reply() /No Reference
available

Waiting
t d0 ref�

Reference
available

/ carrier.sendExperience()

/ carrier.query()

[ , ]d drol roh

user.reply() /No Reference
available

Waiting
t d0 ref�

Reference
available

 

Figure 12: Composition of the Shuttle Component 
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The Shuttle component is defined by combining and refining all applicable coordination 

patterns (see Figure 12). In order to allow the shuttle to obtain the trajectory for the upcoming 

track section in time while still communicating with the current section, the experience 

sharing pattern is executed twice in parallel. It is refined by specifying additional internal 

communications where before there were only non-deterministic constraints. 

The Hybrid Statechart in the diagram’s upper half specifies which controller should be active, 

depending on the available inputs. When data from the acceleration sensor is available, the 

Absolute controller may be used. If additionally the Track Section has provided a trajectory, 

the Reference controller is activated. When the required inputs fail, the system needs to 

quickly switch back to the Robust controller to ensure safe behavior (see [GBS+04]). 

During the elaboration phase the active patterns for self-optimization, which are part of the 

principle solution, are refined using design patterns and subsequently coordination patterns. 

These coordination patterns further enable the development of systems of interacting hybrid 

software components which can be compositionally verified to ensure safety. 

6. Conclusion 

Self-optimization makes innovative mechanical systems possible which go far beyond current 

approaches for mechatronics. The outlined approach addresses this challenge by means of a 

specifically tailored design methodology. It main elements are a development process 

adjusted to the specific needs of self-optimizing systems, the exploration of design 

alternatives during the principle design, the reuse of the building blocks for self-optimization 

in form of active patterns of self-optimization in the principle solution, and their subsequent 

refinement during the elaboration of the information processing with coordination patterns 

within UML component diagrams. 

The additional development efforts for self-optimizing systems can be drastically reduced as 

the generalized pattern concept is employed throughout the whole development process to 

enable the reuse of design knowledge. The application of the pattern covers the multiple 

disciplines involved such as mechanical engineering and software engineering as well as 

different phases such as the conceptual design and the elaboration. Furthermore, it bridges the 

results of the different phases as the active patterns are used to derive an adequate active 

structure from the function hierarchy and enable to derive the UML design by refining the 

active structure and included active patterns by means of component structures and 

coordination patterns. 
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