
!"#$%&'#$"()"*&#$+"(,"'(-.''/012.++%"*03%'+&+4+'(56*(
(7/5+8.*"'9'+":+"#$%&;(.%(,"*(<%&="*'&+>+(1/+',.:(

!

!"#$%&'#$"()"*&#$+"(,"'(-.''/012.++%"*03%'+&+4+'(56*(
7/5+8.*"'9'+":+"#$%&;(.%(,"*(<%&="*'&+>+(1/+',.:(?(@A(

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

B"2&C(D"22"*(?(E/F"*+(-&*'#$5"2,(?(D&2.,()*.#$.(
(

!"##$%&'("#)*+&,'-.%'"&'/01$)#2.%+$&#$3'"&3'
45&"6+)"775'859$3'!%.,%"66+&,':"&,;",$'

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

<%&="*'&+>+'="*2.G(1/+',.:(

!"#$"%&'()"*+,-./0)%'1(2"%0.3-'.4-52*+,-0.6(2"%0($#"#$"%2,-7.
!"#$!#%&'()#$*+&",-+./"/.",&)#0$1#23#"()-#&$4"#'#$5%/."0+&",-$"-$4#2$$
!#%&'()#-$*+&",-+./"/.",62+7"#8$4#&+".."#2&#$/"/.",62+7"'()#$!+&#-$'"-4$$
"9$:--#&$;/#2$)&&<=>>4-/?4@-/?4#>$+/2%7/+2?$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
$
80"9-'*"2:2*9-'$(&.;%2*3(1.<=>=.
)&&<=>>"-7,?%/?%-"@<,&'4+9?4#>1#2.+6?)&9$
$
A9$*#%#-$5+.+"'BCDBEEFG$5,&'4+9$
H#.?=IEGJCKLLBGMMEFNL$>$O+P=$LEME$
Q@R+".=$1#2.+6S%-"@<,&'4+9?4#$
$
!"#$T()2"7&#-2#")#$?-+,0"*+,-.!-'"+,2-.3-*.@(**%A;$(220-'A/0*2"252*.)B'.
C%)2D('-*E*2-12-+,0"7.(0.3-'.80"9-'*"2:2.;%2*3(1$U"24$)#2+%'6#6#/#-$
1,-$4#-$52,7#'',2#-$4#'$V+'',@5.+&&-#2@:-'&"&%&'$7;2$T,7&U+2#'W'	&#()-"0$
+-$4#2$X-"1#2'"&Y&$5,&'4+9?$$
$
!+'$R+-%'02"<&$"'&$%2)#/#22#()&."()$6#'();&3&?$$
!2%(0=$4,(%<,"-&$Z9/V$R+64#/%26$
.
/CC6.>F>GAHFH<.
/C!6.IJKAGAKFIHFA=FHAF.
$
[%6.#"()$,-."-#$1#2\77#-&."()&$+%7$4#9$5%/."0+&",-''#21#2$4#2$X-"1#2'"&Y&$5,&'4+9=$
X]^$)&&<=>><%/?%/?%-"@<,&'4+9?4#>1,..&#P&#>NCBC>ELCL>$
X]*$%2-=-/-=4#=0,/1=_BM@,<%'@ELCL_$
`)&&<=>>-/-@2#',.1"-6?,26>%2-=-/-=4#=0,/1=_BM@,<%'@ELCL_a$

Abstract

Pattern matching is a well-established concept in the functional programming
community. It provides the means for concisely identifying and destructuring
values of interest. This enables a clean separation of data structures and
respective functionality, as well as dispatching functionality based on more
than a single value. Unfortunately, expressive pattern matching facilities are
seldomly incorporated in present object-oriented programming languages.

We present a seamless integration of pattern matching facilities in an
object-oriented and dynamically typed programming language: Newspeak.
We describe language extensions to improve the practicability and integrate
our additions with the existing programming environment for Newspeak.

This report is based on the first author’s master’s thesis.

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Report Structure . 3

2 Background 5
2.1 Pattern Matching . 5
2.2 Pattern Matching and Object-Orientation 9
2.3 Pattern Matching and Dynamic Typing 9
2.4 Design Objectives . 10

3 A Model for Pattern Matching 15
3.1 Patterns . 15
3.2 Bindings . 16
3.3 Pattern Combinators . 17

3.3.1 Application Combinator 18
3.3.2 Disjunction Combinator 18
3.3.3 Conjunction Combinator 19
3.3.4 Sequencing Combinator 19
3.3.5 Negation Combinator . 19

4 Pattern Matching for Newspeak 21
4.1 Literals for Patterns . 21

4.1.1 Extending the Grammar 21
4.1.2 Extending the Parser . 23
4.1.3 Extending the Compiler 23

4.2 A Pattern Matching Model for Newspeak 25
4.2.1 Patterns . 25
4.2.2 Bindings . 27
4.2.3 Pattern Combinators . 28

4.3 Keyword Patterns . 35
4.3.1 Enabling Matching on Objects 36
4.3.2 Keyword Bindings . 38
4.3.3 Pattern Variables . 41
4.3.4 Discussion . 43

4.4 Match Construct . 43

5 Application Developer Tool Support 47
5.1 The Newspeak Programming Platform 47

5.1.1 Newspeak Integration in Squeak Smalltalk 47
5.1.2 Reflection in Newspeak 49

5.2 Installing a Compiler With Pattern Matching Support 50
5.2.1 Compiler Integration . 50
5.2.2 Installing the New Newspeak Language 52

6 Evaluation 55
6.1 Design Objectives Revisited . 55
6.2 Simplifying Algebraic Terms . 57

7 Related Work 63
7.1 Functional Programming Languages 63
7.2 Object-Oriented Programming Languages 64

7.2.1 Pattern Matching Constructs 65
7.2.2 Method Dispatch . 67

7.3 Pattern Languages . 69

8 Summary and Outlook 71

References 75

A Example: Term Simplification in Java™ 81

List of Figures

1 Patterns Identify Objects . 16
2 Bindings Expose Nested Data Structures 16
3 Combinators Enable Composition of Patterns 17
4 The Pattern Class . 26
5 The Binding Class . 27
6 Keyword Patterns . 38
7 The Newspeak Class Browser . 48
8 Converting a Class to Newspeak3 53
9 The Newspeak Class Browser Displaying a Newspeak3 Class . 54

List of Tables

1 Evaluation Summary [EOW07] 61

Listings

1 Examples in Haskell . 5
2 Rewritten Sample Function . 6
3 Pattern Matching Example in Haskell Based on [EOW07] . . . 7
4 Need for Abstraction Over Patterns Based on [Tul00] 11
5 Newspeak Grammar Extension 22
6 Extending The Parser . 23
7 Extending The Compiler . 24
8 Example Illustrating Newspeak Pattern Interface 26
9 Implementation of the Application Combinator 28
10 Pattern Interface of PatternApplication 28
11 Example Illustrating Use of the Application Combinator 29
12 Implementation of the Disjunction Combinator 29
13 Example Illustrating Use of the Disjunction Combinator 30
14 Implementation of the Sequencing Combinator 30
15 Minus Example . 31
16 Example Illustrating Use of the Sequencing Combinator 31
17 Implementation of the Negation Combinator 31
18 Implementation of the Negation Combinator 32
19 Example Illustrating Use of the Negation Combinator 32
20 Implementation of the Conjunction Combinator 32
21 Example Widget Classes . 33
22 Example Patterns for Label Widgets and Color Objects 33
23 Example Use of Conjunction Combinator 34
24 Alternative Implementation of the Application Combinator . . 35
25 Representing Terms in Newspeak 36
26 Enabling Matching On Algebraic Terms 36
27 Keyword Pattern Interface . 37
28 Keyword Pattern Interface Continued I 39
29 Keyword Pattern Interface Continued II 39
30 Keyword Pattern Example . 40
31 Simplifying Algebraic Expressions in Newspeak 40
32 Accessing Nested Values . 41
33 Pattern Variables in Keyword Patterns 42
34 Pattern Variables Across Patterns 42
35 Match Construct . 44
36 Simplification Using the Match Construct 44

37 Generic Filter Implementation . 55
38 Pattern Guard Combinator . 56
39 Simplification Using Scala’s Extractors [EOW07] 59
40 Simplification Using Keyword Patterns 60
41 Simplification Using Keyword Patterns Alternative 60
42 Matchete [HNBV08] Example . 66
43 Thorn [BFN+09] Example . 66
44 OOMatch [RL07] Example . 68
45 Regular Expression Pattern Example 71
46 XPath Pattern Example . 72
47 Expanded Nested Keyword Pattern Literal 73
48 Example: Term Simplification in Java™ 81

1 Introduction

Programming languages are important tools for software developers. They
are used to express solutions as general instructions to a machine. Defining
algorithms in machine language can be cumbersome. For this reason high-
level programming languages attempt to hide the details of the underlying
machine to a certain degree. For this purpose they are often modeled around
a pattern of thought for expressing a solution.

The programming language Smalltalk [GR83] follows an object-oriented
model where the basic data type is an object and functionality is defined by
sending messages between different objects. The language Haskell [Jon03]
supports solving problems following a functional approach in a mathematical
sense: By defining the result of applying a procedure to a set of arguments.
While these two examples display rather distinct approaches, language design-
ers may choose to combine the features of different paradigms. Ultimately, it
is up to the software engineer to pick a language that is a best fit for the task
at hand.

The features of a language reflect the underlying paradigm. Each language
supports a core set of features which facilitate solving problems according to
the involved paradigm, such as an object-oriented model. Smalltalk supports
a class-based system to describe a family of objects while Haskell provides for
higher-order functions to model a mathematical approach. For actively used
programming languages, this set of features is subject to constant change.

Change might be driven by the need of the users of a language. However,
care should be taken to adhere to the language’s original pattern of thought.
One example is the request for support of closures for the Java™ programming
language [GJSB05]. The language was designed based on an object-oriented
model and its community only recently identified the need for functions
as values. Issues like a non-local return have raised a lively discussion on
whether the addition would fit with the language as a whole.

Additions to a language should improve its expressiveness. New language
constructs should be orthogonal to existing features. Rather than “piling fea-
ture on top of feature” [SDF+09], language designers should consider cutting
redundant components and take care when accepting an extension. It is gener-
ally beneficial to implement additions to a languages as a library. It preserves
compatibility with the language core and facilitates the adaption by users to
provide for specialized versions. For example, the language Smalltalk sup-
ports blocks which enable the implementation of control structures without

1

extending the set of keywords of the language or modifying the compiler. It
is a tribute to the language design itself and its core features that extensions
implemented as libraries can be assimilated into the original language.

The focus of this work is the extension of the programming language
Newspeak [Bra09] by pattern matching facilities. We propose a seamless
integration of pattern matching facilities in the Newspeak programming lan-
guage. Given the design guidelines motivated above, we describe the benefits
and consider issues that arise from transferring a concept which originated
in the functional programming community to an object-oriented language.
For example, encapsulation is a concept that is inherent to the object-oriented
model and should not be broken by our extensions to the language.

1.1 Contributions

The main goal of our work is the extension of the Newspeak programming
language by pattern matching facilities. To that effect, the central contributions
of this work are the following:

A Model for Pattern Matching Given the background on pattern matching
in functional programming languages, we extract a common basis in order to
transfer the concept to an object-oriented programming language. We present
a basic yet flexible model which allows for expressing most pattern matching
facilities known from existing languages.

Pattern Matching for Newspeak Based on the introduced model, we
present a complete implementation for the Newspeak programming language.
We provide further extensions based on the described core in order to facili-
tate using the new facilities, for example, keyword patterns that allow for an
intuitive way to inspect and expose an object’s content, and language literals
for the host language that reduce the overhead for using the presented pattern
matching facilities.

Application Developer Tool Support We present extensions to the existing
Newspeak programming environment to provide for the employment of our
pattern matching facilities in application development. Our work integrates an
augmented compiler with the existing environment. This enables application
developers to use existing tools such as the environment’s system browser or
debugger.

2

1.2 Report Structure

The rest of this work is structured as follows. Background knowledge on
pattern matching and our design objectives for extending Newspeak are pro-
vided in the following section. The sections 3, 4 and 5 describe the main
contributions of this work. Section 3 presents a model for adding pattern
matching facilities to an object-oriented language. Section 4 describes the
implementation of this model in Newspeak as well as further extensions to
the language which aim to increase the usability of the new pattern matching
facilities. Section 5 presents the additions to the Newspeak programming en-
vironment. Next, we evaluate our work with respect to the outlined objectives
as well as related techniques. Related work is presented in Section 7, before
we conclude this work by providing a summary and future work.

3

4

2 Background

Pattern matching is a well known concept that originates in the functional
programming community. This section provides background knowledge on
pattern matching facilities in traditional functional programming languages.
We use the well-established programming language Haskell to illustrate com-
mon usage of pattern matching. Simple examples are used to highlight the
benefits of this concept. We describe what existing techniques are generally
used when lacking pattern matching facilities in object-oriented program-
ming languages. Furthermore, we discuss the relation of pattern matching
and object-orientation and programming languages with a dynamic type sys-
tem. We conclude this section by presenting the objectives which motivate
our design decisions for extending the Newspeak programming language.

2.1 Pattern Matching

Pattern matching facilities were first developed for functional programming
languages [Bur69]. Today it is a well established feature and is part of mature
languages such as Haskell or members of the ML family [MTH90, Ler98]. The
original work on pattern matching in [Bur69] describes syntactic extensions to
a functional programming language that facilitate the definition of programs
by means of structural induction. Supporting such a technique coincides
with the mathematical approach of functional programming languages and
the aim to promote equational reasoning. In order to illustrate equational
reasoning as well as structural induction, please consider the following two
sample functions:

-- factorial function

factorial 0 = 1

factorial n = n ∗ factorial (n - 1)

-- length function

len [] = 0

len (hd:tl) = 1 + len tl

Listing 1: Examples in Haskell

The first part defines the factorial function for positive integers and the

5

second part a function that returns the length of a list. Both definitions
separate the function semantics into two cases: The base case and a more
general version (similar to an inductive step). More specifically, the functions
are defined recursively over the function’s argument.

Both function definitions rely on Haskell’s pattern matching facilities. The
first part of the factorial function matches the function argument against
the number 0 while the second part binds the argument to the name n (a
name acts as a wildcard of the type Num). The base case of the length function
matches against the empty list [], while the second part uses the destructuring
operator : to bind the head and tail of the argument to the names hd and tl

respectively. This allows for applying the len function to the tail recursively.
The examples illustrate how Haskell’s pattern matching facilities pro-

mote equational reasoning by separating the function semantics into distinct
parts. However, such separation of function definitions is merely syntactic
sugar [Emi07]. The more general case is a language construct which allows
for distinguishing multiple cases by matching arguments against patterns.
The following listing shows a rewritten version of the length function that
employs this construct:

-- length function

len lst = case lst of

[] → 0

(hd:tl) → 1 + len tl

Listing 2: Rewritten Sample Function

The definition in Listing 2 is of equivalent meaning as the version in
Listing 1. It combines distinct function bodies into a single definition and
employs Haskell’s case of construct to differentiate the base case from the
inductive step. The structure is arguably intuitive: The body of the construct is
split into multiple cases which match the given argument lst against patterns
(either the empty list [] or a non-empty list which contains a head and a
tail) and specify the respective functionality. Each case resembles a rule that
defines an action if a predicate (the pattern) holds.

Our work aims to bring a construct similar to the one presented in Listing 2
to the Newspeak programming language. Splitting method definitions into
multiple parts based on arguments at run-time requires a different form of
method dispatch from what regular object-oriented programming language

6

such as Newspeak support. Extending the method dispatch procedures of
Newspeak is not part of this report.

The following listing involves a slightly more involved example based
on [EOW07]. We use it to demonstrate benefits one gains from pattern match-
ing facilities. The first part defines a data structure used to represent a term,
which is either a variable, a number or a product of two terms. The second
part defines a simplification rule based on the identify element for multiplica-
tion of numbers: If the given term is a product whose right side is the number
one, then return only the left hand side, otherwise return the entire term.

1 -- representing terms

2 data Term a b = Variable a | Number b | Product (Term a b) (Term a b)

3

4 -- simplification rule

5 simplify term =
6 case term of

7 Product lhs (Number 1) → lhs

8 _ → term

Listing 3: Pattern Matching Example in Haskell Based on [EOW07]

The example illustrates the usage of pattern matching to “inspect and
decompose data” [Emi07] in a single expression. The pattern in line 7 de-
scribes the desired structure of the given argument and binds the left hand
side to the name lhs. Regular object-oriented programming languages fail
to provide a construct for this purpose. Instead, programmers use regular
conditional statements to identify an object and then retrieve values of interest
via accessors in a separate step. This is often aggravated in the context of a
statically typed programming language such as Java™ (see also, Section 6 and
Appendix A), where developers often have to resort to manually “casting” the
type of an object in order to access the contained values

Pattern matching facilities often support nested patterns. The example in
Listing 3 contains a nested pattern in line 7: We match the right hand side
of the product against a pattern for a representation of the number one. In
contrast to regular accessors and conditional statements, it can be argued
that “deep pattern matching allows concise, read-able deconstruction of com-
plex data structures” [LM03]. More specifically, multiple nested conditional
expressions quickly become difficult to read, while nested patterns allow

7

destructuring of nested data containers in a single expression.
Nested patterns also allow for distinguishing cases based on more than

a single argument. The implementation of simplify illustrates how pattern
matching allows for “multiple dispatch”. Functionality is dispatched based
not only on the type of the term argument but also nested values, such as the
right hand side being a representation of the number one.

Another benefit gained from pattern matching is a possible separation
of data structure and respective functionality. The example in Listing 3
demonstrates a clear division: The first part defines the structure of the data
container and the second part defines functionality independently.

However, it is worth noting that the given example fails to provide a clean
separation: It breaks the principle of encapsulation. The implementation of
simplify depends directly on the Term datatype. Changing the desired data
structure implementation, ultimately entails updating all functions which
depend on the type Term. This is clearly not desirable for an object-oriented
programming language.

The visitor pattern [GHJV95] is a well known technique to the users of
object-oriented programming languages. Application developers use it to
imitate double dispatch and achieve a separation of a data structure and re-
spective functionality. As highlighted above, pattern matching can be applied
for similar purposes. Arguably, pattern matching facilities provide for a more
concise and scalable solution [EOW07].

More recent efforts show the desirability of pattern matching facilities
for other communities. Several emerging programming languages aim to
combine the benefits of pattern matching with those of other paradigms.
The Scala programming language for the Java™ Virtual Machine platform
includes a general pattern matching construct as part of an effort to “unify
object-oriented and functional programming” [OAC+09]. Similarly, the work
on the F# programming language [SM] aims to “bridge the gap between the
functional and object-oriented worlds” [SNM07] and is targeted at Microsoft’s
.NET platform.

We have highlighted several benefits of pattern matching and identified
related techniques in object-oriented programming languages, which do not
support this concept. The goal of this work is the careful extension of an
object-oriented programming language by pattern matching facilities in order
to gain the highlighted benefits without breaking existing paradigms. We

8

now describe our view of the relation between pattern matching and object-
orientation as well as implications when adding it to a dynamically typed
language which motivates our work.

2.2 Pattern Matching and Object-Orientation

In pure object-oriented programming languages each value is an object. Hier-
archies of objects are used to organize information. For example, consider an
abstract syntax tree. Each node of the tree is an object which holds the infor-
mation relevant to a particular syntax entity. Applications such as interpreters
or compilers traverse such data structures and extract the parts of interest.

Traversing a complex data structure can quickly become tedious. Applica-
tion developers employ techniques such as the visitor pattern to compensate
for the shortcomings of the used programming language. More specifically,
regular object-oriented programming languages have no inherent construct
for identifying an object of interest and destructuring it in a single step.

Pattern matching facilities provide the means to inspect and decompose
nested data structures in a single statement. In this regard, we believe that
pattern matching is an expressive extension for object-oriented programming
languages which organize data in hierarchies of objects. The work in [EOW07]
demonstrates how pattern matching facilitates traversing of data structures
such as a tree of algebraic expressions.

2.3 Pattern Matching and Dynamic Typing

Pattern matching facilities are often used in statically typed programming
languages to provide for “run-time type discrimination without casts” [LM03].
The example in Appendix A illustrates the use of casts in Java™ , which lacks
pattern matching facilities. The Haskell version requires no cast as the type
inferencer is able to exploit the pattern matching construct to compute the
types of the decomposed values.

There is no need to statically declare the type of a value in a dynamic type
system. Nevertheless, identifying the type of an object at run-time remains
of interest. For example, Smalltalk provides the message isKindOf: in order
to determine the run-time type of an object. It is used to identify and collect
values of interest or dispatch functionality based on the run-time type of

9

a value. A regular and unmodified Squeak Smalltalk image (version 3.101)
contains approximately 600 senders of the message isKindOf:.

Patterns are used to identify values of interest. This means that objects
which match a pattern satisfy the desired properties that are specified by the
pattern. These properties might include the desired type of the subject but
can also be used for more expressive predicates. For example the simple
implementation of the factorial function in Listing 1 matches a function
argument against the value 0.

Dispatching functionality based on types fails the concept of data abstrac-
tion. Type discrimination exposes representation and therefore complicates
future changes. Pattern matching can offer a cleaner interface for specifying
desired characteristics of an object rather by relying on its type. In some
sense, pattern matching facilities can be used as a static type system, but
are less intrusive and can be more expressive. Hence, we believe that flexible
pattern matching facilities are a meaningful extension for a dynamically typed
programming language.

2.4 Design Objectives

As briefly outlined in the first section, we believe that language additions
should not be redundant. For this purpose, it is important to ensure that lan-
guage extensions are orthogonal to existing features and increase the overall
expressivity. We have highlighted how an object-oriented and dynamically
typed programming language may benefit from providing pattern matching
facilities. However, transferring a concept from a functional programming
language might break with existing language features such as encapsulation.

To assure that existing paradigms are retained, we describe the objectives
which motivate our underlying design decisions. We aim for a seamless
integration of expressive additions while enabling application developers to
conveniently apply our language extensions. Furthermore we attempt to
facilitate future change, which motivates the first objective.

Enable Abstraction over Patterns Current statically typed functional pro-
gramming languages such as Haskell fail to provide the means for abstracting
over patterns as values [Tul00]. More specifically, patterns are not first class

1Squeak Smalltalk images are available online at http://www.squeak.org/Download/, last
accessed: March 14, 2010.

10

values. This means that it is impossible to extract common functionality from
different pattern matching instances. Consider filtering a list of elements
based on a pattern: A generic implementation would be parametrized over
a pattern. However, this is currently not possibly in Haskell and related pro-
gramming languages. The following listing is based on an example in [Tul00].
It aims to demonstrate the lack of constructs for abstraction over patterns in
Haskell:

1 filterVariables aList =
2 case aList of

3 [] → []

4 (Variable v : tl) → v : filterVariables tl

5 (_ : tl) → filterVariables tl

6

7 filterNumbers aList =
8 case aList of

9 [] → []

10 (Number n : tl) → n : filterNumbers tl

11 (_ : tl) → filterNumbers tl

Listing 4: Need for Abstraction Over Patterns Based on [Tul00]

The functions filterVariables and filterNumbers are virtually the same
but it is impossible to extract the common functionality based on patterns
alone. More specifically, the only meaningful difference is the use of the
patterns Variable and Number in lines 4 and 10 respectively. This example
illustrates the need for patterns to be first class values of the host language.

Making patterns regular values of the host programming language facil-
itates future change. Modifying the pattern matching facilities of Haskell
generally involves changing the respective language compiler. The current
plans for Haskell 2010 demonstrate the shortcomings of such an approach:
The language has collected an abundance of pattern matching features over
the years, rather than enabling application developers to implement special-
ized versions 2. We aim to learn from these debates and provide patterns as
first class values.

2For example, it is questionable whether features such as “n+k patterns” enable pro-
gram comprehension and there are plans to eliminate them from future Haskell versions.
(cf. http://hackage.haskell.org/trac/haskell-prime/wiki/NoNPlusKPatterns, last accessed:
March 14, 2010)

11

Facilitate Composition Pattern composition means the combination of mul-
tiple patterns to a new pattern. For this purpose it is essential to define a clear
interface for matching a pattern on an object which can be used programmati-
cally. This interface can be used to create operators which combine patterns
in a well-defined way. For example, an alternation operator could be used to
produce a pattern which matches an object if any of the given two patterns
matches the object.

Enabling the composition of patterns facilitates future changes. It provides
for programmatically creating new patterns based on operators on patterns.
We aim to provide a basic set of patterns and means to compose them in
unanticipated ways by such operators. Furthermore, the set of operators
should be extensible by application developers.

Preserve Encapsulation Hiding the implementation of functionality is an
essential feature of object-oriented programming. Adhering to this design
principle increases a system’s robustness by facilitating future changes and
reducing undesired dependencies. As described in Section 2.1, traditional
functional programming languages often fail to accommodate the principle
of encapsulation. We aim to preserve this valuable principle in the context of
an object-oriented programming language.

Enable Ease of Use Using pattern matching facilities should be intuitive
to users of the programming language. The language extensions should
be seamless and allow for concisely expressing patterns and related actions.
We aim to reduce the overhead required for employing pattern matching
facilities. Furthermore, an intuitive integration with the existing programming
environment should enable application developers to conveniently employ
the new language extensions.

We highlighted the objectives that motivate the design decisions of our
work. The work in [EOW07] aims to evaluate pattern matching in the context
of different related techniques, such as the visitor pattern. They compare
different solutions for implementing a simplifying rule for an algebraic ex-
pression. The presented criteria aim to evaluate the solutions with respect
to conciseness and extensibility of subjects and patterns among others. We
present an evaluation of our work with respect to these solutions and our
objectives in Section 6.

12

This section provided the necessary background information on pattern

matching facilities in traditional functional programming languages and iden-
tified related techniques. We highlighted possible benefits from supporting
pattern matching and summarized our design objectives. Next, we present
a flexible model for pattern matching that allows the transfer to an object-
oriented language.

13

14

3 A Model for Pattern Matching

In this section, we introduce a model of pattern matching to highlight the
concepts that we use to implement our pattern matching facilities. The pre-
sented model is a flexible core that allows the transfer of the pattern matching
concept to other paradigms. As our goal is the extension of an object-oriented
programming language, we describe the model by means of objects and com-
munication via messages. However, the concepts of patterns, bindings and
combinators are generic and can be transferred to other paradigms as well.

We deliberately refrain from using examples of a specific programming
language to highlight the genericity of the presented model. For concrete
examples that demonstrate the described concepts please refer to Section 4,
which contains the description of our realization of this model using the
Newspeak programming language.

3.1 Patterns

Patterns are used to specify a set of properties that an object needs to satisfy.
They act as predicates on objects, identifying a set of objects that fulfill a
desired set of criteria. Figure 1 aims to illustrate the use of a pattern to
identify the set of objects which represent numbers (loosely based on the
example introduced in Listing 3).

Matching a pattern p on a subject s refers to the process of sending a
message to p and passing an argument s. The result of this message send
indicates whether s meets the requirements as specified by the pattern p. In
the following we use the shorthand p

?←− s to refer to this process. It can be
read as follows: “Does the pattern p match the object s?”. We use objects and
messages to describe our model: The arrow symbolizes a message send to the
pattern with the subject s as an argument. The return value of this message
send is represented by the ? character above the arrow.

In contrast to a simple boolean predicate, a pattern match result value that
indicates success usually exposes the constituent parts of the subject. This
enables the destructuring aspect of pattern matching which was described in
the previous section. The exposed values can be matched by nested patterns,
therewith providing for deep matching on data structures. We introduce the
concept of binding objects, for the purpose of representing the result of a
pattern match and exposing relevant values.

15

Variable

Product
Product

Product

Number

Variable

nil

Number

Figure 1: Patterns Identify Objects

3.2 Bindings

Binding objects represent the result of matching a pattern on an object. As
the result of the message send p

?←− s, they may indicate failure or success
depending on whether s meets the requirements specified in p. This completes
our requirements for specifying the interface of patterns: p b←− s. The result of
p

?←− s is the binding b. More specifically, sending a messages to the pattern
p with the argument s evaluates to the binding object b.

NumberNumber 1
23

Figure 2: Bindings Expose Nested Data Structures

Binding objects may be used to relay data that is relevant in case of a

16

successful match. Figure 2 aims to illustrate the use of bindings. They are
a flag that indicates whether a pattern matches an object and act like a filter
that makes certain parts of an object visible.

3.3 Pattern Combinators

Pattern combinators are the means to compose different pattern objects to
produce a new pattern. The composition of patterns is based on the common
interface of pattern objects p

b←− s. Patterns that are the result of invoking
pattern combinators must adhere to the pattern interface. Figure 3 aims to
illustrate the use of a combinator that acts like a union operator on sets: The
composed pattern identifies objects representing variables as well as numbers.

Variable

Product
Product

Product

Number

Variable

nil

Number

Figure 3: Combinators Enable Composition of Patterns

While we refer to objects and messages, our model for the concepts of
pattern matching is not aimed at a particular language. We attempt to point
out peculiarities with respect to order of evaluation in the context of combi-
nators. Most pure object-oriented language are imperative and the order of
evaluation is usually well-defined. However, we argue it to be possible to
implement our model in a purely functional language, where functionality
may be evaluated in parallel.

Given the description of pattern combinators and the interface of patterns,
we procced to describe a small set of combinators. This list of combinators

17

should not be considered as comprehensive list but instead as a basic set
aiming for flexibility.

3.3.1 Application Combinator

The application combinator is used to associate functionality with the success
of matching a pattern on an object. It corresponds to the → used in previous
listings displaying examples of pattern matching in Haskell, for example,
Listing 3.

The application combinator ⇒ is used to link the evaluation of statements
to the success of matching a pattern. Invoking the application combinator on
a pattern p1 with an argument c evaluates to a new pattern: p2 = p1 ⇒ c.
The argument c is a closure that expects a single argument. The result b2 of
p2

b2←− s indicates failure if the result b1 of p1
b1←− s indicates failure. In case

b1 indicates success, then binding b2 represents the successful evaluation of
c given the argument b1. For instance, b2 might hold the resulting value of
evaluating the closure c given the argument b1.

3.3.2 Disjunction Combinator

The disjunction combinator is used to link two patterns together such that
the resulting pattern matches an object if at least one of the original patterns
match the given object. Given that patterns identify sets of patterns, the
disjunction operator is comparable to the union operator for sets (see also,
Figure 3).

Invoking the disjunction combinator ∪ on two patterns results in a new
pattern. Consider a pattern p3 = p1 ∪ p2 and p1

b1←− s, as well as p2
b2←− s.

The binding object b3 of p3
b3←− s indicates success if any one of b1 and b2

indicates success.
There is no explicit order in which the original patterns must be evaluated.

However, the disjunction combinator can be used in connection with the
application combinator to construct a sequence of patterns and associated
functionality, analogously to a set of clauses for Haskell’s case of construct:
(p1 ⇒ c1) ∪ (p2 ⇒ c2). Concurrent evaluation might lead to confusion for
overlapping patterns, while evaluating p1 before p2 might arguably be more
intuitive.

18

3.3.3 Conjunction Combinator

The conjunction combinator is used to link two patterns together such that
the resulting pattern matches an object if both of the original patterns match
the given object. Analogously to the disjunction combinator, the conjunction
combinator is comparable to the intersection operator for sets.

Invoking the conjunction combinator ∩ on two patterns results in a new
pattern. Consider a pattern p3 = p1 ∩ p2 and p1

b1←− s, as well as p2
b2←− s. The

binding object b3 of p3
b3←− s indicates success if b1 and b2 indicate success.

Similar to the description of the disjunction combinator, there is no explicit
restriction on the evaluation order in which the patterns are used. The newly
created pattern may short-circuit the evaluation or match both patterns in
parallel and synchronize the results. Furthermore, it is left to the implementor
to define the contents of b3. It might bind a boolean value indicating success,
or choose to expose other values based on the bindings b1 and b2.

3.3.4 Sequencing Combinator

The sequencing combinator is used to link two patterns such that one pattern
is parametrized on the result of matching the other pattern on an object. The
goal of the sequencing combinator is to provide for chaining multiple patterns
together based on the values exposed by a binding. This is different from
chaining patterns with the conjunction combinator, which aims to construct a
pattern which matches all given patterns on a single subject. The sequencing
combinator matches a pattern on an object and passes the resulting binding
object to the next pattern (rather than the original subject).

Invoking the sequencing combinator � on two patterns yields a new pat-
tern. Consider a pattern p3 = p1 � p2 and p1

b1←− s. The binding object b3 of
p3

b3←− s indicates success if b2 of p2
b2←− b1 indicates success.

3.3.5 Negation Combinator

The negation combinator is used to invert the result of matching a single
pattern on objects. Following the concept that patterns identify sets of objects,
the negation combinator corresponds to taking the absolute complement of a
set.

Invoking the negation combinator � on a pattern p results in a new pattern
pC = p �. The binding object bc of pC bc←− s is the inverse of the binding b of

19

p
b←− s: The binding bc indicates success if b indicates failure and vice versa.

In this section we introduced the concepts of patterns, bindings and com-

binators. They are the main constituents of the model of pattern matching
that we use to extend the object-oriented programming language Newspeak.
In the following, we describe our implementation of this model, as well as
further extensions to facilitate the matching on regular objects and reduce the
overhead of employing our pattern matching facilities.

20

4 Pattern Matching for Newspeak

We will now introduce our pattern matching facilities for the Newspeak pro-
gramming language. We base our work on the realization of the model
presented in Section 3. We use this flexible core to implement features known
from existing pattern matching facilities. Furthermore, we describe our addi-
tions that aim to facilitate pattern matching for objects in Newspeak: Keyword
patterns. In order to reduce the overhead needed for employing our pattern
matching facilities, we introduce extensions to the Newspeak programming
language itself: Literals for patterns. We start our presentation by introducing
the implementation of literals in order to leverage them for more concise
examples in the following parts.

4.1 Literals for Patterns

Before we describe our implementation of the generic model based on pat-
terns, bindings and combinators, we provide an overview of our language
extensions. We add support for pattern literals in order to facilitate the usage
of our pattern matching facilities by application developers. Augmenting
Newspeak by literals mainly involves the following steps: Extending the
grammar and respective parser for the Newspeak language and providing for
the compilation of the new features.

4.1.1 Extending the Grammar

The grammar for the Newspeak programming language is defined in terms
of an executable grammar [Bra07]. Grammar production rules are defined
by means of slots of a class and functionality is associated by specializing
the respective slot accessor. This provides for expressing a grammar as a
program and implementing a parser by subclassing an existing grammar and
overriding the respective production rules. Please consider the work in [Bra07]
for more information on executable grammars.

The current version of the grammar for the Newspeak language is defined
in the Newspeak2Grammar module. We extend the grammar by modifying the
header of contained NS2Grammar class to contain production rules for the new
language features. The following listing presents our additions to the existing
grammar:

The first two lines are the entry point for our modifications, we add

21

1 "adding literals for patterns"

2 literal =

3 pattern | number | symbolConstant | characterConstant | string | tuple.

4

5 pattern = (tokenFromChar: $<), patternLiteral, (char: $>).

6 patternLiteral = wildcardPattern | literalPattern | keywordPattern.

7

8 wildcardPattern = tokenFromChar: $_.

9

10 "values which are comparable by means of #="

11 literalPattern = tokenFor:

12 number | symbolConstant | characterConstant | string | tuple.

13

14 "keyword patterns"

15 keywordPattern = kwPatternPair plus.

16 kwPatternPair = keyword, kwPatternValue opt.

17 kwPatternValue =

18 wildcardPattern | literalPattern | variablePattern | nestedPatternLiteral.

19 variablePattern = tokenFor: ((char: $?), id).

20 nestedPatternLiteral = tokenFor: (pattern).

Listing 5: Newspeak Grammar Extension

the pattern alternative to the list of literals. Line 5 defines the syntax for
pattern literals: They are enclosed by a less-than and greater-than sign (the
tokenFromChar: and tokenFor: methods produce rules which ignore leading
white-space). We add support for three different patterns:

1. A wildcard pattern <_>,

2. literal value patterns (e.g., <2> or <’name’>),

3. keyword patterns (e.g., <name:’Hans’ age:23>).

The wildcard pattern matches any object. The patterns for literal values
match objects which are equal to the specified value by means of =, this holds
for the existing literals such as numbers or strings. Keyword patterns aim to
facilitate the matching of arbitrary objects. They consist of patterns which are
labeled by keywords, as can be seen in the grammar in lines 15 and 16. We
describe them in more detail in Section 4.3.

22

4.1.2 Extending the Parser

We gave an overview of our extensions to the Newspeak grammar. The
executable grammar library provides for a clean separation of the grammar,
the parser and the associated abstract syntax tree (AST). In order to enable the
compilation of pattern literals, we need to add nodes to the AST to represent
pattern literals and modify the parser to instantiate these nodes accordingly.

The Newspeak2Parsing module contains the parser corresponding to the
grammar defined in Newspeak2Grammar. We extend the respective nested Parser

class (which subclasses NS2Grammar) by specializing the accessor methods for
the production rules defined above in Listing 5. Consider the following
example:

"Parser>>"

literalPattern � <LiteralPatternAST> = (

� super literalPattern

wrap: [:litTok |

LiteralPatternAST new

literal: litTok token;

start: litTok start; end: litTok end.

].

)

Listing 6: Extending The Parser

The method defines the parser for the literalPattern production rule. Its
single argument is a representation of token for the specified literal value
(dropping leading white-space). The purpose of the parser is the production
of an AST that represents a pattern for a literal value: LiteralPatternAST. We
instantiate the respective node and populate it with the literal value, as well
as the position of the value in the input stream. The remaining parsers are
defined analogously.

4.1.3 Extending the Compiler

We use the compiler framework in the Newspeak2Compilation module to imple-
ment our language extensions for a variety of reasons: The compiler supports
the use of the above described grammar and parser modules and offers a
clean front-end. Most importantly though, the new compiler framework re-

23

duces the dependence on the Squeak Smalltalk compared to the currently
used compiler. It is thus an important step in the evolution of the Newspeak
language and we argue that using a deprecated compiler would be futile.

The compiler produces a representation of a method or class that can be
installed into the host environment. It translates the AST produced by the
parser in multiple passes. Each step of the compilation process is implemented
in terms of a visitor which traverses the AST. For example, a visitor is used to
produce a mapping for the scope at each node of a given AST.

Our goal is the support of literals for patterns. We enable pattern literals
by means of translation: The literals are translated to messages, which will
be evaluated like regular message sends at run-time. This strategy is an
important difference when compared to other literals such as strings. These
values are represented internally by the underlying virtual machine. However,
translating literals to message sends the long term goal as it is “closer to the
late bound spirit of the language” [Bra09]. More specifically, a message can
ultimately be subject to specialization by applications developers.

"Rewriter>>"

literalPatternNode: aNode = (

| patClass literalMessage |

patClass:: NormalSendAST new

to: selfNode

send: (MessageAST new

sel: #Pattern;

args: {};

start: aNode start; end: aNode end).

literalMessage:: MessageAST new

sel: #literal: ;

args: { aNode literal };

start: aNode start; end: aNode end.

� (NormalSendAST new

to: patClass

send: literalMessage) apply: self.

)

Listing 7: Extending The Compiler

24

We implement the translation of pattern literals by augmenting existing
visitors for Newspeak ASTs. For example, the Rewriter class is a visitor that
is part of the compiler framework in the Newspeak2Compilation module. It
is used to convert a given Newspeak AST into an AST which is more suitable
for producing a CompiledMethod. We add translation rules for the new AST
nodes that represent patterns.

Listing 7 illustrates the translation of an AST node produced by the parser
presented in Listing 6. More specifically, the literal <23> is translated to a
message send: Pattern literal: 23. The implicit receiver of this message is
the root of the object hierarchy of Newspeak: NewspeakObject and the result
of the message send is an instance, which is a pattern object. We provide for
an implementation of the message Pattern in NewspeakObject. However, it is
still a virtual method call, allowing for dynamically changing the semantics
of literals.

4.2 A Pattern Matching Model for Newspeak

We describe our realization of the model presented in Section 3 in Newspeak.
Our presentation corresponds to the structure of Section 3 and relies on the
introduced terminology. We describe the underlying implementation and use
examples for illustration purposes.

4.2.1 Patterns

Pattern objects are created by instantiating the class Pattern or its subclasses.
The interface p

b←− s is realized by the method doesMatch:else: in a pattern
object. The method expects two arguments: The first argument is the object
s on which the pattern is matched, while the second argument is a closure
that is evaluated if the pattern does not match a given object. The resulting
binding object b is represented by an instance of the class Binding or any of
its subclasses. Listing 8 is a brief illustration of matching an object ‘Peter’ on
a pattern. Figure 4 highlights the important features of the Pattern class. The
individual slots and instance methods are described in more detail below. The
class methods wildcard, literal: and keywords:patterns: correspond to the
literals for patterns that were presented in Section 4.1.

Handling Failure The described interface doesMatch:else: makes handling
the failure case explicit. We argue this to be especially beneficial in the context

25

Pattern

Class Methods
wrap:
wildcard
literal:
keywords:patterns:

Instance Methods
&
=>
>>
|
not
doesMatch:else:
matchFailedFor:escape:

Slots
MatchFailure
wrappedClosure

Nested Classes
PatternApplication subclasses Pattern

PatternDisjunction subclasses Pattern

PatternConjunction subclasses Pattern

PatternSequence subclasses Pattern

PatternNegation subclasses Pattern

…

…

…

…

Slots
pattern
closure

Class Methods

Instance Methods
doesMatch:else:

Nested Classes

Figure 4: The Pattern Class

<’Hans’> doesMatch: ’Peter’ else: [Binding new]

Listing 8: Example Illustrating Newspeak Pattern Interface

of non-exhaustive patterns. Furthermore, it is a common idiom to finish a set
of clauses with a wildcard pattern similar to an else statement in a conditional
(cf. Listing 3), which can also be handled by the closure argument.

The described interface implies that evaluating the failure closure should
evaluate to a binding object, as shown in Listing 8. However, passing a closure
might entail a non-local return. We leave it to the application developer to
decide whether a non-local return is an appropriate solution.

For the sake of convenience, we distinguish two cases: the closure which
handles the pattern match failure accepts a single or no argument. If the
closure accepts a single argument, the subject is passed in, otherwise the
closure is evaluated without an argument. The class Pattern provides the
method named matchFailedFor:escape: which implements this functionality.

26

4.2.2 Bindings

Binding objects are represented by instances of the class Binding or its sub-
classes. Figure 5 highlights the constituent parts of the Binding class: It is a
container for a single value and provides accessors for verifying whether the
bindee slot was populated. Sending the message isBound to a binding object
indicates success or failure of matching a pattern on an object. In order to
expose values which are relevant to the properties specified by the pattern,
Binding provides a slot accessible by sending the message boundValue. Un-
less this slot is set to a specific value by sending the message boundValue: to
a binding or populating it upon instantiation by using the factory method
named for: on Binding, sending isBound to a binding will indicate failure.
For instance, evaluating the statement in Listing 8 will evaluate to the bind-
ing object instantiated in the closure argument. The binding is empty and
therefore indicates failure.

Binding

Class Methods
for:

Instance Methods
boundValue
boundValue:
isBound

Slots
bindee
bindingFlag

Nested Classes

Figure 5: The Binding Class

Lines 4 and 5 of Listing 10 demonstrate another idiom to identify the
failure of matching a pattern on an object. The class Pattern defines a slot
named MatchFailure which holds an empty binding. Therefore each pattern
object holds a specific instance of an empty binding in this slot. Passing this
instance to indicate failure allows to compare based on reference rather than
sending isBound and distinguishing true and false, while adhering to the
common pattern interface.

27

4.2.3 Pattern Combinators

The core set of combinators is implemented as methods in the class Pattern.
They can be invoked on any instance of Pattern and its subclasses. They
can be specialized by any subclasses like any regular method. However,
specializing combinator semantics or extending the set of combinators should
not violate the pattern matching interface to enable composition.

Application Combinator The application combinator ⇒ is implemented as
a method named => in the class Pattern. Listing 9 shows the implementation
of the application combinator.

"Pattern>>"

=> closure = (

� PatternApplication of: self and: closure.

)

Listing 9: Implementation of the Application Combinator

The class PatternApplication is a subclass of Pattern and used to repre-
sent a pattern that is the result of invoking the application combinator. The
class is also nested in the class Pattern. The specialized pattern interface
is shown in Listing 10. The slots pattern and closure are populated upon
object initialization, their respective values correspond to the arguments to
the primary factory method shown in Listing 9.

1 "PatternApplication>>"

2 doesMatch: subj else: fail = (

3 | bind | bind:: pattern doesMatch: subj else: [MatchFailure].

4 � bind == MatchFailure

5 ifTrue: [matchFailedFor: subj escape: fail]

6 ifFalse: [| result proxy |

7 proxy:: ProxyReceiver wrap: closure home receiver with: bind.

8 closure home receiver: proxy.

9 result:: closure valueWithPossibleArgument: bind.

10 Binding for: result.

11]

12)

Listing 10: Pattern Interface of PatternApplication

28

Lines 8 and 9 of Listing 10 modify the receiver of the closure: We insert a
proxy receiver that sends messages to the binding before they are sent to the
original receiver. This allows for conveniently accessing the boundValue slot of
a binding. Line 10 evaluates the closure, optionally passing in the binding as
an explicit argument.

fib: n = (

<1> => [� 0] doesMatch: n else: [].

<2> => [� 1] doesMatch: n else: [� (fib: n-2) + (fib: n-1)].

)

Listing 11: Example Illustrating Use of the Application Combinator

The example in Listing 11 illustrates the usage of the application combi-
nator. It shows the implementation of a method that returns the Fibonacci
numbers. The failure handler is used in the last line of Listing 11 to define
the rest of the Fibonacci number sequence.

Disjunction Combinator The disjunction combinator ∪ is implemented as
a method named | in the class Pattern. The details are analogous to the
implementation of the application combinator and presented in Listing 12.
The pattern interface implementation is straight-forward: If the given object
matches the first pattern (the receiver of the | message), then the respective
binding is returned. We use the failure handler to match the subject on the
second pattern if the first pattern does not match the given subject.

"Pattern>>"

| alternativePattern = (

� PatternDisjunction of: self and: alternativePattern.

)

"PatternDisjunction>>"

doesMatch: subj else: fail = (

� pattern doesMatch: subj else: [

alternativePattern doesMatch: subj else: fail

]

)

Listing 12: Implementation of the Disjunction Combinator

29

The example in Listing 13 illustrates the use of the disjunction combinator.
We use the combinator to produce a composite pattern for identifying either
1 or 2 and use the application combinator to associate a closure that returns
the respective Fibonacci number.

1 fib: n = (

2 (<1> | <2>) => [� n-1] doesMatch: n else: [� (fib: n-2) + (fib: n-1)]

3)

Listing 13: Example Illustrating Use of the Disjunction Combinator

Sequence Combinator The sequence combinator � is implemented as a
method named >> in Pattern. The details are presented in Listing 14. We
use the class PatternSequence to represent the result of invoking the sequence
combinator on a pattern. The respective pattern interface implementation
attempts to match the given object on the pattern which was the receiver
of the >> message. Upon success, the value hold by the boundValue slot is
passed as a subject to the pattern which was the argument to the sequence
combinator.

"Pattern>>"

>> rightPattern = (

� PatternSequence of: self and: rightPattern.

)

"PatternSequence>>"

doesMatch: subj else: fail = (

| bind |

bind:: leftPattern doesMatch: subj else: [MatchFailure].

� bind == MatchFailure

ifTrue: [matchFailedFor: subj escape: fail]

ifFalse: [rightPattern doesMatch: bind boundValue else: fail]

)

Listing 14: Implementation of the Sequencing Combinator

We introduce the Minus pattern in Listing 15 in order to illustrate the use
of the sequencing combinator. It is loosely based on n+k patterns: It allows
for subtracting a number while matching. However, for the sake of simplicity,

30

the pattern neither performs type checks nor verifies the result. It subtracts a
given number and wraps the result in a binding instance.

Minus k: sub = Pattern (| subtrahend = sub. |)(

doesMatch: subj else: fail = (

� Binding for: subj - subtrahend.

)

)

Listing 15: Minus Example

The Minus pattern is used in the example in Listing 16. The implementation
of fib: is equivalent to that in Listing 13, except that the instance of the Minus

pattern handles the subtraction.

fib: n = (

((<1> | <2>) >> Minus k: 1) => [boundValue]

doesMatch: n else: [� (fib: n-2) + (fib: n-1)]

)

Listing 16: Example Illustrating Use of the Sequencing Combinator

Negation Combinator The negation combinator � is implemented as a
method named not in the class Pattern. The relevant parts of the implementa-
tion are presented in Listings 17 and 18. Instances of PatternNegation return a
binding indicating success only if the pattern which received the not message
does not match a given object.

"Pattern>>"

not = (

� PatternNegation of: self.

)

Listing 17: Implementation of the Negation Combinator

The example in Listing 19 illustrates the use of the negation combinator.
The example reverses the example shown in Listing 13.

31

"PatternNegation>>"

doesMatch: subj else: fail = (

| bind | bind:: pattern doesMatch: subj else: [MatchFailure].

� MatchFailure == bind

ifTrue: [Binding for: subject]

ifFalse: [matchFailedFor: subj escape: fail]

)

Listing 18: Implementation of the Negation Combinator

fib: n = (

(<1> | <2>) not => [� (fib: n-2) + (fib: n-1)] doesMatch: n else: [� n-1]

)

Listing 19: Example Illustrating Use of the Negation Combinator

Conjunction Combinator The conjunction combinator ∩ is implemented as
a method named & in Pattern. The implementation details are very similar
to those of the sequence combinator, with the important difference that both
patterns are matched on the same object. We provide the details in Listing 20.
Line 12 makes the difference to the sequencing operator: The original subject
is passed to the second pattern, rather than the object hold by the boundValue

slot of the binding bind.

1 "Pattern>>"

2 & rightPattern = (

3 � PatternConjunction of: self and: rightPattern.

4)

5

6 "PatternConjunction>>"

7 doesMatch: subj else: fail = (

8 | bind |

9 bind:: leftPattern doesMatch: subj else: [MatchFailure].

10 � bind == MatchFailure

11 ifTrue: [matchFailedFor: subj escape: fail]

12 ifFalse: [rightPattern doesMatch: subj else: fail]

13)

Listing 20: Implementation of the Conjunction Combinator

32

We introduce a simple class hierarchy in Listing 21 to illustrate the use of
the conjunction combinator. We define a representation for widgets, where
the class Label subclasses the class Widget. Both classes define an accessor
to provide for identification at run-time. Defining accessors of the form isA

adheres to Newspeak’s protocol: Sending isA messages to objects, evaluates
to false if the receiver is the root of the object hierarchy NewspeakObject. The
method moveTo: in the class Widget provides for changing the position of
a widget in its host container. We omit the implementation for the sake of
simplicity of our example.

class Widget = (| color |)(

isWidget = (� true)

moveTo: aPosition = (...)

)

class Label = Widget ()(isLabel = (� true))

Listing 21: Example Widget Classes

In Listing 22 we describe two patterns that can be used to identify widget
objects represented by instances of the classes defined in Listing 21. The
first pattern identifies instances which are labels. The second pattern relies
on the fact that widgets are colored and attempts to retrieve the color of a
given subject and matches it. We omit the implementation of matchColor: to
concentrate on the pattern interface, however, an implementation based on
RGB or HSV values is straight-forward.

class LabelPattern = Pattern ()(

doesMatch: subject else: fail = (

� subject isLabel

ifTrue: [Binding for: subject]

ifFalse: [matchFailedFor: subj escape: fail]

)

)

class Colored as: c = Pattern (| color = c. |)(

matchColor: subjColor = (...)

doesMatch: subj else: fail = (

(subj isWidget) ifTrue:[subj color ifNotNil:[:col | � matchColor: col]].

� matchFailedFor: subj escape: fail

)

)

Listing 22: Example Patterns for Label Widgets and Color Objects

33

Listing 23 illustrates several benefits of our pattern matching facilities. The
method moveWidgets:to: moves a set of widgets to a new position. We use
patterns as predicates on widgets, in order to identify patterns of interest.
Passing patterns as arguments is possible, because patterns are first class
values. An even more succinct version would involve an implementation of
select: that is parametrized on a pattern, rather than a closure that evaluates
to a boolean value. Furthermore, we can compose pattern objects to produce
a more accurate pattern by using the conjunction combinator as shown in line
9. The example invocation of moveWidgets:to: passes a composed pattern
which identifies blue labels.

1 moveWidgets: widgetPattern to: aPosition = (

2 allWidgets select: [:widget |

3 (widgetPattern => [true]) doesMatch: w else: [false]

4] thenDo: [:widget | widget moveTo: aPosition]

5)

6

7 "example use:"

8 moveWidgets: LabelPattern new & (Colored as: Color blue)

9 to: (Position x: 0 y: 0)

Listing 23: Example Use of Conjunction Combinator

It is arguable that the definition of patterns for widgets in Listing 22 is
rather elaborate. This is due to the fact that we introduce patterns that match
arbitrary objects, rather than literals values as shown in previous examples.
We aim to address the issue of matching arbitrary objects in Section 4.3 by
describing the concept of keyword patterns. Furthermore, we provide literals
for keyword patterns as described in Section 4.1. Thus, we offering keyword
patterns in order to reduce the overhead that is required for matching objects.

Discussion The class Pattern provides for conveniently extending the set
of combinators by using the class method wrap:. The method expects a
closure and returns an instance of the class Pattern. The default implemen-
tation of doesMatch:else: in Pattern relies on a closure stored in the slot
wrappedClosure that is set correctly by wrap:. The method doesMatch:else:

evaluates the closure with the given object and failure handler as arguments.
This implies that the closure should be parametrized over two arguments,
analogously to the pattern interface.

34

"Pattern>>"

=> closure = (

� Pattern wrap: [:subject :fail | | bind |

bind:: doesMatch: subject else: [MatchFailure].

bind == MatchFailure

ifTrue: [matchFailedFor: subject escape: fail]

ifFalse: [| result proxy |

proxy:: ProxyReceiver wrap: closure home receiver with: bind.

closure home receiver: proxy.

result:: closure valueWithPossibleArgument: bind.

Binding for: result.

]

]

)

Listing 24: Alternative Implementation of the Application Combinator

The example in Listing 24 shows an alternative implementation of the
application combinator based on wrap:. The closure passed to wrap: expects
two arguments: The object that the pattern is matched on and the failure
handler. The closure is implements the same functionality as presented in
Listing 9.

4.3 Keyword Patterns

After describing the underlying model used for pattern matching in Newspeak,
we proceed to describe an extension based on this model: keyword patterns.
They aim to facilitate the matching of arbitrary data structures designed by ap-
plication developers. Rather than implementing a specific subclass of Pattern
for each object of interest, keyword patterns rely on a common interface and
the overhead needed to enable matching objects is kept at a minimum.

We presented the syntactic production rules for keyword patterns in Sec-
tion 4.1. They are modeled after keyword messages, which are a unique
feature of the Smalltalk family. Keyword messages allow for the descrip-
tion of individual arguments through labels, rather than using the position
in a sequence. For example, compare aDictionary at: #age put: 23 with
map.put("age", 23). For keyword patterns, the keywords are used as labels
for patterns. Moreover, the sequence of keywords is a pattern by itself, analo-
gously to the selector of a keyword message.

35

We revisit the example introduced in Section 2 in Listing 3 in order to
explain keyword patterns in more detail. We introduce a similar data structure
in Listing 25. We define three classes Num, Var and Product that inherit from
the class Term. The optional message following the class name (for example,
named: or of:by:) introduces the primary factory for each class, which is
new if the message is omitted. The name following the = character is used
to explicitly define the superclass. It can be omitted if a class inherits from
NewspeakObject, which is the root of Newspeak’s object hierarchy, as shown
for the class Term. The content between the vertical bars defines the class’
slots as well as their initialization, similar to constructors in other languages.
The empty trailing pair of parentheses is used to define the methods of the
instance-side mixin of a class (as shown in Listing 26).

class Term = ()()

class Num of: n = Term (| val = n. |)()

class Var named: n = Term (| name = n. |)()

class Product of: n by: m = Term (| left = n. right = m. |)()

Listing 25: Representing Terms in Newspeak

4.3.1 Enabling Matching on Objects

Matching keyword patterns on objects requires the implementation of a com-
mon interface. Each object that aims to support matching a pattern on itself,
needs to have an implementation of the method match:. The single argument
is the keyword pattern that is matched on the object. Consider the source
code in Listing 26 that illustrates implementations of match:.

class Num of: n = Term (| val = n. |)

(match: pat = (� pat num: val.))

class Var named: n = Term (| name = n. |)

(match: pat = (� pat var: name.))

class Product of: n by: m = Term (| left = n. right = m. |)

(match: pat = (� pat multiply: left by: right.))

Listing 26: Enabling Matching On Algebraic Terms

36

We augment the data structure presented in Listing 25 by implementations
of the match: method. Each time, we send a keyword message to the pattern
that attempts to identify the object and return the result. A matching key-
word pattern corresponds to the keyword message that is sent to the pattern
argument. This means that instances of Num match the pattern <num:> and
instances of Product match the pattern <multiply:by:>.

"KeywordPattern>>"

doesMatch: subj else: fail = (

| res |

res:: subj match: self.

� res == MatchFailure

ifTrue: [matchFailedFor: subj escape: fail]

ifFalse: [res]

)

Listing 27: Keyword Pattern Interface

Consider the implementation of the pattern interface for keyword patterns
shown in Listing 27. It shows how control is passed to the subject by invoking
match:. This is essential in order to provide for representation independence.
The pattern “asks” the object what pattern it aims to match, thus enabling
the designer of the data structure to decide which parts of the structure are
exposed.

The class KeywordPattern leverages the advantages of a dynamic type sys-
tem and related facilities to enable this correspondence between the message
that is sent to the argument pattern and the specified keywords and patterns.
Figure 6 aims to illustrate the dialog between a keyword pattern and an object.
A simplifier object attempts to match a keyword pattern on an instance of
Produce. Subsequently, the pattern attempts to match the provided instance of
Product by sending the match: message, passing itself as the single argument.
The instance of Product “replies” by sending the message multiply:by: to the
keyword pattern. The message is caught by the doesNotUnderstand: facility
of the keyword pattern and results in a successful match, which is returned
to the simplifier object that tried to match the pattern on the Product object.

The fact that Newspeak is dynamically typed, allows for sending arbi-
trary messages to the pattern. More specifically, there is no need to statically
determine whether the pattern is capable of handling the invoked message.

37

Keyword
Pattern Product

Keyword
Pattern Product

Keyword
Pattern Product

match: !

multiply:by: !

doesNotUnderstand: !

2. !

3. !

4. !

Keyword
PatternSimplifier

doesMatch:else: !1. !

Keyword
PatternSimplifier

!"5. !

Figure 6: Keyword Patterns

Instead, the pattern employs the doesNotUnderstand: facility in order to pro-
cess messages and attempt to match itself on the message and the provided
arguments. Consider the implementation presented in Listing 28.

The keyword pattern is associated with a “selector” analogously to key-
word messages in Newspeak. For the pattern <multiply:by:> the selector is
multiply:by:. The implementation in Listing 28 compares the selector of the
given message with the one associated with the keyword pattern itself. It in-
dicates a failed match by returning an empty binding (MatchFailure evaluates
to the value of a slot of the class KeywordPattern) or proceeds to match the
arguments on the associated nested patterns.

4.3.2 Keyword Bindings

While matching nested patterns on the respective message arguments, the
keyword pattern populates a “Keyword Binding” object, which is the result
of a successful match. The class KeywordBinding subclasses the Binding class
presented in Section 4.2 and adds functionality to bind values to names that
are accessible by sending the name of a value to the binding object. Consider

38

1 "KeywordPattern>>"

2 doesNotUnderstand: msg = (

3 | subj |

4 subj:: thisContext sender receiver.

5 � msg selector = selector

6 ifTrue: [matchArguments: msg arguments ofSubject: subj]

7 ifFalse: [MatchFailure]

8)

Listing 28: Keyword Pattern Interface Continued I

the implementation of matchArguments:ofSubject: in Listing 29, which is
invoked in line 6 of Listing 28.

1 "KeywordPattern>>"

2 matchArguments: args ofSubject: subj = (

3 | kwBinding |

4 kwBinding:: KeywordBinding for: subj.

5 args with: selectors do: [:arg :sel | | res |

6 res:: (dict at: sel) doesMatch: arg else: [� MatchFailure].

7 kwBinding bind: res boundValue at: sel.

8].

9 variables keysAndValuesDo: [:k :bpat | kwBinding bind: bpat slot at: k].

10

11 � kwBinding.

12)

Listing 29: Keyword Pattern Interface Continued II

Consider the brief example in Listing 30. The code in lines 5 to 8 of List-
ing 29 iterates over the message arguments and individual labels in pairs. The
slot named selectors in KeywordPattern holds a collection of the individual
labels. The loop would be evaluated only once for the keyword pattern kwp.
The keyword would be num and the argument defined by the message send in
the respective match: implementation. For the instance o1 it would be 2 and
for o2 it would be 1 respectively.

Line 6 of Listing 29 attempts to match the argument on the respective
pattern. The slot named dict in KeywordPattern holds a mapping from label

39

kwp = <num: 1>.

o1 = Num of: 2.

o2 = Num of: 1.

Listing 30: Keyword Pattern Example

names to respective patterns. In our example based on Listing 30, the mapping
would be from ’num’ to <1>. Therefore, the matching would succeed on o2.
Line 7 of Listing 29 binds the resulting value hold by the binding to the
keyword’s name in the new keyword binding. The resulting value will be
accessible by sending num to the respective keyword binding instance. Line 9
of Listing 29 binds further values to the new keyword bindings. It is discussed
in more detail in Section 4.3.3.

The pattern bound to kwp explicitly defines a pattern for the value labeled
by the keyword num. Because the definition of a sequence of keywords is a
pattern in itself, it is is optional to define a pattern on arguments (cf. the
grammar extension presented in Listing 5). If omitted, the literal instantiates
a wildcard pattern that matches any value. For example, the pattern <num:>

would match the instances bound to o1 and o2.
We revisit the simplification rule presented in Listing 3 to illustrate the re-

lation between keyword patterns and keyword bindings. The implementation
in Listing 31 is equivalent to the Haskell version: It returns the left hand side
of a multiplication, if the right hand side is a representation of the number 1
and otherwise the whole expression.

simplify: expr = (

� <multiply: by: <num: 1>> => [multiply] doesMatch: expr else: [expr].

)

Listing 31: Simplifying Algebraic Expressions in Newspeak

The closure argument to the application combinator demonstrates how to
access the values bound in the keyword binding. The argument labeled by
the keyword multiply is accessible inside the closure argument. This is the
argument passed to the pattern in the respective match: implementation in
the last line of Listing 26.

40

The keyword names are “bound” inside the closure by means of reflection
on the closure itself. The keyword binding instance, which is the result of
matching a keyword pattern on an object, is entered as a proxy receiver of
messages that are sent in the closure argument. This is shown in Listing 10.

Keyword patterns can be nested, as defined by our grammar extensions.
This is essential to allow for concise destructuring of nested data structures.
The simplification rule makes use of this feature. We use the keyword pattern
<num: 1> to match the right hand side of the product. The result of matching a
keyword pattern is a keyword binding and thus we allow for accessing nested
values through keyword bindings. Consider the example in Listing 32. If the
given expression is the product of two numbers, we return a representation of
the product, otherwise the original expression. The values of the numbers is
accessed by sending the num message to the keyword bindings, which are the
results of matching keyword pattern <num:> on the left and right hand side.

simplify: expr = (

� <multiply: <num:> by: <num:>> => [Num of: multiply num * by num]

doesMatch: expr else: [expr].

)

Listing 32: Accessing Nested Values

Traversing the resulting binding based on keywords is unique to our ap-
proach. Traditional pattern matching facilities allow for the use of identifiers
similar to variables to bind values to names. Line 9 hints at the processing of
pattern variables. We introduce them in the context of keyword patterns and
keyword bindings.

4.3.3 Pattern Variables

Patterns variables allow for the labeling of a value with a name. Listing 33
shows a different version of the simplification rule presented in Listing 31
based on pattern variables. We define a pattern variable named x in order to
refer to the left hand side of the multiplication. We can refer to the value of
the variable by sending the name to the keyword pattern. The details for this
are presented in Line 9 of Listing 29, where the values of the variables are
bound in the keyword binding. More specifically, the slot named variables

in the class KeywordPattern holds a mapping from names to respective values

41

of pattern variables.

simplify: expr = (

� <multiply: ?x by: <num: 1>> => [x] doesMatch: expr else: [expr].

)

Listing 33: Pattern Variables in Keyword Patterns

Pattern variables are implemented as patterns which allows for the uni-
form definition of the grammar and also the match algorithm in Listing 29.
They can be considered as wildcard patterns which lock on the first object.
Initially they match any value, similar to names used in traditional pattern
matching facilities. However, they store the first object on which they are
matched and any subsequent match attempt only succeeds if the objects are
identical. We employ a literal pattern to match the passed argument object on
any subsequent subjects. This means that the objects are compared by means
of =. The example in Listing 34 illustrates the use of pattern variables to label
and identify a value across different patterns. If the given expression is the
product of the same number, then we return the number squared, otherwise
the original expression.

simplify: expr = (

� <multiply: <num: ?x> by: <num: ?x>> => [Num of: x ** 2]

doesMatch: expr else: [expr].

)

Listing 34: Pattern Variables Across Patterns

The scope of a pattern variable is the outermost enclosing keyword pattern
literal. All variables with the same name refer to the same value upon a
successful match of the outermost enclosing keyword pattern. As can be seen
in the example in Listing 34, the variables are accessible at any of the involved
keyword bindings: The message x is sent to the keyword binding that is
the result of matching the enclosing keyword pattern <multiply:by:>, rather
than a nested pattern where the variable is actually used. This allows for
conveniently labeling values in nested structures and accessing them without
traversing the keyword bindings.

42

4.3.4 Discussion

We describe the common interface for enabling the matching of keyword
patterns on objects: An implementation of the match: method. We leave the
implementation of this method to the implementor of new classes. However,
it would be possible to add a default implementation in NewspeakObject to
accommodate many scenarios. For example, consider offering an implementa-
tion that uses introspection to identify the slots of a class. The implementation
could send a keyword message to the pattern argument that consists of the
names of all slots and their respective values, or even the power set thereof
(minus the empty set). However, this would expose the values of an object. To
overcome this issue, one might define a common interface for accessing a set
of unary messages which could be used for keyword messages in a default
match: implementation. This would leave it to the implementor of a class to
explicitly choose to expose values.

We argue that such a default implementation should be offered by the
designer of an object hierarchy, rather than in NewspeakObject. Adding an im-
plementation to the root of the object hierarchy should be considered carefully.
The application developer has more detailed knowledge about the application
domain and thus can determine which information should be exposed or
what additional interface should be imposed on subclasses.

4.4 Match Construct

Most languages with pattern matching facilities provide language constructs
to enable matching patterns on values. Haskell introduces a case of construct
and Scala uses match for similar purposes. Extending the compiler by a
construct for pattern matching enables optimization (for example, identifying
redundant cases in a statically typed language [Emi07]) and allows to abandon
parentheses for specifying an order of evaluation. However, only developers
who are familiar with and have access to the language’s compiler are able to
modify or extend the respective construct.

We provide a matching construct that is implemented as the method
case:otherwise:. This is in accordance with the mentality of the host language
which implements conditional expressions by means of message sends and
closures. It provides for adaption and specialization by application developers.
We argue that such flexibility facilitates future changes, while extending a
compiler is accessible only to a restricted set of language users.

43

The method is added to NewspeakObject, which is currently the root of
Newspeak’s object hierarchy. This allows for convenient usage of this con-
struct on all objects. The following listing presents the implementation:

"NewspeakObject>>"

case: pattern otherwise: fail = (

| bind |

bind:: pattern doesMatch: self else: [Binding new].

� bind isBound

ifTrue: [bind boundValue]

ifFalse: [pattern matchFailedFor: self escape: fail].

)

Listing 35: Match Construct

The first argument is the pattern object which is matched on the receiver
of the message. The second parameter is a closure which is evaluated if the
matching failed. This corresponds to the pattern interface doesMatch:else:,
which also requires an explicit handling of the failure case. For the match
construct, this ensures that application developers are reminded to deal with
non-exhaustive patterns, but also provides for a common idiom where the
pattern for the last clause is a wildcard (similar to an else expression).

simplify: expr = (

� expr case: <multiply: ?x by: <num: 1>> => [x]

otherwise: [expr].

)

Listing 36: Simplification Using the Match Construct

Listing 36 illustrates the application of the new construct. The presented
version closely resembles the Haskell version in Listing 3, without required
changes to the compiler for the case:otherwise: construct. The only additions
to the compiler are the literals for patterns, in order to reduce the required
overhead. However, pattern literals are translated to message sends. Meaning
they could also be instantiated programmatically and more importantly, can
be subject to future adaption by application developers.

44

We presented our work to add pattern matching facilities to the Newspeak
programming language. We introduced our realization of the model pre-
sented in Section 3 and our additions to facilitate concise pattern matching
statements: Literals for patterns. We described the concept of keyword pat-
terns that provide for an arguably straight-forward way of enabling pattern
matching for regular objects, while preserving representation independence.
The following section presents our work for integrating the augmented com-
piler with the existing Newspeak programming platform, in order to make
all our extensions accessible to application developers.

45

46

5 Application Developer Tool Support

To make our modifications accessible to application developers and allow
them to leverage existing development tools, we need to integrate the aug-
mented compiler with the existing programming environment. In this section,
we first provide a brief overview of the existing programming environment
for the Newspeak programming language. We focus on the aspects that are
relevant to our integration, rather than presenting a comprehensive introduc-
tion. We discuss our modifications to the environment in order to integrate
the augmented compiler framework and describe how application developers
can use the new language features.

5.1 The Newspeak Programming Platform

The Newspeak programming platform [BAB+08] encompasses a variety of
tools to support application developers: A class browser, debugger, inte-
grated source control management, etc. The class browser follows a document
metaphor [Byk08] and is modeled after a web browser. Figure 7 shows the
class browser displaying the Compiler class, which we augmented to support
pattern literals.

5.1.1 Newspeak Integration in Squeak Smalltalk

The current implementation of the Newspeak programming platform is based
on Squeak Smalltalk [IKM+97]. This allows application developers to fall
back to Squeak Smalltalk’s set of tools but also means that multiple languages
need to be supported in a single programming environment. Currently, there
is support for Smalltalk and different versions of Newspeak. Figure 7 shows
a classes which is implemented in the second version of Newspeak, as in-
dicated by the little icon in the top left. The different Newspeak languages
represent different development stages of support for the features defined in
the language specification [Bra09]. In order to provide for the co-existence of
Smalltalk, Newspeak and future language versions, the Newspeak team de-
signed a framework that facilitates the installation of different languages into
the Squeak Smalltalk environment: The package NsMultilanguage. It provides
multiple classes for handling different languages in the same environment,
most importantly:

47

Figure 7: The Newspeak Class Browser

Language This class is the main entry point for the environment to access
tools such as a parser and compiler for a particular language. It is an ab-
stract class and should be subclassed when installing a new language, and
the respective methods for accessing language specific facilities should be
specialized. There are currently subclasses for Smalltalk and different ver-
sions of Newspeak. For example, when adding a method to a Smalltalk class
C, the Newspeak IDE accesses the respective compiler via an instance of a
SmalltalkLanguage. The class SmalltalkLanguage is a subclass of Language and
associated with the class C.

LanguageCompiler This class is a wrapper for Squeak Smalltalk’s Compiler

class. It allows for compilers with different interfaces to be used by the Squeak
Smalltalk environment for purposes such as compilation of methods or classes.

48

Its subclass NS2Compiler is currently the default compiler for the Newspeak
programming platform and it is the goal of our work to provide a substitute
which supports pattern matching facilities.

The package also includes classes which deal with reading textual repre-
sentations of classes into the image and writing them back to the filesystem:
LanguageFileWriter and LanguageFileReader. These textual representations
are called “compilation units” and include a definition of the used language.
The reader relays most work to the compiler of the respective language, such
as an instance of NS2Compiler. The writer serializes an existing class definition
in the image into a textual representation and is used, e.g., for source control
management: The programming platform continuously publishes modified
class definitions as text files to a local repository.

The platform enables the Newspeak and Smalltalk languages to coexist,
hiding implementation details from application developers. However, the
host environment is based on Smalltalk. This means that Newspeak entities
eventually need to be translated to Smalltalk. Because the current version of
Newspeak is relies on an image which includes the programming environ-
ment, this is not only a matter of translating Newspeak code to its Smalltalk
equivalent.

In order to leverage the host environment, Newspeak’s mixins [BvdAB+10]
are represented as Smalltalk classes and their applications (classes) are man-
aged separately. Furthermore, the current Newspeak environment uses
Squeak Smalltalk’s global namespace represented by the class Smalltalk to
register top-level Newspeak classes. The registry is used by tools such as the
class browser to retrieve information about classes.

5.1.2 Reflection in Newspeak

Newspeak aims to support reflection by means of mirrors [BU04] and pro-
vides a mirror library for this purpose. Mirrors are used for introspection on
entities such as methods but also provide for dynamically modifying existing
classes. The Newspeak programming platform employs mirrors to trigger the
compilation and installation of new entities. For example, if an application
developer adds a new method m to a class C, the class browser creates a mirror
for m and adds it to a mirror for class C.

49

5.2 Installing a Compiler With Pattern Matching Support

We have briefly introduced the Newspeak programming platform focusing on
the aspects which are relevant to our goal: Integrating a compiler with pattern
matching support. We introduce our additions to enable the installation of
the new compiler. We describe our modifications to integrate it with the
described system and show how the extended development tools can be used
by application developers.

5.2.1 Compiler Integration

We provide a CompilerIntegration module which includes the functionality
necessary to extend the multi-language framework of the Newspeak pro-
gramming environment. This includes specialized versions of the classes
Language and LanguageCompiler aiming to integrate the augmented compiler
with support for pattern literals.

The new language that is introduced by our integration module is repre-
sented by the class NewspeakLanguage3. The default language for the current
Newspeak environment is Newspeak2 (NS2). Consequently, we label the
language with support for pattern literals: Newspeak3 (NS3). We describe
the individual parts of the CompilerIntegration module that enable the inte-
gration of NS3 in more detail:

NewspeakLanguage3 This class is the specialized version of the Language class
described above. It is used as an entry point by the environment to ac-
cess tools that are associated with a specific language. More specifically,
NewspeakLanguage3 provides access to the compiler with support for pattern
literals and the respective parser based on the Newspeak2Parsing module.

Newspeak3CompilerAdaptor This class subclasses the LanguageCompiler class
and acts as an adaptor to the compiler with support for pattern literals. It
bridges the interface required of a compiler by the Squeak Smalltalk environ-
ment and the compiler based on the Newspeak2Compilation module. It enables
the environment to compile and install new top-level classes as well as nested
classes using the new compiler framework.

An important difference to the existing compiler NS2Compiler is the separa-
tion of compilation and installation into the environment. While the previous

50

version compiles classes and immediately installs them in the global names-
pace represented by the class Smalltalk, the new compiler aims for a cleaner
interface. The result of a compilation is a mirror of the new class or method
that is not yet known to the environment.

In order to install new classes, we use the AtomicInstaller module that
provides for reflective changes of the environment as well as new installations.
The installer expects a nested data structure which represents a mixin and
nested mixins, where a single mixin is represented by a mirror. For top-level
classes this means that we pass the compilation result directly to the installer,
for nested classes we need to recreate the data structure for the enclosing class
in order to recreate synthetic methods for accessing nested classes.

WrappingNS3Parser This class provides access to the parser associated with
the new compiler. It specializes the respective NS2 version in order to emulate
the interface of a parser as required by the Squeak Smalltalk environment.
Most importantly, it provides for parsing a method and correctly setting the
scope.

NS3SqueakASTBuilder This class provides functionality to convert an abstract
syntax tree (AST) for a Newspeak node into an equivalent Squeak Smalltalk
AST representation. This is functionality required by the Squeak Smalltalk
environment. We provide support in order to enable the use of the tools
provided by the environment, such as the debugger.

NS3FileWriter This class specializes the respective version for NS2 to enable
the transition from using the global namespace Smalltalk to use the generic
SystemMetadata registry. We describe this issue in more detail in the following
Section 5.2.2.

Our modifications to the existing language are literals for patterns in order
to reduce the overhead of employing our pattern matching facilities. Because
the literals are an isolated addition, we are able to reuse existing functionality
for supporting NS2 by subclassing the respective classes. For example the
classes NS3FileWriter and NS3SqueakASTBuilder are subclassing the respective
NS2 classes.

51

In Section 4, we outline our use of the Newspeak2Compilation module to
implement support for pattern literals. Even though our module aims to inte-
grate the compiler with support for pattern literals, it is generally applicable
to a compiler which is based on the Newspeak2Compilation module. This al-
lows for future language experiments based on the new compiler framework,
not just the integration of pattern matching facilities.

5.2.2 Installing the New Newspeak Language

We described our module for integrating a new compiler into the Newspeak
programming environment. We provide this module to enable application
developers to use the new language features. We add support to the existing
class browser for the new version of Newspeak introduced by the integration
module. Furthermore, we modify the environment to support the new class
installation strategy employed by our module.

Newspeak Class Browser Applications are developed in the class browser
of the Newspeak platform. The browser is able to display classes of multiple
languages: Smalltalk and different versions of Newspeak. While NS2 is the de-
fault language for the current Newspeak environment, application developers
are able to convert existing NS2 classes to Newspeak1 classes. Analogously to
the backward conversion, we extend the graphical user interface by an option
to convert NS2 classes forward to NS3. Figure 8 shows the menu entry for
converting an existing NS2 class to NS3, thus enabling application developers
to employ the new language features.

Converting an existing class to NS3 means to associate the existing class
with NewspeakLanguage3, the main entry point of our integration module to the
new compiler. Thereafter all modifications to the converted class are handled
by the new compiler framework and can leverage the new language features.

Ultimately, the goal is to replace the current default compiler NS2Compiler.
However, given that the Newspeak platform already supports multiple lan-
guages, we argue that a gradual transition is more feasible. Furthermore,
adding an option for conversion is a non-intrusive way to enable application
developers to employ the new language features.

The existing framework for multiple languages can be used to install the
new language. The class browser uses a registry3 to define specific layouts

3The registry is represented by the class LanguageUiDescriptionRegistryForApp.

52

Figure 8: Converting a Class to Newspeak3

for different languages. For example, the layout for Smalltalk has no support
for nested classes. We install the mapping for the new Newspeak3 language
in order to signal the use of a different compiler. The language version is
indicated by the icon in the top left corner of the class browser, as shown on
Figure 9.

Installing Classes Into The Environment The Newspeak platform was built
gradually on top of the Squeak environment. It is due to this process that the
mirror library and parts of the Newspeak environment depend on the global
namespace provided by the environment. For example, nested classes are
registered in the global namespace with a synthetic name. Several parts of the
current environment still rely on this remnant of the evolution of Newspeak.

The SystemMetadata class was created to act as a system-wide registry. This
provides for a cleaner interface for managing information about classes and
replace the Smalltalk registry, thus reducing dependencies on the underlying
Squeak Smalltalk environment. It is used to register and retrieve informa-
tion about classes. For example, metadata includes information such as the
enclosing class or primary factory of a class.

Our integration module employs the AtomicInstaller module in order to

53

Figure 9: The Newspeak Class Browser Displaying a Newspeak3 Class

register newly compiled classes. The module installs only top-level classes
into the the environment’s namespace, dropping the inappropriate use of the
global namespace. However, this entailed several modification in the environ-
ment where the existing functionality depended on retrieving metadata from
the global namespace rather than a proper registry such as SystemMetadata.
Mostly, these modifications were limited to the mirror library which is used
to dynamically modify existing classes.

We described the Newspeak programming platform and our additions to

integrate a new compiler. Our modifications are non-intrusive and enable
application developers to leverage the new language features in a comprehen-
sive programming environment. In the following we offer an evaluation of
our results.

54

6 Evaluation

We outlined our motivation and design objectives in Section 2. After present-
ing the main contributions of our work, we will now revisit the aforemen-
tioned design objectives. We evaluate our work by reviewing each objective
and highlighting how our design decisions reflect the stated objectives. More-
over, we apply the criteria presented in [EOW07] to our work and discuss the
results.

6.1 Design Objectives Revisited

The goal of our work is a smooth extension of the Newspeak programming
language by pattern matching facilities. The presented objectives aim to en-
sure a seamless integration, facilitate future changes and reduce unnecessary
overhead for application developers. We return to each individual objective
and discuss our results based on the outlined goals.

Enable Abstraction over Patterns Patterns are regular objects in Newspeak.
They are first class values like any other object. This allows for flexible use of
patterns and facilitates future change as we outlined in Section 2.

filter: aList select: pat = (

� aList select: [:e | e case: pat => [true] otherwise: [false]]

)

Listing 37: Generic Filter Implementation

We used a simple example in Listing 4 to illustrate the shortcomings of
traditional functional programming languages with respect to abstracting
over patterns. The implementation of filter:select: in Listing 37 is a simple
wrapper of select: in order to demonstrate the use of patterns as first class
values. It reduces a list to those elements that match the pattern given as
an argument. It illustrates the benefits of being able to extract common
functionality from different pattern matching constructs (see also, the example
for use of the conjunction combinator in Section 4.2.3).

Facilitate Composition Patterns adhere to a well-defined interface that pro-
vides for composition: doesMatch:else:, which is described in more detail in

55

Section 4. We provide a set of essential combinators to provide for the com-
position of different patterns based on this common interface. Application
developers can easily extend the existing set of combinators, given that they
are implemented as regular methods. For example, consider implementing a
combinator that acts as a simple guard to a given pattern:

if: guard = (

� Pattern wrap: [:subject :fail |

guard value

ifTrue: [doesMatch: subject else: fail]

ifFalse: [matchFailedFor: subject escape: fail]

]

)

"example:

(<var: name> if: [hasVariables]) => [...] "

Listing 38: Pattern Guard Combinator

The receiver pattern is only matched on a given subject if the block argu-
ment evaluates to true. This simple example demonstrates the flexibility of
patterns in connection with combinators. We believe that making patterns
first-class and relying an a simple yet well-defined interface provides for
future changes and expressive composition operators.

Preserve Encapsulation Our extension to Newspeak adheres to the princi-
ple of data abstraction. We provide keyword patterns which facilitate the
matching of regular objects while hiding the concrete implementation. Key-
word patterns do not rely on a specific type of an object but instead identify an
object by invoking a regular method on the subject. It is left to the developer
to implement this method and expose values based on demand.

Enable Ease of Use We provide extensions to facilitate the use of our pattern
matching facilities by application developers. We aim to reduce the overhead
needed by supporting literals for essential patterns such as keyword patterns.
We integrated the augmented compiler into the existing programming envi-
ronment to make our modifications accessible to application developers. This
allows for using existing tools such as a debugger or system browser.

56

We are able to leverage several features of the host language Newspeak
to provide for a seamless integration of our extensions and facilitate the
use by application developers. The implementation of keyword patterns
and their interface is alleviated by a dynamic type system and the related
doesNotUnderstand: facility. This provides for labeling values with names
rather than encoding everything by the order of elements in a sequence. The
reflective capabilities allow for setting bindings as receivers of message sends
in closures. This greatly reduces the overhead for accessing values. We aim to
accomodate the mentality of late-boundness by translating literals for patterns
to message sends. Moreover, the fact that Newspeak supports only message
sends at run-time implies that our extension should not rely on a construct
such as case of in Haskell, which is driven by the compiler.

Exploiting the features of Newspeak ensures that our pattern matching fa-
cilities are a smooth and expressive extension to the Newspeak programming
language. We implemented a flexible core as a library to the core language.
We extended the compiler by literals to facilitate the use of our pattern match-
ing facilities. We believe that our work fulfills to the outlined objectives and
proceed to evaluate our results in the context of related techniques.

6.2 Simplifying Algebraic Terms

The work in [EOW07] presents Scala’s pattern matching facilities and evalu-
ates them in the context of related techniques. Scala is a pure object-oriented
programming language (all values are objects) that aims to incorporate fea-
tures from functional programming languages, such as pattern matching
facilities. The aim of this section is to apply the introduced criteria to our
results and contrast Scala’s features with our extensions to Newspeak. Please
consider [OAC+09, Emi07, EOW07] for more information on Scala and its pat-
tern matching facilities. While we provide a brief overview of these concepts,
it is beyond the scope of this report to introduce them.

The following techniques are considered: regular object-oriented decompo-
sition, the visitor pattern, type test and cast, a typecase construct, case classes
and extractors. The type-related techniques are not directly relevant in the
context of our work, which targets a programming language with a dynamic
type system. Case classes and extractors are introduced in Scala to enable
convenient pattern matching while preserving data abstraction. Extractors
are closely related to our keyword patterns, where our match: method is used

57

analogously to the unapply method for extractors. Case classes are syntactic
sugar which includes the definition of extractor related methods based on
constructor arguments. They are closely related to datatypes known from
functional programming languages.

The different techniques are evaluated based on solutions to the same
problem: Defining a class hierarchy to represent a simple algebraic expression
and implementing a basic simplification rule. We include the solution based
on Scala’s extractors in Listing 39. Extractors are closest to our work and we
use them in order to highlight differences. Lines 2 to 5 define the mentioned
class hierarchy for representing simple algebraic expression consisting of
numbers, variables and products. The following lines 7 to 18 are used to
define three separated extractor objects which are used for pattern matching
purposes. The unapply method is used for destructuring purposes analogously
to the match: method used by keyword patterns. The return value is of type
Option[+T] where Some[T] indicates a successful match and None is used for
failure.4

Multiple values are represented as a tuple as shown in Line 17. This is
clearly different from our use of keyword patterns which provide for labeling
individual values. Our keyword syntax can be considered a strength and
we believe using it for patterns is a natural extension to Newspeak. Our
implementation of keyword patterns relies on Newspeak’s dynamic type
system and doesNotUnderstand: facility. The patterns would not be a natural
extension for a statically typed language without keyword messages, such as
Scala.

The simplification rule in lines 22 to 25 of Listing 39 demonstrates the use
of extractors for pattern matching. Scala provides a match construct which
allows for the definition of multiple cases, which associate patterns with
functionality. The use of extractors in line 23 is translated by the compiler
to invocations of the respective unapply method and nested patterns are ex-
panded.

We provide a corresponding solution to the outlined problem in Newspeak
using our pattern matching facilities and keyword pattern literals as described
in previous sections. The source code is summarized in Listing 40.

The example in Listing 41 shows a different implementation that makes

4This is related to Tullsen’s [Tul00] approach. He employs the type Maybe a, where Nothing

indicates failure and values of Just a a successful match. The types Maybe a and Option[+T]

are alternatives to Java™ ’s null, where null corresponds to Nothing and None respectively.
Scala’s and Haskell’s type checker can statically verify whether the “null case” is handled.

58

1 // Class hierarchy:

2 trait Term

3 class Num(val value : int) extends Term

4 class Var(val name : String) extends Term

5 class Mul(val left : Term, val right : Term) extends Term

6

7 object Num {

8 def apply(value : int) = new Num(value)

9 def unapply(n : Num) = Some(n.value)

10 }

11 object Var {

12 def apply(name : String) = new Var(name)

13 def unapply(v : Var) = Some(v.name)

14 }

15 object Mul {

16 def apply(left : Term, right : Term) = new Mul(left, right)

17 def unapply(m : Mul) = Some (m.left, m.right)

18 }

19

20 // Simplification rule:

21 e match {

22 case Mul(x, Num(1)) ⇒ x

23 case _ ⇒ e

24 }

Listing 39: Simplification Using Scala’s Extractors [EOW07]

use of the disjunction combinator to define multiple cases. It aims to resemble
the Scala version in Listing 39, but it is equivalent to the version in Listing 40,
except for the signaling of a failed match.

It is worth noting that case:otherwise: is a regular method call rather
than a keyword in the host language. It does not require any modifications to
the language compiler and can be specialized in subclasses. Our extensions
to the compiler are solely for the sake of convenience. This is an essential
difference between our approach to extending Newspeak and Scala’s pattern
matching facilities which are part of the language’s original design.

Refraining from modifying the language compiler to support a construct
for matching means that employing our facilities might require some syntacti-
cal overhead. More specifically, parentheses are often required to define the

59

class Term = ()()

class Num of: n = Term (| val = n. |)

(match: pat = (� pat num: val.))

class Var named: n = Term (| name = n. |)

(match: pat = (� pat var: name.))

class Product of: n by: m = Term (| left = n. right = m. |)

(match: pat = (� pat multiply: left by: right.))

"simplification rule"

e case: <multiply: ?x by: <num: 1>> => [x]

otherwise: [e]

Listing 40: Simplification Using Keyword Patterns

"simplification rule"

e case:

(<multiply: ?x by: <num: 1>> => [x])

| (<_> => [e])

otherwise: [NoMatchError signal]

Listing 41: Simplification Using Keyword Patterns Alternative

order in which patterns are composed. For example, compare the different
implementations of the simplification rule in Listings 40 and 41. However, we
believe that the gained flexibility prevents complications such as the confusion
resulting from Haskell’s abundance of pattern matching features.

The work in [EOW07] considers three different topics for evaluating the dif-
ferent listed techniques: Conciseness, Maintainability and Performance. Com-
paring the performance of different languages is not trivial and we have not
introduced optimization to improve our pattern matching facilities. Therefore
we evaluate our work based on the criteria for maintainability and conciseness.

The Newspeak programming language provides for a concise definition of
the class hierarchy. The notational overhead for enabling pattern matching on
a class is arguably low: It is reduced to implementing a single method named
match: by sending a keyword message to the pattern argument. Nested
keyword patterns allow for deep matches. Keyword patterns allow application

60

developers to maintain data abstraction. It is straight-forward to add classes
with support for similar or different patterns. Adding new patterns is merely
a matter of using literals and objects may match multiple patterns.

We include the evaluation summary presented in [EOW07] in the following
table. We add the assessment of our solution presented in Listing 40 in the
column labeled “Keyword Patterns” in Table 1. The table is not meant to be
an absolute assessment of different techniques. Instead, the aim is to illustrate
the benefits of pattern matching facilities in the context of related techniques
for a particular problem.

Extractors are closely related to our approach using keyword patterns. As
we described above, our match: method corresponds to the unapply method
used for extractors. Both approaches allow to maintain data abstraction
and facilitate future extension by patterns or classes. However, the syntactic
overhead needed for employing our pattern matching facilities is arguably
less than that for extractors but not as minimal as for case classes.

O
bj

ec
t-

O
ri

en
te

d
D

ec
om

po
si

tio
n

V
is

ito
r

Pa
tt

er
n

Ty
pe

-T
es

ta
nd

C
as

t

Ty
pe

ca
se

C
as

e
C

la
ss

es

Ex
tr

ac
to

rs

K
ey

w
or

d
Pa

tt
er

ns

Conciseness
framework - - + + + - o
shallow matches o - - + + + +
deep matches - - - o + + +
Maintainability
representation independence + o - - - + +
extensibility/variants - - + + + + +
extensibility/patterns + - - - - + +

Table 1: Evaluation Summary [EOW07]

We quote the results for the related techniques in order to illustrate the

61

benefits of pattern matching facilities in the context of related techniques. We
have evaluated our results with respect to conciseness and maintainability.
We summarize the findings of the evaluation in [EOW07] that coincide with
our experience .

With object-oriented decomposition, it is possible to preserve encapsula-
tion but the traversal of nested data structures quickly becomes tedious. The
visitor pattern allows for a clean separation of data structures and respective
functionality, but is arguably hard to maintain when adding classes to the
data structure. Type related techniques clearly break the principle of represen-
tation independence and should be avoided in object-oriented programming
languages. Case classes share the benefits and shortcomings of traditional
algebraic datatypes: They allow for very concise definition of data structures
but break the concept of encapsulation.

We analyzed our results based on the criteria presented in [EOW07] with
respect to related techniques. Our work is closely related to Scala’s extrac-
tors and consequently share similar benefits, most notably the possibility to
maintain representation independence. We believe that keyword patterns are
a natural extension to the Newspeak programming language and that they
leverage the benefits of keyword syntax for pattern matching. Moreover, it is
important to notice that the core of our pattern matching facilities requires
no modifications to the language’s compiler. We believe that implementing
pattern matching facilities without extending the language’s core allows for
flexible use and adaption by application developers.

We have revisited the design objectives that were outlined in Section 2.

This section highlighted how we adhere to these goals in our extension of
the Newspeak programming language by pattern matching facilities. Further-
more, we have evaluated our work with respect to related techniques based
on the criteria presented in [EOW07]. Next, we present influences on our
work and related approaches to adding support for pattern matching in other
programming languages.

62

7 Related Work

We presented pattern matching for Newspeak and evaluated our work in the
context of related techniques. As was discussed in Section 2, there is a long
history, as well as current research in this field of programming language
theory. We provide a more thorough survey of current research that is related
to our work. We use this opportunity to contrast our work with existing
systems and identify similarities or influences.

7.1 Functional Programming Languages

The concept of matching patterns on data structures originated in the commu-
nity of functional programming languages. As a consequence, many mature
languages such as Haskell or members of the ML family have comprehensive
built-in support. But also more recent functional languages such as Qi [Tar08]
or Cyclone [Gro06] employ pattern matching.

For statically typed languages, pattern matching is often used to dynam-
ically dispatch functionality at run-time. However, functional programming
languages with a dynamic type system also support pattern matching on val-
ues to enable the concise definition of functionality. For example, PLT Scheme5

provides a form named match, which provides for matching general values,
including support for destructuring lists. The language Erlang [Arm97] has
support for matching values such as messages and leverages its pattern match-
ing facilities to further performance optimizations [GD06].

Pattern matching facilities in functional programming languages often
break the concept of data abstraction. This prevents a clean separation of
algorithms from underlying data structures. More specifically, patterns are
constrained to a particular datatype rather than an abstract interface. Views
for Haskell [Wad87] and Standard ML [Oka98] address this issue by ex-
tending the language. More recently, the work in [SNM07] extends the F#
programming language’s pattern matching facilities by “active patterns” with
similar goals.

Most functional programming languages fail to provide the necessary
means to abstract over patterns. As was highlighted in Section 2, this hinders
the development of pattern matching facilities without extending the language
itself. The work in [PGPnNn96, FB97, Tul00, Rhi09] illustrates the need for

5The programming language PLT Scheme is available online at http://www.plt-scheme.org,
last accessed: March 16, 2010.

63

abstracting over pattern in different functional programming languages. But
to the best of our knowledge, the proposed approaches were not incorporated
into the respective languages.

An important influence on our work is the work by Tullsen [Tul00] on
Haskell’s pattern matching facilities with respect to abstraction over patterns.
He proposes to make patterns first class citizens: Functions of type “a→Maybe

b”. He presents different combinators and demonstrates the usefulness of
being able to abstract over patterns as first class values, e.g., by describing a
combinator that provides for matching pairs of patterns on pairs of values
concurrently. Implementing a similar operator with our pattern matching
facilities for Newspeak is rather straight-forward.

Statically typed programming languages such as Haskell often offer im-
proved feedback based on the application of pattern matching facilities.
We plan to leverage our pattern matching facilities in combination with
Newspeak’s metadata system for improved error checking in the future as
is outlined in the next section. More importantly, our work addresses both
shortcomings of languages such as Haskell with respect to pattern match-
ing facilities: Patterns are inherently first-class values (objects) in Newspeak
and keyword patterns preserve data abstraction while facilitating the use of
regular objects in pattern matching constructs.

7.2 Object-Oriented Programming Languages

While pattern matching originates in the functional programming commu-
nity, its key benefits are also applicable in the context of object-orientation.
Emerging programming languages aim to combine the well-established fea-
tures from functional and object-oriented programming, as we outlined in
Section 2. Furthermore, recent research attempts to extend languages such as
Java™ with pattern matching facilities or create new languages with inherent
support.

For the sake of clarity, we distinguish two different aspects of the concept
of pattern matching: Extending method dispatch and providing a construct
for matching patterns on objects. Our work aims for the second aspect, for
which reason we focus our survey more on related constructs rather than
changing method dispatch.

64

7.2.1 Pattern Matching Constructs

We provide an overview of different attempts at extending object-oriented
programming languages or languages whose design includes support for
pattern matching construct.

Scala [OAC+09] Scala is an object-oriented and statically typed program-
ming languages targeted at the Java™ Virtual Machine platform. It includes
generic support for matching objects based on a case construct and the con-
cept of “extractors” [Emi07]. Extractors are closely related to “views” for
functional programming languages. They enable pattern matching while pre-
serving data abstraction. The name is descriptive in the sense that an extractor
method named unapply is used for matching and destructuring a value in a
single step (analogously the method apply can be used as a constructor). More
specifically, the unapply method is related to the match: method used for Key-
word Patterns. It is the common interface of objects used to expose relevant
constituents. Furthermore, Scala provides “case classes” which are related
to algebraic datatypes, support to match the content of XML [BPSM+08]
documents [OAC+09] and includes work on optimizing the performance of
pattern matching [Emi05].

The pattern matching construct case is implemented as a language exten-
sion to the compiler. This enables a more succinct syntax, when compared
to our work and the respective application of combinators. However, we
believe that implementing pattern matching facilities as a library enables spe-
cialization by application developers. For example, the semantics of keyword
patterns can be specialized by regular subclassing. Furthermore, we believe
that leveraging Newspeak’s keyword syntax to label the relevant constituents
is more intuitive than squeezing data into tuples where order defines meaning.

Matchete [HNBV08] Matchete is an experimental language extension to the
Java™ programming language with pattern matching facilities. It provides
a uniform approach to different patterns ranging from regular object decon-
structors, similar to Scala’s extractors, to decoding TCP/IP packets. Consider
the following example which implements a function mult that returns the
product of all the integers in a given list:

The sample shows the generic construct match which is an extended ver-
sion of the regular switch statement for Java™ . It is used for matching values
and associating patterns and respective functionality. The base case is given

65

1 int mult(IntList ls) {

2 match (ls) {

3 cons~(0, _): return 0;

4 cons~(int h, IntList t): return h * mult(t);

5 }

6 return 1;

7 }

Listing 42: Matchete [HNBV08] Example

in line 6 which is evaluated if none of the patterns matches. The patterns
in lines 3 and 4 are deconstructors and show the use of nested patterns as
well. Deconstructors are suffixed with a tilde character ~ and implemented
similarly to regular methods.

Matchete aims to “[unify] different approaches to pattern matching”
through extending the language. The pattern matching facilities of our work
are flexible enough to express a similar variety of patterns without extending
the language core. Moreover, Matchete is lacking the means to abstract over
patterns or to provide for operators akin to our combinators. Deconstructors
are similar Scala’s extractors and as such less intuitive to use, in our opinion,
than the keyword syntax leveraged in our approach.

Thorn [BFN+09] Thorn is the continuation of the work on Matchete as a
new programming language targeting the Java™ Virtual Machine platform. It
is dynamically typed and aims to facilitate a pluggable type system. It incor-
porates a flexible pattern matching facility, closely related to Matchete. One
addition when compared to Matchete is the possibility to split function defini-
tions. Consider the following example that shows the divided implementation
of a a function to sum up the values of a given list:

fun sum([]) = 0;

| sum([x,y...]) = x + sum(y);

Listing 43: Thorn [BFN+09] Example

Another aspect is the inclusion of an expressive query system with a rich
set of operators. However, the facilities for querying and matching objects are

66

not consolidated.
In contrast to our work, Thorn’s pattern matching facilities are not a

supplementary extension to the language. They are an integral part of the lan-
guage’s original design. This allows for smoothly combining pattern matching
and function definition. While it includes interesting additions to the work
presented in Matchete, it is unclear whether patterns can be the result of
arbitrary statements. More specifically, the ability to abstract over patterns or
create operators which combine patterns is not explained. Our approach aims
for a closer integration of the facilities for pattern matching and querying of
collections and other sources.

JMatch [LM03, LM05] JMatch extends the Java™ programming language
with support for “iterable abstract pattern matching” [LM03]. It incorporates
facilities for backtracking to support pattern matching. Backtracking is a
concept known from logic programming, most prominently the programming
language Prolog [Col90]. JMatch adds support for a backward mode which
allows the definition of boolean expressions in order to bind values used
for pattern matching. While our work aims for a seamless integration with
Newspeak, JMatch’s changes to the host language are non-trivial, involving
a conversion to continuation-passing style in order to enable backtracking.
Adding a backwards mode to an imperative language raises issues with
regards to program comprehension.

TOM [MRV03] The TOM compiler aims to extend different languages such
as C and Java™ by a pattern matching construct named %match. The extensions
include constructs for defining terms and patterns on them by means of
translation rules to statements of the original language. While the changes are
not intrusive, they are also not smoothly integrated in contrast to our work.
More specifically, employing translation rules rather than features of the
host languages allows to target multiple languages but imposes unnecessary
complexity for application developers.

7.2.2 Method Dispatch

Enabling the splitting of function definitions in object-oriented programming
languages usually entails a generalization of method dispatch to multiple
dispatch. This means that methods are dispatched dynamically based on

67

the specific types of selected arguments at run-time, not just the message
receiver’s type.

The Common Lisp Object System [BDG+88] is one of the first facilities to
provide for multiple dispatch in the context of object-orientation by means
of “generic functions”. The work on “predicate dispatch” [EKC98, Mil04]
aims to generalize the concept of single-dispatch traditionally used in object-
oriented programming languages such as Smalltalk. It attempts to combine
multiple dispatch with pattern matching based on expressive predicates. The
work in [MFRW09] addresses the issue of multiple dispatch in the context of
the Java™ programming language. They extend the language by dynamic
predicate dispatch of methods. The extensions allow to specify a boolean ex-
pression as a predicate which is evaluated at run-time and used to determine
an adequate method implementation dynamically.

The work on OOMatch [RL07] also extends the Java™ programming lan-
guage in order to provide for multiple dispatch. It also includes support for
destructuring method arguments based on deconstructors. Please consider
the following listing for an incomplete example:

abstract class Expr { ... }

class Binop extends Expr {

deconstructor Binop(Expr e1, Expr e2) {

e1 = this.e1;

e2 = this.e2;

return true;

}

}

class Plus extends Binop { ... }

class NumConst extends Expr { ... }

// example:

Expr optimize(Plus(Expr e, NumConst(0)) { return e; }

Listing 44: OOMatch [RL07] Example

The example illustrates the use of a deconstructor to identify the types
of constituent values which provides for the destructuring use in method
definitions. It also demonstrates that modifying the method dispatch facilities
to support pattern matching in Java™ entails non-trivial changes. Especially
determining which method is applicable in the context of polymorphism
seems needlessly complex.

68

As was pointed out before, modifying the method dispatch functionality
of Newspeak is not the goal of this work. We believe that the benefits of
equational reasoning are not easily transferred. It is not clear whether the
splitting of method definitions improves program comprehension in an object-
oriented context.

7.3 Pattern Languages

Our work and presented related research focuses on integrated pattern match-
ing facilities within a programming language and the involved paradigm.
There exist programming languages which build on patterns as their core
building block. These languages use the declaration of rules based on pat-
terns and associated meaning as their main method for expressing function-
ality. They demonstrate the expressivity and flexibility of pattern matching
facilities.

The language π [KM09] leverages this approach to support the syntactic
growth of a language. Translation rules to existing patterns enable an incre-
mental evolution of the language, similar to macro systems in the LISP fam-
ily of programming languages. The programming language OMeta [WP07]
generalizes the concepts of Parsing Expression Grammars [For04] to handle
arbitrary streams of objects. The language aims to facilitate language exper-
imentation. The work of [JK09, JK06] presents a framework for a pattern
calculus based on first class patterns. They offer a prototype implementa-
tion of the programming language “bondi”, which is based on the presented
calculus.

We surveyed related research on different programming languages and

different influences on our work. To the best of our knowledge, no other work
aims to extend an existing object-oriented and dynamically typed program-
ming language and involves an integration into the respective programming
environment. Exploiting keyword syntax is a unique feature of the Smalltalk
family. We believe that keyword patterns offer an intuitive way to identify
objects of interest and a clean interface to expose information while preserv-
ing encapsulation. After contrasting our work with other pattern matching
facilities and programming languages, we summarize our results and describe
our plans for future work.

69

70

8 Summary and Outlook

We presented our work on extending the Newspeak programming language
by pattern matching facilities. In this section, we conclude by summarizing
the results of our work. Furthermore, we provide several starting points for
what we consider future work. These include changes for better tool support,
as well as furthering the language’s pattern matching facilities and the ease
of use.

This report describes the design and implementation of pattern matching
facilities for an object-oriented and dynamically typed programming language:
Newspeak. Our work includes the seamless integration of our extensions into
an existing programming environment in order to facilitate the use of our
additions by application developers.

We describe a simple yet flexible model of the pattern matching concepts.
The model allows for a smooth integration into an object-oriented program-
ming language. We provide an implementation of this model and demonstrate
its applicability. Keyword patterns provide for an intuitive way to identify
objects of interest and expose values while preserving the principles of en-
capsulation. We extended the language’s compiler to support various pattern
literals in order to reduce the overhead required for employing our pattern
matching facilities. The integration of the augmented compiler into the exist-
ing Newspeak programming environment enables the utilization of present
tools such as the system browser or debugger.

Additional Pattern Literals The presented language extensions include lit-
erals for various patterns such as keyword patterns. We plan to extend the
set of literals to increase the practicability of pattern matching facilities. Con-
sider the following example which illustrates the application of a pattern as a
regular expression to match an identifier:

str case: </ ([a-zA-Z][a-zA-Z0-9]*) /> => [group: 1]

otherwise: []

Listing 45: Regular Expression Pattern Example

A more involved example is presented in the following listing. It illustrates
the use of patterns to query the content of a structured document. Employing

71

an existing library for parsing XML [BPSM+08] documents and querying
them with XPath [BBC+07] statements should enable the implementation of
such a pattern literal.

doc case:

<- //singer[@name eq ’Fischer-Dieskau’] ->

=> [singer collect: [:s | s age]]

otherwise: []

Listing 46: XPath Pattern Example

We have implemented experimental support for regular expression pat-
terns and believe that integrating patterns for querying the content of XML
documents would increase the utility of our pattern matching facilities to the
application developer.

Integrated Query Language We have presented keyword patterns which
allow for an intuitive way of identifying an object based on the content it
chooses to expose. We believe that an interesting next step will be extending
these capabilities to other sources than plain objects. LINQ [MBB06] aims for
a similar goal: providing a uniform interface for querying for the content of
collections. This includes regular collections of the host language, but also
tables in databases or XML documents.

It is worth noting that patterns and combinators will allow for program-
matically creating queries as first class values, rather than a textual represen-
tation stored in a string. Therefore, we believe that querying for the content of
XML documents or other structured data can be simplified by extending the
pattern matching facilities of the Newspeak programming language. The pre-
sented combinators already indicate our goal to provide an integrated query
language: They resemble operators commonly known from query languages.

We plan on extending the pattern matching facilities to support queries
on database tables and other collections. Another option is the support for
querying a knowledge base using patterns, similar to logic programming. We
believe that the presented core is flexible enough to enable such extensions
and have started work towards an integrated query language.

72

Debugger Support We have extended the compiler for Newspeak to support
pattern literals. As described in Section 4.1, a literal is expanded to a regular
method send. This means that the debugger displays the expanded version of
the pattern literal rather than the concise literal representation. The pattern
literal <val:<val:>> is translated to a message send to the Pattern class that
instantiates the corresponding keyword pattern. The expanded version is
shown in Listing 47.

self Pattern

keywords: ((self Array new: 1) at: 1 put: #val: ; yourself)

patterns: ((self Array new: 1) at: 1 put:

(self Pattern

keywords: ((self Array new: 1) at: 1 put: #val: ; yourself)

patterns: ((self Array new: 1)

at: 1 put: (Pattern wildcard)))))

Listing 47: Expanded Nested Keyword Pattern Literal

The debugger will display the source code shown in Listing 47, rather than
what was written by the user: <val:<val:>>. This behavior is consistent with
the handling of other synthesized code such as literals for tuples. Nevertheless
this behavior is not intuitive to the application developer. We believe that an
option to expand literals on demand would be more appropriate.

Error Checking Pattern matching allows for improved error checking. Stati-
cally typed programming languages like Haskell employ the pattern match-
ing construct to provide feedback if a set of patterns is non-exhaustive. The
specification for the Newspeak programming language allows for metadata
that can be used to support a pluggable type system, similar to the work
in [HDN07]. We believe that such a type system could exploit our pattern
matching facilities for improved feedback.

The contributions of our work are self-contained and are accessible to

application developers. Nevertheless we aim to improve the user experience
in the future and provide further extensions to advance the pattern matching
facilities for the Newspeak programming language.

73

74

References

[Arm97] Joe Armstrong. The Development of Erlang. In ICFP ’97: Pro-
ceedings of the second ACM SIGPLAN international conference on
Functional programming, pages 196–203, New York, NY, USA,
1997. ACM.

[BAB+08] Gilad Bracha, Peter Ahe, Vassili Bykov, Yaron Kashai, and Eliot
Miranda. The Newspeak Programming Platform. Technical
Report, Cadence Design Systems, May 2008.

[BBC+07] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernan-
dez, Michael Kay, Jonathan Robie, and Jérôme Siméon. XML
Path Language (XPath) 2.0. W3C Recommendation, 2007.

[BDG+88] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel,
Sonya E. Keene, Gregor Kiczales, and David A. Moon. Common
Lisp Object System Specification. SIGPLAN Not., 23(SI):1–142,
1988.

[BFN+09] Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund,
Gregor Richards, Rok Strniša, Jan Vitek, and Tobias Wrigstad.
Thorn: robust, concurrent, extensible scripting on the JVM. In
OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN conference
on Object oriented programming systems languages and applications,
pages 117–136, New York, NY, USA, 2009. ACM.

[BPSM+08] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, and
François Yergeau. Extensible Markup Language (XML) 1.0. W3C
Recommendation, 2008.

[Bra07] Gilad Bracha. Executable Grammars in Newspeak. Electronic
Notes in Theoretical Computer Science, 193(1):3–18, November 2007.

[Bra09] Gilad Bracha. Newspeak Programming Language Draft Specifi-
cation Version 0.05. 2009.

[BU04] Gilad Bracha and David Ungar. Mirrors: Design Principles
for Meta-Level Facilities of Object-Oriented Programming Lan-
guages. In OOPSLA ’04: Proceedings of the 19th annual ACM
SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, pages 331–344, 2004.

75

[Bur69] Rod M. Burstall. Proving properties of programs by structural
induction. The Computer Journal, 12(1):41, 1969.

[BvdAB+10] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai,
William Maddox, and Eliot Miranda. Modules as Objects in
Newspeak. In To appear in the Proceedings of the 24th European
Conference on Object Oriented Programming, Maribor, Slovenia, June
21-25 2010, Lecture Notes in Computer Science. Springer-Verlag,
June 2010.

[Byk08] Vassili Bykov. Hopscotch: Towards User Interface Composition.
In 1st International Workshop on Academic Software Development
Tools and Techniques (WASDeTT-1), 2008.

[Col90] Alain Colmerauer. An Introduction to Prolog III. Communications
of the ACM, 33(7):69–90, 1990.

[EKC98] Michael Ernst, Craig Kaplan, and Craig Chambers. Predicate
Dispatching: A Unified Theory of Dispatch. Lecture Notes in
Computer Science, 1445:186–211, 1998.

[Emi05] Burak Emir. Compiling regular patterns to sequential machines.
In SAC ’05: Proceedings of the 2005 ACM symposium on Applied
computing, pages 1385–1389, New York, NY, USA, 2005. ACM.

[Emi07] Burak Emir. Object-Oriented Pattern Matching. PhD thesis, École
Polytechnique Fédérale de Lausanne, October 2007.

[EOW07] Burak Emir, Martin Odersky, and John Williams. Matching
objects with patterns. In E. Ernst, editor, ECOOP 2007, LNCS
4609, pages 273–298, Berlin Heidelberg, 2007. Springer-Verlag.

[FB97] Manuel Fähndrich and John Boyland. Statically checkable pat-
tern abstractions. In ICFP ’97: Proceedings of the second ACM SIG-
PLAN international conference on Functional programming, pages
75–84, New York, NY, USA, 1997. ACM.

[For04] Bryan Ford. Parsing expression grammars: a recognition-based
syntactic foundation. In POPL ’04: Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 111–122, New York, NY, USA, 2004. ACM.

76

[GD06] Qiang Guo and John Derrick. Eliminating Overlapping of Pat-
tern Matching when Verifying Erlang Programs in µCRL. In 12th
International Erlang User Conference (EUC’06), Stockholm, Sweden,
September 2006.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Reading, MA, 1995.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM)
Language Specification, The (3rd Edition) (Java (Addison-Wesley)).
Addison-Wesley Professional, 2005.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: the language
and its implementation. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1983.

[Gro06] Dan Grossman. Quantified Types in an Imperative Lan-
guage. ACM Transactions on Programming Languages and Systems,
28(3):429–475, 2006.

[HDN07] Niklaus Haldiman, Marcus Denker, and Oscar Nierstrasz. Prac-
tical, pluggable types. In ICDL ’07: Proceedings of the 2007 interna-
tional conference on Dynamic languages, pages 183–204, New York,
NY, USA, 2007. ACM.

[HNBV08] Martin Hirzel, Nathaniel Nystrom, Bard Bloom, and Jan Vitek.
Matchete: Paths Through the Pattern Matching Jungle. Lecture
Notes in Computer Science, 4902:150, 2008.

[IKM+97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan
Kay. Back to the Future: The Story of Squeak, A Practical
Smalltalk Written in Itself. In OOPSLA ’97: Proceedings of the
12th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 318–326, New York,
NY, USA, 1997. ACM.

[JK06] Barry Jay and Delia Kesner. Pure Pattern Calculus. Lecture Notes
in Computer Science, 3924:100, 2006.

[JK09] Barry Jay and Delia Kesner. First-class patterns. Journal of Func-
tional Programming, 19(02):191–225, 2009.

77

[Jon03] Simon Peyton Jones. Haskell 98 Language and Libraries The Revised
Report. Cambridge University Press, 2003.

[KM09] Roman Knöll and Mira Mezini. π: a pattern language. In OOP-
SLA ’09: Proceeding of the 24th ACM SIGPLAN conference on Object
oriented programming systems languages and applications, pages 503–
522, New York, NY, USA, 2009. ACM.

[Ler98] Xavier Leroy. The OCaml Programming Language. Online:
http://caml.inria.fr/ocaml/index.en.html, 1998.

[LM03] Jed Liu and Andrew C. Myers. JMatch: Iterable Abstract Pattern
Matching for Java. In PADL ’03: Proceedings of the 5th International
Symposium on Practical Aspects of Declarative Languages, pages 110–
127, London, UK, 2003. Springer-Verlag.

[LM05] Jed Liu and Andrew C. Myers. JMatch: Java plus Pattern Match-
ing. Technical Report TR2002-1878, Computer Science Department,
Cornell University, October 2002. Software release at http://www. cs.
cornell. edu/projects/jmatch, revised April 2005.

[MBB06] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: rec-
onciling object, relations and XML in the .NET framework. In
SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pages 706–706, New York, NY,
USA, 2006. ACM.

[MFRW09] Todd D. Millstein, Christopher Frost, Jason Ryder, and Alessan-
dro Warth. Expressive and modular predicate dispatch for java.
ACM Transactions on Programming Languages and Systems, 31(2),
February 2009.

[Mil04] Todd Millstein. Practical predicate dispatch. In OOPSLA ’04:
Proceedings of the 19th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages
345–364, New York, NY, USA, 2004. ACM.

[MRV03] Pierre-Etienne Moreau, Christophe Ringeissen, and Marian Vit-
tek. A Pattern Matching Compiler for Multiple Target Lan-
guages. Lecture Notes in Computer Science, pages 61–76, 2003.

78

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of
Standard ML. MIT Press, Cambridge, MA, USA, 1990.

[OAC+09] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir,
Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik
Stenman, and Matthias Zenger. The Scala Language Specifica-
tion. Programming Methods Laboratory, EPFL. Version, 2.7, 2009.

[Oka98] Chris Okasaki. Views for Standard ML. In SIGPLAN Workshop
on ML, pages 14–23, 1998.

[PGPnNn96] Pedro Palao Gostanza, Ricardo Peña, and Manuel Núñez. A
new look at pattern matching in abstract data types. In ICFP
’96: Proceedings of the first ACM SIGPLAN international conference
on Functional programming, pages 110–121, New York, NY, USA,
1996. ACM.

[Rhi09] Morten Rhiger. Type-Safe Pattern Combinators. Journal of Func-
tional Programming, 19(2):145–156, 2009.

[RL07] Adam Richard and Ondrej Lhotak. OOMatch: pattern matching
as dispatch in Java. In OOPSLA ’07: Companion to the 22nd ACM
SIGPLAN conference on Object-oriented programming systems and
applications companion, pages 771–772, New York, NY, USA, 2007.
ACM.

[SDF+09] Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton
Van Straaten, Robert Bruce Findler, and Jacob Matthews.
Revised6 Report on the Algorithmic Language Scheme. Jour-
nal of Functional Programming, 19(S1):1–301, 2009.

[SM] Don Syme and James Margetson. The F# Programming Lan-
guage. http://msdn.microsoft.com/en-us/fsharp/default.aspx.

[SNM07] Don Syme, Gregory Neverov, and James Margetson. Extensible
pattern matching via a lightweight language extension. In ICFP
’07: Proceedings of the 12th ACM SIGPLAN international conference
on Functional programming, pages 29–40, New York, NY, USA,
2007. ACM.

[Tar08] Mark Tarver. The Qi II Programming Language. Online at:
http://www.lambdassociates.org/, November 2008.

79

[Tul00] Mark Tullsen. First class patterns. In E Pontelli and V Santos
Costa, editors, Practical Aspects of Declarative Languages, Second
International Workshop, PADL 2000, volume 1753 of Lecture Notes
in Computer Science, pages 1–15. Springer-Verlag, January 2000.

[Wad87] Philip Wadler. Views: a way for pattern matching to cohabit
with data abstraction. In POPL ’87: Proceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of programming lan-
guages, pages 307–313, New York, NY, USA, 1987. ACM.

[WP07] Alessandro Warth and Ian Piumarta. OMeta: an Object-Oriented
Language for Pattern Matching. In DLS ’07: Proceedings of the
2007 symposium on Dynamic languages, pages 11–19, New York,
NY, USA, 2007. ACM.

80

A Example: Term Simplification in Java™

public class Term {

boolean isProduct() { return false; }

boolean isVariable() { return false; }

boolean isNumber() { return false; }

Term simplify() {

if(isProduct()) {

Product p = (Product) this;

if (p.getRHS().isNumber()) {

Number n = (Number) p.getRHS();

if (n.getValue().equals(1)) {

return p.getLHS();

}

}

}

return this;

}

}

class Product extends Term {

Term lhs, rhs;

Product(Term lhs, Term rhs) { this.lhs = lhs; this.rhs = rhs; }

Term getLHS() { return this.lhs; }

Term getRHS() { return this.rhs; }

boolean isProduct() { return true; }

}

class Variable extends Term {

String name;

Variable(String name) { this.name = name; }

String getName() { return this.name; }

boolean isVariable() { return true; }

}

class Number extends Term {

Integer value;

Number(Integer num) { this.value = num; }

Integer getValue() { return this.value; }

boolean isNumber() { return true; }

}

Listing 48: Example: Term Simplification in Java™

81

!

!"#$%&&%'(%)*+,-)*%'.%/,)*#%''
0%-'12--345&2##+%/46+-#,#$#-'

!
!
.2+0' 67.8' (,#%&' !$#3/%+'9':%02"#,3+'

! ! ' !
"#! $%&'"'&($#('

)#*')!
.$-,+%--'5/3)%--';30%&'!<-#/2)#,3+'=''
(*%3/>'2+0'5/2)#,)%'
'

+,-.,/!+01-2345!6783!9:!;,18,-<5!
=>18<!?@.A,-,25!B7A>17<!C,<D,!

"*! $%&'"'&($#('
)*&'$!

?@@,),%+#'2+0'%A2)#')3BC$#2#,3+'3@'
,+)&$-,3+'0%C%+0%+),%-'@3/'02#2'
,+#%D/2#,3+'
'

E727!F7@GD07225!HIJ!K,<,-5!
L,I1M!?7@0722!

""! $%&'"'&($#('
)*"'*!
!

5/3)%%0,+D-'3@'#*%'E#*'F3/"-*3C'3+'
!-C%)#-G'H3BC3+%+#-G'2+0'52##%/+-'@3/'
6+@/2-#/$)#$/%'73@#I2/%'J!H5K67'LMNO'
'

6-<.:!432!F-70!9N70<5!!
B1G>7,I!67@OA5!P721,I!K3>0722!

"Q! $%&'"'&($#('
)"%'"!
!

7(P'Q%)3BC3-,#,3+=''
6+#%/+2&'H3BB$+,)2#,3+'@3/'76'
6BC&%B%+#2<,&,#>'
'

P30121G!C1<A5!B7-D!+G>7,J,-5!
C7IA,-!R3.I,-5!;7IJ!C3II3S<D1!

"T! $%&'"'&($#('
)"('(!

5/3)%%0,+D-'3@'#*%'K#*'5*RQR':%#/%2#'3@'
#*%'156':%-%2/)*'7)*33&'3+'7%/S,)%4
3/,%+#%0'7>-#%B-'?+D,+%%/,+D'
'

6-<.:!432!N,2!U-3J,<<3-,2!!
N,<!6UV!

")! $%&'"'&($#('
))$')!

!)#,3+'52##%/+-',+'.$-,+%--'5/3)%--'
;30%&-'
'

+,-.,/!+01-2345!B7AA>17<!
C,1NI1G>5!E72!B,2NI12.5!!
B7A>17<!C,<D,!
!

Q$! $%&'"'$*)%$"'
$T'T!

H3//%)#'Q>+2B,)'7%/S,)%4T/,%+#%0'
!/)*,#%)#$/%-=';30%&,+D'2+0'
H3BC3-,#,3+2&'U%/,@,)2#,3+'I,#*'Q>+2B,)'
H3&&2<3/2#,3+-'
'

F7<1I!F,GD,-5!63I.,-!W1,<,5!
+A,J72!?,@0722!
!

Q&! $%&'"'$*)%$"'
&*'"!

?@@,),%+#';30%&'7>+)*/3+,V2#,3+'3@'
W2/D%47)2&%';30%&-'
'

63I.,-!W1,<,5!+A,O>72!
61IN,X-72NA!
!

Q%!
!
!
!

$%&'"'$*)%$"'
&T'Q!

5/3)%%0,+D-'3@'#*%'X/0'5*RQR':%#/%2#'3@'
#*%'156':%-%2/)*'7)*33&'3+'7%/S,)%4
3/,%+#%0'7>-#%B-'?+D,+%%/,+D'
'

6-<.:!432!N,2!U-3J,<<3-,2!!
N,<!6UV!
!

Q(!
!
!

$%&'"'$*)%$"'
(#'Q!
!

(*%'(/,)3++%)#%0'!<-#/2)#,3+'3@'5/3)%--'
;30%&-'
'

9-A,0!U3I/4/72//5!+,-.,/!
+01-2345!B7A>17<!C,<D,!
!

Q#!
!
!

$%&'"'$*)%$"'
*('T!
!

7C2)%'2+0'(,B%'7)2&2<,&,#>'3@'Q$C&,)2#%'
Q%#%)#,3+',+'P/2C*'Q2#2'
'

B,I721,!6,-<G>,I5!
L,I1M!?7@0722!
!

Q*!
!
!

$%&'"'$*)%$"'
#'!
!

?/-#%/'Q%$#-)*%/'65SY'P,C@%&'
'
'

Y>-1<A3O>!B,12,I5!67-7IN!+7GD5!
E@<A@<!F-3<<!
!

Q"!
!
!
!

$%&'"'$*)%$"'
*Q'"!
!
!

5/3)%%0,+D-'3@'#*%'Z+0R'5*RQR'/%#/%2#'3@'
#*%'156':%-%2/)*'7)*33&'3+'7%/S,)%4
3/,%+#%0'7>-#%B-'?+D,+%%/,+D'
'

6-<.:!432!N,2!U-3J,<<3-,2!!
N,<!6UV!
!
!

QQ!
!

$%&'"'$*)%$"'
Q$'*!

:%0$),+D'#*%'H3BC&%A,#>'3@'W2/D%'?5H-'
'
'

9-A,0!U3I/4/72//5!+,-./!
+01-2345!B7A>17<!C,<D,!

QT!
!
!

$%&'"'$*)%$"'
T%'T!
!

[5/3)%%0,+D-'3@'#*%'Z+0'6+#%/+2#,3+2&'
F3/"-*3C'3+'%4&%2/+,+D'2+0'U,/#$2&'2+0'
:%B3#%'W2<3/2#3/,%-['
'

F,-2>7-N!;7X,5!92N-,7<!;7<G>,!
!
!

Q)!
!
!

$%&'"'$*)%$"'
)Q'%!
!

7(P'Q%)3BC3-,#,3+='!S3,0,+D'6//%0$),<&%'
H7H'H3+@&,)#-'<>'6+#%/+2&'H3BB$+,)2#,3+'
'

P30121G!C1<A5!;7IJ!C3II3S<D1!
!
!

T$!
'
'

$%&'"'$"$*($'
$#'%!
!

!'\$2+#,#2#,S%'%S2&$2#,3+'3@'#*%'%+*2+)%0'
(3C,)4<2-%0'U%)#3/'7C2)%';30%&'
'

9-A,0!U3I/4/72//5!P30121D!
Z@-3OD7!
!

!

	TB_liste_bis35.pdf
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

