Activity Contexts

Improving Modularity in Blockchain-based Smart Contracts using Context-oriented Programming

Toni Mattis
Software Architecture Group
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany
toni.mattis@hpi.uni-potsdam.de

ABSTRACT

Smart contracts formalize and automate interactions among and
between individuals and systems in an executable and decentralized
way. They are analogous to objects in object-oriented programming,
but their behavior and state is replicated across multiple participants
in a network and messages sent to the “object” are relayed to all
network participants, allowing everyone to keep its replica up-to-
date. Originally introduced in the mid-1990s, their recent surge
in popularity is linked to a rising interest in blockchain-backed,
general-purpose smart contract platforms.

Manging contract-specific state and behavior associated with
the interacting parties and shared objects is a modularity challenge
in smart contracts. Each contract has individual requirements for
the (non-contract) objects it interacts with. We observed that smart
contracts tend to manage object-specific state and behavior itself,
often leading to a single monolithic mediator.

We aim at improving encapsulation and separation of concerns
by allowing programmers to modularly express instance-specific
state and behavior within the scope of a so called Activity Context.
Activity Contexts are an extension to objects that collect these
modular adaptations and jointly overlay them over instances that
participate in the activity modeled by the smart contract.

We demonstrate the benefits of Activity Contexts by refactoring
an exemplary smart contract and discuss their trade-offs compared
to traditional object-oriented decomposition and their integration
into an existing layer-based context-oriented ecosystem.

CCS CONCEPTS

- Software and its engineering — Object oriented languages;
Abstraction, modeling and modularity; Domain specific languages;

ACM Reference Format:

Toni Mattis and Robert Hirschfeld. 2018. Activity Contexts: Improving
Modularity in Blockchain-based Smart Contracts using Context-oriented
Programming. In 10th International Workshop on Context-Oriented Program-
ming (COP’18), July 16, 2018, Amsterdam, Netherlands. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3242921.3242926

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

COP’18, July 16, 2018, Amsterdam, Netherlands

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5722-7/18/07...$15.00
https://doi.org/10.1145/3242921.3242926

31

Robert Hirschfeld
Software Architecture Group
Hasso Plattner Institute
University of Potsdam
Potsdam, Germany

hirschfeld@hpi.uni-potsdam.de
1 INTRODUCTION

In object-oriented programming, objects manage state and behavior
associated with their responsibilities and roles in a system.

If objects participate in multiple activities, they either accumulate
activity-specific responsibilities, which can inflate them — or an
additional object that reifies the activity itself (mediator) maintains
state and activity-specific behavior for each participating object.
In the extreme case, objects are reduced to their identity while
mediators maintain all implementation details of objects and their
interactions, which leads to a drastic loss of modularity with regard
to information hiding or encapsulation.

In practice, programmers can often choose a trade-off and settle
with a sensible mixture of both styles. However, we observed that
the extreme case in which all state and behavior is concentrated in
mediators, is prevalent in smart contract development.

Smart Contracts. Smart contracts were designed as a mechanism
to algorithmically formalize and cryptographically secure inter-
agent interactions across a network. In their modern incarnation,
they are analogous to objects in object-oriented programming, but
with code and state stored, executed, and verified simultaneously
by many participants of a network. Messages sent to the object
are replicated to all participants, allowing them to agree on the
contract’s state, prove to third parties that contractual obligations
have been met, and automatically act on behalf of the transacting
parties by, e.g., transferring money, ownership, or digital goods.

Problem Statement. Smart contracts run on a platform, which
itself is replicated across the network. Modularity problems arise
when objects provided by the platform or already existing smart
contract implementations need to be extended to accommodate for
new contracts deployed to that platform. For example, platform
users are provided in the form of read-only account objects, whose
code the contract developer cannot modify. As a consequence, the
next plausible design choice is to handle all user-specific state and
behavior in the contract itself, turning it into a large mediator.

Goal. Our goal is to provide a mechanism to express that in the
context of a specific activity/contract an object should behave as if
it was extended by activity-specific state and behavior. We do not
eliminate the mediator - it can still manage state and behavior that
does not belong to any individual object.

Approach. Layers in context-oriented programming provide a
way to adapt a set of objects by providing partial state and behavior
at run-time. This is a highly desirable feature in smart contract

https://doi.org/10.1145/3242921.3242926
https://doi.org/10.1145/3242921.3242926

COP’18, July 16, 2018, Amsterdam, Netherlands

development, as the contract itself models an activity, for which
several participating objects need additional state and behavior.
To facilitate the tradeoff, we propose a new entity, called Activity
Context, which has both object and layer personalities. A smart
contract becomes an instance of such an activity context and can
both handle messages like an object and broadcast activity-related
state and behavior to participating objects, making them behave as
if these new responsibilities were added to their implementation.
In addition, we argue that smart contracts tend to contain other
mechanics that can be better expressed using context-oriented
layers and show how the classical layer concept integrates with
activity contexts. Our prototypical implementation on top of a
Smalltalk-based smart contract platform is outlined.

2 BACKGROUND

This work relies on some background from the field of smart con-
tracts as well as context-oriented programming. First, we describe
the notion of smart contracts that is being used throughout this
paper, we then give a small taxonomy of layers and their activation
mechanisms which later helps to classify activity contexts.

2.1 Smart Contracts

Contracts as a way to document a set of mutual promises are basic
building blocks of today’s economy. With the widespread adoption
of the World Wide Web in the 1990s, more and more resources have
been managed remotely and digitally, which sparked the idea that
contracts should be specified in an executable way as well - so that
the contractual “algorithm” could be executed and verified automat-
ically and act on behalf of the participating agents by transferring a
digitally managed resource such as money, data, ownership rights,
access permissions, licenses, etc. Szabo et al. published the first
descriptions of this idea and also coined the name smart contract
[5].

In the context of this work, we define a smart contract as a
distributed object having four levels of operation:

Logical level. On this level, a smart contract behaves like a single
object in object-oriented programming with state and behavior.
Network participants (external actors and other contracts) send
messages carrying a name and, optionally, arguments to the contract.
A contract can reject or react to a message, possibly altering its state
and sending messages to other contracts while doing so. Contracts
and external actors have an identity, typically modeled as a an
address bit string. There are “meta-messages” for contract creation
that have no receiver, and their sender becomes a smart contract’s
owner.

Identity and authenticity protocol. Smart contracts require stable,
unforgeable identities of participants. External actors’ addresses are
linked to public keys for which they possess a private key. Messages
sent by them are authenticated by a cryptographic signature. Since
contract creation is initiated by an external actor (either by man-
ufacturing a contract or sending a message causing one contract
to construct another one), the contract address is derived from the
original sender’s address and a sequence number.

Distribution perspective. The above behavior is realized by repli-
cating contract code and state across a network of nodes. If we

32

Toni Mattis and Robert Hirschfeld

speak of sending a message to a contract from the logical perspec-
tive, this means that the message is physically sent to all nodes of
the network to give them the chance to update the contract state.

Consensus protocol. To ensure that every network node receives
all messages in the same order, the underlying message exchange
protocol needs to address several distributed systems challenges,
such as correcting for node and transmission link failures, duplica-
tion, loss, alteration of sequence or content, etc. Depending on the
threat model, this includes defenses against intentional alteration
in transit and on network nodes, and collusion of multiple nodes -
formalized as the Byzantine Generals’ Problem.

For the scope of this work, we will discuss smart contract ex-
amples from the logical perspective, i.e., the contract code to be
executed. However, the logical view reifies some elements from the
underlying mechanisms, which we discuss in section 3.

2.2 Layers

In context-oriented programming [3], a layer is a meta-object that,
when active, adapts state and behavior for a set of objects simulta-
neously by redirecting message dispatch through so called partial
methods. Layers are composable at run-time.

A key difference in layer concepts is their scope of activation,
i.e., the set of messages that are dispatched to the layer rather than
the object’s own base methods. We identify three variation points
in such a mechanism:

Senders The set of objects from which the layer appears active.
In the most general (global) case, layer activation is indepen-
dent from the sender, as illustrated in Figure 1 (a) and (b). In
the most specific case, there is a single instance from which
outgoing messages are dispatched to the layer - Figure 1 (c)
and (d).

Receivers The set of objects at which the adaptation is effec-
tive. In a general case, all objects are modified, or at least all
instances of a class to which the layer provides an adaptation,
illustrated in Figure 1 (a) and (c). The most specific case is a
single object that is adapted by a layer, as in Figure 1 (b) and
(d).

Activation Propagation The set of objects to which layer ac-
tivation can spread. A common mechanism is the dynamic
extent (control flow), illustrated in Figure 1 (e), i.e., once the
layer is active for one message dispatch, it remains active for
all control flows originating from the method. A realization
is the withLayerDo: [...] construct in ContextS2 which ac-
tivates a layer for the given block. Another mechanism is
propagation via object graph, e.g., when activating the layer
for a UI component, all child components are in scope as
well - see Figure 1 (f).

Another difference in layer concepts is their capability to manage
state [4]. Stateful layers can carry fields that are specific to the layer
instance (all partial methods can access a field that is either layer-
private or shared with other layers) or linked to adapted instances
(the object itself appears to have a new field which the layer can
use and expose). The mechanisms are illustrated in Figure 1.

Activity Contexts COP’18, July 16, 2018, Amsterdam, Netherlands

. sender activation propagation
Iayelj) _.-="" scope “~~. propag
(partial state & behavior) « e
global instance dynamic extent
object
global
message b
/ (@) (©) (e)
receiver
scope
\ object extent
\\
\\
"4
instance
(b) (d) (f)

Figure 1: Taxnonomy of activation mechanisms for context-oriented layers. The quadrants in the center illustrate combi-
nations of scoping mechanisms: (a) global activation, (b) activation around a singe receiver and independent of sender, (c)
activation from the perspective of a single sender and independent of receiver, (d) activation for specific sender/receiver-pairs
only. (e)/(f) mechanisms how scope can be extended once activated. Participating objects are flagged.

3 EXAMPLE: VOTING WITH DELEGATION

We demonstrate modularity issues and proposed refactorings using
context-oriented concepts at an exemplary smart contract that
implements voting with delegation'. For brevity and prototyping
reasons, we use Smalltalk 80 syntax [1]. In practice, languages
specifically designed for smart contracts, e.g., Solidity, are being
used.

Managing a poll. Our contract named Ballot should keep track
of voters, proposals, and votes. The contract owner is able to add
proposals and voters, and can start the poll with a timeout, after
which the poll is being closed and the winning proposal can be
computed.

Listing 1: Administrative methods in the voting contract

Ballot >> initialize
"run when smart contract is being deployed"
self owner: sender;

voters: Dictionary new;
proposals: OrderedCollection new;
isOpen: false.

Ballot >> addVoter:
<public>
self assert:
self voters

at: aUser id
put: Voter new.

aUser

self owner sender.

'Inspired by the voting contract in https:/solidity.readthedocs.io/en/v0.4.24/
solidity-by-example.html#voting, retrieved 2018-07-06

33

Ballot >> addProposal:
<public>
self assert: self owner sender.
"proposals fixed once voting started:"
self assert: self isOpen not.

aString

self proposals add: (Proposal named: aString).
Ballot >> openFor: duration

<public>

self assert: self owner == sender.

self assert: self isOpen not.

self isOpen: true.

(self after: duration "seconds") isOpen: false.
Proposal (class) >> named: aString

"creates proposal with given name and voteCount = 0"

Voter (class) >> new

"creates voter with weight 1 and no votes or delegates."

Public methods and senders. Since messages can be sent to a de-
ployed smart contract from anywhere, the <public> pragma identi-
fies methods that handle those external messages asynchronously.
Any code path in a contract starts in public methods or initializa-
tion/destruction code, but can call non-public methods and other
contracts’ public methods from there.

The sender pseudo-variable represents the external actor or con-
tract from which the original public message was sent. Underlying
infrastructure authenticates the sender using public key cryptog-
raphy and relays the message to all replicas of the contract. The
sender of the initializer consequentially represents the external
actor on whose behalf the contract was deployed.

https://solidity.readthedocs.io/en/v0.4.24/solidity-by-example.html#voting
https://solidity.readthedocs.io/en/v0.4.24/solidity-by-example.html#voting

COP’18, July 16, 2018, Amsterdam, Netherlands

Casting votes. In order to cast a vote, a voter transfers its voting
weight (which defaults to 1 but can be increased or nullified through
delegation) to a proposal. Since anyone can send a voteFor: mes-
sage, an eligibility check happens before, implemented by testing
presence in the voters dictionary. Error propagation is implicit, as
senders can obtain the failed assertion or error message by replay-
ing the contract code themselves with the sequence of messages
agreed on by the consensus mechanism.

Voters store the proposals they voted for. This allows to imple-
ment delegation after the delegate already voted by forwarding the
transferred voting weight to the proposal’s votes.

Listing 2: Casting a vote

Ballot >> voteFor:
<public>
self assert: self isOpen.
self voters at: sender
ifPresent: [:voter
voter hasVoted
ifTrue: [self error:
voter hasDelegated
ifTrue: [self error: 'vote delegated'].
proposal := self proposals at: proposalId.
proposal addVotes: voter weight.
voter proposal: proposall]
ifAbsent: [self error: 'not eligible']

proposalId

| proposal |

'already voted'].

Delegation. Voters can delegate their vote to any other eligible
voter. Receiving voters (delegates) increment their own weight by
the transferred amount. Delegates that delegated themselves will
pass the weight on, and delegates that voted already will retroac-
tively increase the number of votes for their own proposal. Having
delegated, having voted, and accumulating voting weight are mu-
tually exclusive, and delegation loops are forbidden.

Listing 3: Delegating a vote

Voter >> credit: weight from:
self assert: self ~= origin.
self hasVoted

origin

"avoid

loop"

ifTrue: [self proposal addVotes: weight]
ifFalse: [self hasDelegated
ifTrue: [self delegate credit: weight from: origin]
ifFalse: [self weight: self weight + weight]]
Ballot >> delegateTo: aUser
<public>
self assert: self isOpen.
self voters at: sender
ifPresent: [:origin |
origin hasVoted ifTrue:
[self error: 'already voted'].
origin hasDelegated ifTrue:
[self error: 'already delegated'].
self voters at: aUser
ifPresent: [:target |
origin delegate: target.
target credit: origin weight from: origin]

ifAbsent:
ifAbsent:

[self error: 'delegate not eligible']
[self error: 'origin not eligible']

Modularity in the example. We directly observe a number of
modularity issues in the above code. Besides a general tendency of
the Ballot class to accumulate too much responsibility by acting as
a mediator, the following problems will be addressed in this paper:

34

Toni Mattis and Robert Hirschfeld

Voter state State relevant to each voter is held in a dictio-
nary and looked up using the voter’s object identity. Object-
oriented design would prefer to not store object-specific state
in the contract, which acts as mediator, but the object itself.
Unfortunately, user objects are provided by the platform?
and not extensible by smart contract developers. A better
solution would at least look as if the object had voter state
and behavior, and modularly encapsulate its implementation
details.

Permission checks A number of administrative methods check
the sender’s identity upfront, which is a duplication as well
as a security risk if programmers forget to copy that as-
sertion to new administrative methods. Providing the con-
ditional behavior as single unit of modularity that can be
activated at once seems desirable. We will later address how
instance-specific visibility of methods can be realized with
context-oriented practices.

Contract state The allowed messages depend on the state the
contract is in, modeled by the isopen flag, and causes some
verbose checks which, again, can easily be forgotten. This
state can be seen as a form of context that dictates which
behavioral adaptations should be active. We aim at modularly
expressing state-dependent variations.

4 ACTIVITY CONTEXTS

An activity context is a first-class entity that has both object and layer
personalities. It provides both own methods and state as well as
partial state and behavior for objects that participate in the activity.
The scope of activation dynamically extends to all participating
objects.

In this work, activity contexts and layers are conceptually imple-
mented as classes and can be instantiated multiple times at run-time,
each instance having their own state.

Participation and Scope. For now, we define the predicate “par-
ticipating” intensionally as being passed to the activity as method
argument or sender. The activity context follows an instance-specific
dynamic-extent scoping model as in Figure 1 (c) and (e), i.e., its adap-
tations remain active when participating objects call each other.
From outside the activity context, even participating objects look
unadapted, e.g., the same user object can appear as sender in mul-
tiple smart contracts but keeps partial state and behavior perfectly
separate.

4.1 Partial Behavior and State

We introduce a notation® to identify partial methods and state on
specific classes. The following code provides partial method m for
class c:

Activity >> C >> m
~ result

For partial state, we chose a notation that directly implements the
uniform access principle by only providing accessors rather than
an actual local variable:

%In Ethereum, they are called accounts and are fully represented by a 256-bit address
3Depending on tooling, programmers might never see this notation at development

time, since it can be displayed as special category of methods or separate pane in a
Smalltalk browser.

Activity Contexts

Activity >> C >> state
<activityAccessor>

Such a method would generate a getter state and setter state: at
instances of class c.

Activity contexts as stateful mediators. An activity context can
play the role of a mediator between a set of interacting objects
without violating uniform access or information hiding principles.
In our voting example, the voters state is managed as a dictionary
and state lookup needs to interact with this implementation detail
explicitly:

Listing 4: Managing voter state

"initializing state"
self voters: Dictionary new
"check if sender is registered voter"

self voters containsKey: sender

"check sender's voting weight"
(self voters at: sender) weight

However, making the Ba1lot an activity context allows us to attach
the relevant state directly to the user instances:

Listing 5: Managing voter state within activity contexts

"declaring state"
Ballot >> User >> eligible
<activityAccessor>

Ballot >> User >> weight
<activityAccessor>

"check f sender 1is

sender eligible

registered voter"”

"check sender's voting weight"
sender weight

This can prove useful to decouple further interactions with these
objects, as all code paths originating from the activity context can
see the newly added accessors and do not need to ask the mediator
for this data.

4.2 Composing Activity Contexts and Layers

Activity contexts are composable with a range of layer types that
follow the above scoping taxonomy. For example, roles can be ex-
pressed by a sender-specific layer that is active for all control flows
originating from the senders playing the role. Receiver-specific
layers can be used to model time-varying state by providing state-
dependent partial methods.

Roles. In our example smart contract, we encountered the role
of the owner who can manage voters and proposals. We will de-
fine a layer owner which defines administrative behavior as partial
methods on the Ballot activity context itself:

Listing 6: Sender-scoped Layer Activation for Roles

Owner >> Ballot >> addProposal:
<public>
self assert: self isOpen not.
self proposals add: (Proposal named:

aString

asString) .

Ballot >> initialize

Owner activateFrom: sender

35

COP’18, July 16, 2018, Amsterdam, Netherlands

".. remaining initialization

The activateFrom: message understood by all layers allows the
platform to dynamically activate this layer whenever a message
from that object is sent. The above code makes use of the invariant
that whenever a public contract method is being executed, the
layers attached to sender must be active.

States. Our smart contract is only open for voting for a specific
time span, a fact which can be modeled as a receiver-specific layer
that implements partial behavior that only can happen while the
poll is open:

Listing 7: Receiver-scoped Layer Activation for States

Open >> Ballot >> voteFor:
<public>

"

aProposal

voting logic ..."
Open >> Ballot >> isOpen

~ true
Owner >> Ballot >> openFor: duration
<public>
Open activateAround: self.

(Open after: duration) deactivateAround: self.

This code re-uses the owner role to control visibility of the openFor:
method while activating (an instance of) the open layer for exactly
this ballot. The difference between the messages activatearound:
and activateFrom: is the point in time when the layer is activated:
A layer attached via activateFrom: becomes active for all outgoing
message sends of that object (instance-specific sender scope as in
Figure 1 (c)), but partial state and behavior would not be visible
to outside objects. In contrast, activatearound: would dispatch all
incoming message sends to the layer and thereby make adaptations
visible to outside objects (instance-specific receiver scope as in
Figure 1 (b)).

Managing eligibility. The voteror: method is constrained by
two factors: First, the user needs to be eligible, i.e., registered by the
owner. Second, the contract must be open for voting. We propose
to model eligibility as boolean variable for each user. We make use
of a default value, in this case implemented as return value of the
accessor-generating method:

Listing 8: Managing Eligibility: Boolean Variable

Open >> Ballot >> voteFor: proposalld
<public>
self assert:

"

sender eligible.
voting logic ..."

Ballot >> User >> eligible
<activityAccessor>
~false

"default value”
Owner >> Ballot >> addVoter:
<public>
aUser eligible:

aUser

true.

Alternatively, it is possible to model eligibility as voter role:

Listing 9: Managing Eligibility: Voter Role

Open >> Ballot >> voteFor: proposalld
<public>
sender voteFor:

(self proposals at: proposalld).

Ballot >> User >> voteFor: aProposal

COP’18, July 16, 2018, Amsterdam, Netherlands

& Participant

& Participant

Toni Mattis and Robert Hirschfeld

| 4

|

Participant
State A

public message@ V Participant State : Participant State
Contract A Contract B Participant Methods : Participant Methods I
Contract Methods Contract Methods : b
Participant Methods Participant Methods V V i V V
Contract A : Contract B
i
i
i
i

Participant
State B

| Contract Methods I

Contract Methods I

activity context

activity context

Figure 2: Working principle of activity contexts. On the left, two mediator-style contracts own participant-specific methods
and manage participant state themselves. On the right, activity contexts provide the chance to move participant-specific meth-

ods to the participating object and hide implementation details

self error: 'not eligible to vote'.

Voter >> User >> voteFor:

"

aProposal

actual voting logic"

Owner >> Ballot >> addVoter:
<public>
Voter activateFrom:

aUser

aUser.

This is more general and allows modular implementation of fur-
ther partial behavior in the intersection of the two layers without
copying an eligibility check around several methods.

The drawbacks of this approach are, besides added complexity
of another layer, the fact that activation prioritization needs to
rank sender-specific layers higher than the activity context, i.e.,
the actual voting logic overrides the error-throwing partial method
of the activity context and not vice versa. From the code alone,
this behavior is not explicitly visible and we defer prioritization of
mixed activation scopes to future work.

Listing 10: Casting a vote using the activity context

Open >> Ballot >> voteFor: proposalld
<public>
self assert: sender eligible.
sender hasVoted
ifTrue: [self error: 'already voted'].
proposal := self proposals at: proposalId.
sender voteFor: proposal]

Ballot >> User >> voteFor:
aProposal addVotes:
self hasVoted: true.
self votedFor: aProposal.

aProposal
self weight.

4.3 Explicit Activation

Since activity contexts have layer personality, they offer constructs
to deal with them as layers. External code can dynamically activate
an activity context to view an object from the activity’s perspective.
For example, another smart contract or client code could determine
if the user has voted on a given issue:

myBallot withLayerDo: [voted := myUser hasVoted]

Also, activity contexts can delegate partial methods to base meth-
ods (or partial methods of other layers that are on the activation
stack) using the proceed construct (also known as next in literature).

36

of participant state from the contract.

Since our example was focused on extending objects and control-
ling message visibility, there was no situation in which proceeding
to the next layer would have helped.

4.4 Discussion

Activity contexts, while behaving like an object, provide partial state
and behavior to objects it interacts with (summarized in Figure 2).
We elaborated on the following language constructs associated with
activity contexts:

o partial method definitions (activity >> ¢ >> m)

e partial state definitions (via <activityAccessor> pragma)

e implicit activation for the dynamic extent of an interaction

with participating objects

e explicit dynamic activation (via withLayerDo: message)
We provided a taxonomy of activation scopes and classified activity
contexts as sender-scoped to a single instance — themselves, acting
as their object personality.

We demonstrated that these concepts can modularly attach be-
havior and state to objects that are not under our control and can be
of use in the programming and execution model for smart contracts.

In a smart contract setting, objects are often re-purposed by new
contracts. A common design choice is to make them as minimal
as possible (in practice, often just an identity, address, or crypto-
currency balance) and manage their state inside the smart con-
tract, which acts as a mediator. Using activity contexts and other
context-oriented concepts, we can restore encapsulation and move
responsibilities to the objects they belong to.

A note on notation and tooling. Depending on how the program-
ming environment presents the code, partial behavior can be inlined
or attached to the respective classes and yield a composed view on
shared objects from the perspective of the smart contract that is

being developed.

Interaction with normal layers. We also showed how context-
oriented layers with different activation scopes can be used to
adapt the activity context itself to implement

e role-specific permissions using a sender-scoped activation
(activateFrom:) tied to the objects that play the role and

e state-specific partial behavior activated for the smart con-
tract as a receiver (activateAround:)

Activity Contexts

but left prioritization details for future work and only hinted that
“role layers” and “state layers” should override the more general
behavior defined in the activity context.

5 IMPLEMENTATION

Smart contract platforms would provide a secured virtual execution
environment to run contracts in. For prototyping, however, we
use an unsecured Squeak/Smalltalk execution environment to run
contracts and implement activity contexts.

In this section, we will elaborate on the mechanism allowing
activity-specific message dispatch, which can be used in scenarios
different from smart contracts as well. The full prototype runs
the contract on top of an experimental blockchain-based message
replication and consensus layer, which is not discussed here.

5.1 Method Wrapping

In Squeak/Smalltalk, methods are meta-objects represented by
CompiledMethod instances’ containing the opcodes interpreted by
the execution environment. Each class has a method dictionary
mapping a message selector to such an executable meta-object. We
use the fact that compiledMethod objects can be replaced by any
object that responds to the

run: selector with: arguments in: receiver message to irnple-

ment custom method dispatch semantics.

Adaptation providers. Adaptation providers are internal meta-
objects used to implement activity contexts. They store and provide
partial method definitions. The method definitions that read like
Activity >> Class >> selector in the code examples compile to
a partial method that is placed in a dictionary that maps pairs of
class name and selector to compiledMethod objects.

Adaptation providers need two methods, one that checks whether
a specific adaptation is present, and one that dispatches to this im-
plementation. The latter invokes the compiled partial method by
sending
withArgs: args executeMethod: compiledMethod tothe Object un-
der adaptation, which itself is a primitive of Smalltalk’s execution
environment.

Activation stack. A central structure is the thread-local activa-
tion stack that determines which adaptation providers are active.
Entering an activity context corresponds to pushing it on that stack,
leaving the dynamic scope of the activity would pop it again.

Advisable methods. Any message selector that can possibly be-
come subject to adaptation or cause activation of activity contexts
or layers is associated with an advisableMethod object implement-
ing said run:with:in: method.

When such a method is run instead of a compiledMethod, it mod-
ifies method dispatch in the following way:

(1) Search the activation stack and the set of receiver-scoped adap-
tation providers. If one responds to the current class/selector
combination, dispatch to it and return the result.

4We use the term meta-object to refer to objects that constitute a program, to distinguish
them from the domain objects created and handled by the program.

37

COP’18, July 16, 2018, Amsterdam, Netherlands

(2) Push sender-scoped and receiver-scoped adaptation providers
onto the activation stack, they need to be active for all out-
going calls.

(3) Call the default compiledMethod or, if none, raise an excep-
tion.

(4) Pop sender and receiver scoped adaptation providers and
return the default method’s result.

5.2 Scoped Activation

Objects have two new (lazily initialized) fields for receiver-scoped
and sender-scoped adaptation providers. The receiver-scoping meth-
ods activatearound: and deactivateAround: add to and remove
from the set of receiver-scoped adaptation providers. From the stand-
point of our taxonomy from Figure 1, all instances that have an
activity context or layer in this set, belong to the receiver scope of
that layer and are affected by its modifications independently of
which object was the message sender.

In contrast, activateFrom: and deactivateFrom: add to and re-
move from the set of sender-scoped adaptation providers. In our
taxonomy, all instances that have certain layer in this set, belong
to the sender scope of that layer and can potentially affect any
message receivers down the call graph.

5.3 Compiler Modifications and State Handling

Compilation side-effects. To provide a partial method for a method
that does not yet exist at the target class, each compilation of such a
method would transparently put an empty AdvisableMethod object
at the corresponding slot of the target class. This ensures that the
runtime always checks for partial methods.

Pseudo-variables. We also rewrite a number of expressions. For
example, the thisactivity pseudo-variable is replaced by a mes-
sage send to the current thread
Processor activeProcess thisActivity, whichthen responds with
the value of a thread-local variable that was previously set during
dispatch to cache the adaptation provider for the active partial
method.

Accessors. The code generated by an <activityaccessor> pragma,
eg.,

Activity >> C >> state
<activityAccessor>
N 42

would closely resemble the following getters and setters that man-
age the state as dictionary of instances and their instance variables.
The dictionary is attached to the enclosing activity, which can be
retrieved using the thisactivity pseudo-variable.

Activity >> C >> state

(thisActivity instVars at: self) at: #state ifAbsent: 42.
Activity >> C >> state: anObject
(thisActivity instVars at: self

ifAbsentPut:
at: 'state'

[Dictionary new])
put: anObject.

Note that selrf refers to an instance of ¢, while thisactivity refers
to an instance of activity.

COP’18, July 16, 2018, Amsterdam, Netherlands

Modifying read-only objects. At this point, we would like to em-
phasize that we do not modify the c instance. We modify a contract-
owned dictionary instvars that stores the state of said instance
like the mediators did before, but access to that state is provided by
c state and ¢ state: value given c is an instance of c.

As a consequence, state access appears uniform to the contract
code, regardless of the storage location. Moreover, any other object
interacting with c in the same context does not need to ask activity
for ¢’s state but can directly call ¢ state.

However, due to restrictions in our programming language we
cannot prevent the contract from accessing instvars and bypassing
encapsulation in this prototype.

In conclusion, this implementation strategy covers a wider range
of possible scenarios than required by activity contexts as it allows
to specify adaptations for effectively any pair of objects exchanging
messages, but allows us to quickly integrate activity contexts and
layers with the existing smart contract platform. We do not support
layer composition via proceed yet and need to extend tooling to
better present the new units of modularity to programmers.

6 FUTURE WORK

We identified a few limitations that can be addressed in future work
on activity contexts. To us, the most interesting ones include:

Priorities. Prioritization of differently scoped activations is cur-
rently unresolved and implementation-specific. There is a conflict
between sender-scoped and receiver-scoped layers: If the activa-
tion stack reflects the call stack, as in our simple implementation,
sender-scoped partial definitions could be overridden by purely
receiver-scoped definitions if the receiver’s layers have been ac-
tivated via side effect from another control flow. In our case of
smart contracts, the opposite can also be desired: A sender having
an administrative role attached via layer might want to override
default methods provided by a layer around the receiving objects.
How to control such conflicts remains an open question.

Explicit participation. We currently imply that an object partici-
pates in an activity when it has been passed as argument or sent the
message to the activity context itself. While this is desirable behav-
ior for smart contracts, one could also extend the concept to support
explicit participation, e.g., only when the object passes through a
specific part of the interface, or after it is explicitly “wrapped”, it is
viewed as participant, and as unadapted object otherwise.

Explore composability in smart contracts. We see several poten-
tial use-cases for re-use of smart contract code. For example, the
delegation mechanism could have been implemented inside a layer
and activated at run-time on behalf of the owner of that smart
contract. This way, smart contract mechanisms and patterns can
be provided as layers and composed like traits, except that they
can provide cross-cutting partial behavior and can be activated at a
more fine-grained level.

38

Toni Mattis and Robert Hirschfeld

7 RELATED WORK

There are paradigms based on object-oriented programming that
provide similar mechanisms as activity contexts. None of them have

been explored in the smart contract domain yet:
Subject-oriented programming (SOP). SOP [2] can provide differ-

ent sender-specific views on objects. In a sense, activity contexts
as well as sender-scoped layers can be seen as a general form of
subject-oriented programming.

Role-oriented programming (ROP) and Data, Context, Interaction
(DCI). The ROP paradigm [7] and DCI pattern [6] describe activity-
specific state and behavior modularly and also solve the problem
that activities either cross-cut objects and make their code less
coherent, or facilitate large mediators. Especially in DCI, objects
only carry essential state, which aligns well with the design of smart
contract platforms. It appears as if activity contexts, DCI, and ROP
can, to some extent, emulate each other for the use cases described
in this work. Activity contexts do not model roles explicitly, but
rely on the more general notion of a layer to implement roles and
states.

8 CONCLUSION

Smart contracts have a range of modularity challenges that are
unique to the fact that decentrally developed contracts share and re-
purpose objects without having the chance to adapt them, their logic
often deals with roles and states, and their decentralized execution
model makes message senders as important as receivers.

We are confident that context-oriented programming concepts,
such as layers, can plausibly address these modularity challenges.
We presented activity contexts as a new concept derived from
layers that provides a good fit to model smart contracts themselves,
and showed how smart contract code can be modularized using a
mixture of activity contexts and layers.

REFERENCES

[1] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

[2] William Harrison and Harold Ossher. 1993. Subject-Oriented Programming: A
Critique of Pure Objects. ACM SIGPLAN Notices 28, 10 (Oct. 1993), 411-428.
https://doi.org/10.1145/167962.165932

[3] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. 2008. Context-Oriented
Programming. Journal of Object Technology, March-April 2008, ETH Zurich 7, 3
(2008), 125-151. https://doi.org/10.5381/j0t.2008.7.3.a4

[4] R. Hirschfeld, H. Masuhara, A. Igarashi, and T. Felgentreff. 2015. Visibility of
Context-Oriented Behavior and State in L. ResearchGate 32, 3 (Aug. 2015), 149-158.
https://doi.org/10.11185/imt.11.11

[5] Nick Szabo. 1997. Formalizing and Securing Relationships on Public Networks.
First Monday 2, 9 (Sept. 1997). https://doi.org/10.5210/fm.v2i9.548

[6] Hector Adrian Valdecantos, Katy Tarrit, Mehdi Mirakhorli, and James O. Coplien.
2017. An Empirical Study on Code Comprehension: Data Context Interaction
Compared to Classical Object Oriented. IEEE, 275-285. https://doi.org/10.1109/
ICPC.2017.23

[7] Michael VanHilst. 1997. Role Oriented Programming for Software Evolution. Thesis.

https://doi.org/10.1145/167962.165932
https://doi.org/10.5381/jot.2008.7.3.a4
https://doi.org/10.11185/imt.11.11
https://doi.org/10.5210/fm.v2i9.548
https://doi.org/10.1109/ICPC.2017.23
https://doi.org/10.1109/ICPC.2017.23

	Abstract
	1 Introduction
	2 Background
	2.1 Smart Contracts
	2.2 Layers

	3 Example: Voting with Delegation
	4 Activity Contexts
	4.1 Partial Behavior and State
	4.2 Composing Activity Contexts and Layers
	4.3 Explicit Activation
	4.4 Discussion

	5 Implementation
	5.1 Method Wrapping
	5.2 Scoped Activation
	5.3 Compiler Modifications and State Handling

	6 Future Work
	7 Related Work
	8 Conclusion
	References

