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Abstract
We propose standard object out, an object-oriented analog
to the output part of the Unix standard input output library
(stdio).

PolymorphicWrite Streams (PWS) function as architectural
adapters between the object-oriented architectural style and
the pipes and filters architectural style in the same way that
stdio acts as an architectural adapter between the call/return
architectural style and the pipes and filters architectural
style.

Current object-oriented interfaces to the Unix I/O system
mimic their procedural counterparts so closely that they
manage to be neither polymorphic nor streaming, at least
not for objects. Specifically the object is first converted to a
fixed byte-representation by sending it a specific message
and the result is then output on the underlying byte stream.

With this approach, these APIs do not allow for streaming
behaviour: the entire result has to be constructed in-memory
before it can be output. In addition, output of nested struc-
tures can require large multiples of time and space compared
to the final output size, and fails completely if there are cycles
in the object graph. It also does not allow for polymorphic
behaviour.
To solve these problems, we propose Polymorphic Write-

Streams (PWS). PWSs represent a hierarchy of classes that
decouple encoding from specific streaming destinations. Us-
ing triple dispatch they provide streaming behaviour and
allow each stream to react specifically to each kind of object
and vice versa: sharing of common functionality is enabled
by chaining messages along the streams’ inheritance chain.
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1 Introduction
Ever since the first occurrence of printf("Hello World\n"),
the Unix/POSIX [5] stdio library has been a ubiquitous if un-
remarked part of our computing infrastructure. However, it is
actually a structurally very interesting piece of software: an
architecture framework that adapts between the call/return
architectural style of C and similar programming languages
and the pipes and filters [16] architectural style [21] of the
Unix shell [8].
The call/return architectural style consists of procedures

performing computations and managing state that get called
and then return control to their caller, usually returning a
result. The caller is suspended while the callee is running,
and the callee terminates when returning to the caller.

The pipes and filters architectural styles consists of a set of
filters connected by pipes. The filters can run concurrently or
in an interleaved fashion, so a source filter can send multiple
results to its downstream filter via the pipe, or none.Whereas
procedures are in a strict hierarchy, the filters are peers.
Figure 1 illustrates the difference between the two styles

schematically.

caller callee call     
  return 

filter1 filter2 pipe 

Figure 1.Call/return vs. pipes and filtlers architectural styles
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The stdio library acts as an adapter between these styles.
In a C program, the printf() [3] or fwrite() [1] function
is accessed via call/return, meaning it gets called, performs
its operation and then returns. In the context of a pipeline
the programmay be participating in, the printf() call sends
data to the next step in the pipeline via the stdout file de-
scriptor, and this output can be incremental, with printf()
and other output functions called repeatedly.

The streaming nature means that arbitrarily large output
can be generated (written to an output stream) without that
data having to exist in memory at the same time. This can
go as far as creating infinite output, as shown in Figure 2.

1 #include <stdio.h>
2 int main(void) {
3 while (1) {
4 printf("Infinite␣Output!\n");
5 }
6 return 0;
7 }

Figure 2. Generating infinite output from finite (and small)
data

The object-oriented architectural style is a sub-style of the
call/ return style [19]. Its defining characteristics are a graph
of objects that can respond polymorphically to messages by
invoking attached procedures called methods. Object graphs
are often acyclic or even trees, but in the general case a full
graph with cycles must be considered.

The standard libraries of languages supporting the object-
oriented architectural style also typically provide some class
or classes that interfacewith stdio. Their APIs closely follow
the stdio example, extending it with the ability to polymor-
phically print objects where stdio supports only strings and
primitive types.

This ability to print objects is implemented by sending the
object to be printed a message that tells the object to convert
itself to a string. This string is returned and then output. This
approach appears perfectly natural in the object-oriented
style and is the approach taken by essentially all major OO
languages except C++ [20].

This staged approach of first generating a string represen-
tation as a result of a message send and then outputting that
string representation results several unwanted behaviours:
first, it inhibits extensibility in the kinds of output streams
and representations, second it necessarily leads to poten-
tially severe performance problems with deep graph/tree
structures and third it cannot handle graphs with cycles at
all, resulting in an infinite recursion and consequently stack
overflow crashes.
In short, adapting between the object-oriented architec-

tural style and the pipes and filters architectural style in this
fashion results in losing the main attributes of both styles:

polymorphic behaviour, the ability to deal with arbitrary
object graphs, and streaming behaviour.
We propose Polymorphic Write-Streams (PWS) as an ex-

tension of the double-dispatch approach as a generic replace-
ment for the object-oriented equivalent of the stdio library.
As architectural adapters, PWSs combine the benefits of the
pipes and filters architectural style with the advantages of
the object-oriented architectural style.
Section 2 will demonstrate the problems of using stan-

dard stream output mechanisms with a typical object-graph.
Section 3 will introduce Polymorphic Write-Streams, with
Section 4 presenting alternative intermediate representa-
tions. Section 5 shows how PWSs can be used to stream
results. Section 6 describes real-world applications that ben-
efit form PWSs, with a more detailed evaluation following in
Section 7. Section 8 will look at some of the implications of
this work. Related work is discussed in Section 9. Section 10
provides a summary and a look at future work derived from
the observations from Section 8.

2 Motivating Example
The Node class in Figure 3 serves as a stand-in for an object
graph. It has textual content and left and right child nodes,
any of which may be nil. The descriptionmethod creates
a textual representation of the object.

1 @import Foundation;
2
3 @interface Node:NSObject
4
5 @property (nonatomic,strong) Node *left,*right;
6 @property (nonatomic,strong) NSString *s;
7
8 @end
9
10 @implementation Node
11
12 -(NSString*)description
13 {
14 return [NSString stringWithFormat:
15 @"<\%@:\%p␣string:␣\%@␣left:␣\%@␣right:␣\%

@>",
16 [self class],self,self.s,self.left,self

.right];
17 }
18
19 @end

Figure 3. A simple node object in Objective-C

Objective-C uses Smalltalk-style keyword syntax mixed
with C types for messages and method definitions, with the
minus sign introducing instance methods and the plus sign
introducing class methods.
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Figure 4 shows how to create a single Node object and
printing it using the NSLog() function that is a standard part
of the Cocoa frameworks [6].

1 int main(void ) {
2 Node *a=[Node new];
3 NSLog(@"Node:␣\%@",a);
4 }
5 Output:
6 Node: <Node:0x7fc3f5605610 string: (null) left: (null

) right: (null)>

Figure 4. Printing a simple node, with output

NSLog() is similar to the stdio function printf() in that
it takes a string with format specifiers and a variable number
of arguments, and outputs the result to a pre-defined Unix
file descriptor. There are some differences: in addition to
the printf format specifiers such as %d for integers it also
accepts the format specifier %@ for objects. This causes the
object to be sent the descriptionmessage to return a string
representation. In addition, NSLog() outputs to stderr in-
stead of stdout and prepends a timestamp and appends a
newline.

This functionality is not unique to Objective-C, Ruby [27]
has a printmethod that sends the to_s()message, Java [11]
has PrinStream (usually accessed via System.out) and the
Python [22] standard library uses __str__(). In what fol-
lows, we will be using Objective-C.

2.1 Flexibility
Since the interface between the stream and the objects is the
single description message (or equivalent for other sys-
tems), output is limited to that specific serialisation format.
Creating a different output format, even if it is only a

minor variant, requires introducing a completely different
serialisation message, which must then be implemented by
all objects, even if the stream defining the format is a subclass
of an existing stream.
While it is possible to provide a default implementation

that defers to a previous implementation, that approach will
result in inappropriate representations being written, even
for objects that have a correct implementation.
As an example, and taking the Node class of Figure 3, we

could introduce a new debug output stream that sends ob-
jects written to it the debugDescription message instead
of description. This debugDescription creates concise
output for large data-sets, so for example NSString has an
implementation that, for long strings, prints just the begin-
ning and end of the string as well as a message stating how
many characters were omitted.
If Node does not yet implement debugDescription and

reverts to description instead, it will then also send the

description message to its string instance variable, de-
spite the fact that we asked for a debugDescription and
NSString implements debugDescription.

2.2 Performance
One of the key features of the pipes-and-filters architectural
style is that it is capable of incremental, streaming processing,
meaning a filter doesn’t have to hold all the data it processes
in memory at once, unless this is required by the semantics
of the operation.

When constructing the output is done by sending a single
message and then outputting the result, it is clear that the
entire output has to be present in memory at once. In this
case, it is difficult to speak of streaming, the architectural
style is closer to batch-sequential, even if the intermediate
results are not saved to disk.

The code in Figure 5 constructs a tree of Node objects with
a string payload of specified depth.

1 +(instancetype)tree:(int)depth string:(NSString*)s
2 {
3 Node *n=[[self new] autorelease];
4 n.s=s;
5 if ( depth > 0 ) {
6 n.left = [self tree:depth-1 string:s];
7 n.right= [self tree:depth-1 string:s];
8 }
9 return n;
10 }

Figure 5. Constructing a balanced tree of specified depth

Figure 6 uses this tree construction method to create a
balanced tree of depth 16 with a small string payload at each
node.

1 int main(void ) {
2 Node *root=[Node tree:16 string:@"Hello␣World"];
3 NSLog(@"Node:␣%@",root);
4 }

Figure 6. Generating and printing a deep tree

The tree generated by this code consists of roughly 130K
nodes taking 5MB ofmemory and producing 9.5MB of textual
output. Producing that output takes over 200MB of memory,
so 40 times the in-memory size and 20 times the size of the
final output produced.
The reason for this expansion is that at each level of the

tree, complete temporary results have to be constructed and
then included in the result of the next higher level.
Knowing the cause, we can construct a degenerate case

that will highlight the problem: a tree of maximum depth
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that has a large payload at its leaf and minimal payloads for
the interior nodes.
Figure 7 constructs such a simple degenerate tree of ad-

justable depth with a very large string at its single leaf node.

1 +(instancetype)onlyLeft:(int)depth leafSize:(int)mb
2 {
3 long string_length=mb*1024*1024;
4 NSMutableString *s=[[NSMutableString alloc]

initWithCapacity:(mb+1)*1024*1024];
5 while ( [s length] < string_length ) {
6 [s appendString:@"Hello␣World!"];
7 }
8 Node *top=[self node];
9 top.s=[s autorelease];
10 for (int i=0;i<depth;i++ ) {
11 Node *n=[Node node];
12 n.left = top;
13 n.s = @"";
14 top=n;
15 }
16 return top;
17 }

Figure 7. Create a degenerate graph with a large leaf node

Using this method with a depth of 200 and a leafSize of
10MB creates a tree that takes 12MB inmemory and produces
output of 10.4MB, but requires 1.98 GB ofmemory to produce,
for an expansion factor of roughly 200x. This expansion
factor is proportional to the depth of the tree, so a depth
of 1000 requires almost 10GB to produce, whereas both the
in-memory size of the tree and the output hardly increase in
size.

2.3 Stability
As an example, Figure 8 implements a very simple graph
with a cycle.

1 int main(void ) {
2 Node *a=[Node new];
3 Node *b=[Node new];
4 a.left = b;
5 b.left = a;
6 NSLog(@"Node:␣%@",a);
7 }
8 Output:
9 Segmentation fault: 11

Figure 8. A graph with cycles cannot be serialized

Due to the cycle, attempting to output this graph neces-
sarily results in a crash.

3 Polymorphic Write-Streams
Polymorphic Write-Streams (PWS) are the object-oriented
equivalent of the stdio library’s FILE structure and associ-
ated functions.

A PWS consists of a number of elements:
1. A low level interface for outputting bytes, equivalent

to the output functions of stdio.
2. An interface for writing objects to the stream
3. An interface for double-dispatching back to the ob-

ject with the name of the stream via a stream-specific
stream-writer message so objects can react to specific
streams.

4. An API for deconstructing objects provided by the
stream that is used in a triple-dispatch by the ob-
ject back to the stream once it has identified the spe-
cific stream kind via the double dispatch. The triple-
dispatch identifies the specific kind of object and its
sub-structure to the stream.

5. A way of automatically chaining stream-writer mes-
sage implementations in a hierarchy of messages that
reflects the inheritance hierarchy of the streams.

The whole interaction is shown in the sequence diagram
of Figure 9.

Figure 9. Sequence diagram for one cycle of the object/PWS
interaction

PWSs have been implemented in several programming
languages including Objective-C, Squeak/Smalltalk and C#.
Here, we will look at the Objective-C implementation avail-
able as part of MPWFoundation [23].

Specifically,MPWFoundation includes the MPWByteStream
class that implements the PWS concept.

3.1 Byte Streaming Interface
As a basis, MPWByteStream needs to implement an interface
for dealing with outputting bytes and strings, essentially a
wrapper over the underlying byte-oriented stdio interface.
This ByteStreaming protocol (Figure 10) defines messages
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for outputting raw bytes as well as formatted strings. Some
convenience message are omitted here for clarity.

1 @protocol ByteStreaming
2
3 -(void)appendBytes:(const void*)data length:(

NSUInteger)count;
4 -(void)printf:(NSString*)format,...;
5 -(void)printLine:(NSString*)format,...;
6
7 @end

Figure 10. ByteStreaming protocol

With this protocol in place, we can now define the class
MPWByteStream as implementing that protocol, as seen in
Figure 11.

1 @interface MPWByteStream : NSObject<ByteStreaming>
2 {
3 id byteTarget;
4 }

Figure 11.MPWByteStream PWS class

The byteTarget holds an adapter that sends the actual
bytes to different targets depending on how the instance
of MPWByteStream is initialized: a FILE or a low-level fd,
an NSData object that holds raw bytes or an NSString of
unicode text.

3.2 Object Interface
The object-oriented interface of PWSs is the Streaming
protocol shown in Figure 12. It defines a single message,
writeObject:, which takes a single argument.

1 @protocol Streaming
2
3 -(void)writeObject:anObject;
4
5 @end

Figure 12. Streaming Protocol

So in order to send an object to stdout, all a filter has to
do is get the PWS for stdout and then write the object to
that PWS, as shown in Figure 13.

1 [[MPWByteStream Stdout] writeObject:object];

Figure 13. Write object to stdout

The stream and the object then cooperate to determine
what byte-representation to write to stdout. The stream

responds by dispatching back to the object with information
as to the actual stream being written, and the object then
responds by writing its structure to the stream.

3.3 Double Dispatch
The PWS responds to the writeObject: with a double dis-
patch [13] back to the argument object (Figure 14).

1 -(SEL)streamWriterMessage
2 {
3 NSString *selName=[NSString stringWithFormat:@"

writeOn%@",[self class]];
4 return NSSelectorFromString( selName );
5 }
6
7 -(void)writeObject:anObject
8 {
9 NSValue *p=[NSValue valueWithPointer:anObject

];
10 if ( ![alreadySeen containsObject:p]) {
11 [alreadySeen addObject:p];
12 [anObject performSelector:[self

streamWriteMessage] withObject:self];
13 [alreadySeen removeObject:p];
14 } else {
15 [self printFormat:@"<Already␣seen:␣%@:%p>"

,[anObject class],anObject];
16 }
17 }

Figure 14. Double dispatch and short circuit

The stream sends the argument object a message that en-
codes the class of the stream in the name of the message,
with the stream itself as an argument. The format of the
message follows the pattern writeOn<StreamClass>:, so in
case of the MPWByteStream above the objects gets sent the
writeOnMPWByteStream:messagewith the MPWByteStream
instance as its sole argument.
In addition it adds the pointer of the object to a set of

pointers it has already seen for the duration of outputting
that object, and short-circuits the process if the object has
been seen. This avoids infinite recursion for graphs with
cycles.

3.4 Triple Dispatch
Once the stream has identified itself to the object, the ob-
ject gets to write an appropriate representation of itself to
the stream. The stream directly supports writing a number
of primitive objects such as numbers and strings and also
support writing composite objects such as dictionaries and
arrays and the key/value pairs contained within dictionaries
and objects.
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Objects other than the receiver itself are again written to
the stream using the writeObject: message, restarting the
triple-dispatch mechanism.

1 -(void)writeOnMPWByteStream:(MPWByteStream*)s
2 {
3 [s printFormat:@"<%@:%p␣string:␣",[self class],

self];
4 [s writeObject:self.s forKey:@"string"];
5 [s writeObject:self.left forKey:@"left"];
6 [s writeObject:self.right forKey:@"right"];
7 [s printFormat:@">"];
8 }

Figure 15.Writing a Node object on a stream

3.5 Message Chaining
So far, every new stream, with its own stream-writer mes-
sage, requires that all objects that might conceivably be seri-
alised implement that stream-writer message (so the pattern
writeOn<Stream>:). As noted in Section 2.1, such a require-
ment is onerous, even with class extensions.
To avoid implementing all stream writer messages on all

objects, we chain those messages similar to the superclass
dispatch in message dispatch: in the root class (NSObject
for Objective-C), we implement a specific stream’s stream-
writer message by sending the super-class’s stream-writer
message to self, as shown in Figure 16.

1 @implementation NSObject(DebugStreaming)
2
3 -(void)writeDebugStream:(DebugStream*)aStream
4 {
5 [self writeOnMPWByteStream:aStream];
6 }
7
8 @end

Figure 16. Message chaining

This reduces the requirement for creating a new stream
from adding the new stream writer messages to all objects
in the system to adding just a single method to NSObject, a
reduction that makes the concept feasible.

However, even having the create this single extra method
per PWS adds unnecessary boilerplate, especially as the
method is completely mechanical. Figure 17 shows the code
used to generate this method automatically when the class
is first used.
The +initialize message is sent to every Objective-C

class before it is used. The basic idea is to create the method
and then add it to the NSObject class using the Objective-C
runtime function class_addMethod().

1 +(void)initialize
2 {
3 if ( ![self instancesRespondToSelector:mySelector

]) {
4 SEL superSelector = [[self superclass]

streamWriterMessage];
5 IMP theImp=imp_implementationWithBlock( ^(id

blockSelf, id stream ){
6 (objc_msgSend)(blockSelf, superSelector ,

stream); }
7 );
8 class_addMethod([NSObject class], [self

streamWriterMessage], theImp, "v@:@");
9 }
10 }

Figure 17. Generating the message chaining method auto-
matically

In Objective-C, a method body can be dynamically created
at run time from a block using the Objective-C runtime
function imp_implementationWithBlock(), which takes
the block as its argument and returns a method pointer (IMP)
that can be added to the runtime.
The method body is defined by the block that is the ar-

gument to imp_implementationWithBlock. This block di-
rectly calls the objc_msgSend() runtime function that is
used to send messages in Objective-C.
If generating methods automatically is not possible, that

chaining method can also be written by hand for every
stream as shown above. A slower alternative would be for
the stream to check if the object in question responds to the
stream writer messages of itself and its superclasses in turn.

3.6 Stream Targets
PWSs do not generate output directly, but instead delegate
this to a target by sending it the serialised bytes using the
message appendBytes:length:. Targets exist to write those
bytes to a Unix file descriptor via the write() system call,
to a stdio FILE* via fwrite(), or to either an NSString or
NSData object, the former being a unicode text string, the
latter an uninterpreted sequence of bytes.
Another target draws the output generated directly to a

GUI text view, without having to indirect through a pseudo
terminal, similar to the text streams in the Common Lisp
Interface Manager (CLIM) [17].

As the appendBytes:length: message is also part of the
ByteStreaming protocol, there is also potential for stacking
streams.

3.7 Thread Safety
Polymorphic Write Streams are not thread-safe. The result is
an inherently serial Unix byte stream sent to stdout, and at
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least the serialisation of one top-level object has to be atomic,
with no interfering writes, or the result will be garbled.

If multiple threads need towrite objects to std-object-out,
the recommended method would be for each to have its own
PWS, with intermediate results buffered and written to the
Unix output when the client signals completion.

4 Alternative Materialised Intermediate
Representations

Previously, we identified the core problem of most languages’
approach to stdio as first generating a string representation
as a result of a message-send and then outputting that string
representation. PWSs solve this problem by never fully ma-
terialising this string representation, but instead generating
it incrementally and immediately outputting it to the output
stream as it is generated.
Another approach is to generate a different intermedi-

ate representation as the result of the message send, and
outputting that representation.

4.1 Property Lists
NeXT Property Lists [4] are both an in-memory representa-
tion and one of several file formats. The in-memory repre-
sentation consists of dictionaries, arrays, as well as string,
number and date objects. The file formats include ASCII
property lists, XML property lists, binary property lists and
JSON.

Creating a serialised representation is a two-step process:
first, user code creates the in-memory representation, then
library code converts that in-memory representation to a
serialised representation that can then be saved to disk.
Like PWSs, this process can avoid materialising the full

string representation in memory using a similar technique
to serialise this specialised property list. The difference to
PWSs is that the serialisation code only has to deal with a
few well-known data types and can be highly optimised for
incrementally generating representations of those types.

However, the in-memory property list representation has
to be materialised fully, and will typically roughly match the
structure of the object tree to be materialised. Being generic,
this intermediate representation tends to be both signifi-
cantly larger and slower to process than the original object
graph, as discussed in depth in iOS and macOS Performance
Tuning: Cocoa, Cocoa Touch, Objective-C, and Swift [26].
Another limitation is that the format is only suitable for

generating file formats that correspond to property lists, not
arbitrary streams of data.

4.2 Ropes
Another way of mitigating the issues of a materialised inter-
mediate string representationwould be to usemore advanced
string data structure, such as ropes [7]. Ropes represent a
string not as a linear sequence of characters, but as a tree of

nodes that represent the operations that would be needed to
generate the sequences of characters.

This representation is advantageous for nested trees. Gen-
erating the representations for the intermediate nodes does
not require allocating a full buffer for the entire intermediate
character sequence and then copying all the previous char-
acter sequences, an O(n) operation per level encountered.
Instead, each copy operation just requires allocating the rope
node for the operation, an O(1) operation per level.

Since a Unix byte-stream is a linear sequence of characters,
the rope structure has to be converted to that linear format
at some point. This can occur either in a single call/return
style step, with many of the same problems as before, or in-
crementally just like PWSs. In a sense, adding a rope doesn’t
solve the problem of creating the fully serialised representa-
tion from a tree, it just delays it, at the cost of a materialised
temporary tree structure.

Ropes and property lists are very similar in that they define
an in-memory tree of specialised types or a specialised type.
If created by call/return, they both fail when the original
object graph contains cycles. They both will create what is
essentially a duplicate of the original object graph or tree,
which then still has to be serialised.

5 Streaming vs. Materialisation
As we saw in the previous sections, PWSs eliminate the need
for a fully materialised intermediate representation of the
object graph, be that as a linear string, a property list or a
rope, a characteristic shared with many object serialisation
mechanisms.
Unlike those serialisation mechanisms, PWSs can also

eliminate the need for a fully materialised version of the
original object graph itself, or for any materialised version
at all.
The code in Figure 18 adjusts the tree-construction code

from Figure 5 to not actually construct the tree, but instead
just output what the constructed tree would have output to
stdout.

Not needing a fully materialised object graph in memory
opens up the possibility of streaming object applications, if
the streaming-friendly PWSs are matched with comparable
technology on the input side or an infinite stream generator
similar to the code in Figure 2.
Although streaming of non-materialised or at least not

fully materialised is the norm for Unix filters, and basic
access to the Unix I/O functions is present in OO libraries,
developers usually face a hard dichotomy: either stream at
the level of individual strings, without OO abstractions, or
use object abstractions and give up streaming.
With PWSs, objects can be combined with streaming at

any level of granularity desired.
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1 +(void)printTree:(int)depth string:(NSString*)s
2 onStream:(MPWByteStream*)stream
3 {
4 [stream beginObject:self];
5 [stream writeObject:s forKey:@"string"];
6 if ( depth > 0 ) {
7 [stream writeKey:@"left"];
8 [self printTree:depth-1 string:s onStream:

stream];
9 [stream writeKey:@"right"];
10 [self printTree:depth-1 string:s onStream:

stream];
11 }
12 [stream endObject:self];
13 }

Figure 18.Writing a non-materialised tree

6 Applications
PWSs have been used in diverse application ares ranging
from classic object serialisation tasks to PDF and Postscript
generation. The performance characteristics of PWSs mean

6.1 Printing and Logging
The application shown in the examples thus far is one of the
most common: simple printing and logging of both unstruc-
tured and structured data to stdout or stderrr. The benign
behaviour of PWSs with regards to deeply nested graphs
or cycles means that objects can be logged safely without
having to worry about unexpected errors or performance
degradation.
Having a class hierarchy of PWSs rather than a single

function means that variations can be accommodated, for
example one PWS will only print the start and end of a
large string, while another will output the entire string. Deep
graphs can be abbreviated by only printing them to a specific
depth.
PWSs can also change the work distribution between fil-

ters or commands and the output system of an interactive,
object-oriented shell [25]. Instead of providing various for-
matting options for the ls command the way it is done in
Unix, the equivalent directory listing command just outputs
directory entry objects to the current PWS. Different PWSs
format the output accordingly.

6.2 Object Serialisation
Object serialisation is an obvious application of PWSs, and
the MPWFoundation library [23] includes stream subclasses
for generating JSON as well as the NeXT/Apple property
lists formats presented in Section 4.1.

The different PWSs share much of their common function-
ality and perform significantly better than non-PWS APIs
provided by macOS and iOS, both in execution time and
particularly in memory use [26].

1 -initWithTarget:newTarget
2 {
3 self = [super initWithTarget:newTarget];
4 lineto = @"%g␣%g␣lineto\n";
5 moveto = @"%g␣%g␣moveto\n";
6 curveto = @"%g␣%g␣%g␣%g␣%g␣%g␣curveto\n";
7 closepath = @"closepath\n";
8 linewidth = @"%g␣setlinwidth\n";
9 clipExists = NO;
10 actions=[self actions];
11 return self;
12 }
13 -(SEL)streamWriterMessage
14 {
15 return @selector(writeOnPSByteStream:);
16 }
17 -(void)writeArray:(NSArray*)anArray
18 {
19 [@"[␣" writeOnPSByteStream:self];
20 [super writeArray:anArray];
21 [@"␣]␣" writeOnPSByteStream:self];
22 }
23 -(void)writeDictionary:(NSDictionary*)dict
24 {
25 [@"<<␣" writeOnPSByteStream:self];
26 [super writeDictionary:dict];
27 [@"␣>>␣" writeOnPSByteStream:self];
28 }
29 -(void)writeObject:anObject forKey:aKey
30 {
31 [@"/" writeOnPSByteStream:self ];
32 [[aKey stringValue] writeOnPSByteStream:self];
33 [@"␣" writeOnPSByteStream:self];
34 [anObject writeOnPSByteStream:self];
35 [@"␣" writeOnPSByteStream:self];
36 }
37 -(void)lineto:(float*)coords
38 {
39 [self printf:lineto,coords[0],coords[1]];
40 }
41 -(void)moveto:(float*)coords
42 {
43 [self printf:moveto,coords[0],coords[1]];
44 }
45 -(void)writePath:(MPWPath*)aPath
46 {
47 [aPath pathForall:self];
48 }
49 ...

Figure 19. Postscript write stream

6.3 Postscript
Pre-press applications were one of the incubators for the
PWS idea: at the time, the files that had to be dealt with
often outstripped the memory of the machines that needed
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to process those files. It was typical to have to generate
a 90MB Postscript file and then rasterise that to a 128MB
bitmap for output on a color laser copier, all on a machine
with no more than 32MB of main memory.

Memory-frugal streaming approaches were thus not just
a nice-to-have optimisation, but absolutely essential for pro-
grams to process the amount of data needed on the machines
available.
Figure 19 shows part of the definition of a stream that’s

specialised for generating Postscript code [18] for use in
digital typesetters and printers..
In addition to the initialiser and the explicit definition

of the stream-writer message, the code defines three basic
kinds of methods: first, specialisations of the more general
methods for writing arrays and dictionaries, which generate
the syntax required by Postscript for these elements. Second,
Postscript-specific primitive methods such as lineto: and
moveto: and finally a Postscript-specific higher level method,
writePath:, which is used by path objects when they are
sent the writeOnPSByteStream: message.
The pathForall: method on paths writes the individ-

ual path elements to the stream using methods such as as
moveto: and lineto:.
The graphical objects and the Postscript stream define a

private sub-protocol that allows them to optimally generate
code. For example, a specialised path subclass was created
to store its paths in a format directly compatible with the
Display Postscript (DPS) binary object format. When writing
such a path to a specialised DPS output stream, the path and
the stream would collaborate to directly send that stored
binary representation without any further encoding, while
at the same time writing the ASCII representation on other
kinds of Postscript output streams.

6.4 PDF
Where Postscript is a flat file format, a single textual stream
of instructions to be executed by the output device, the suc-
cessor Portable Document Format (PDF) [2] is a structured
file format: the top-level file consists of a series of structured
objects, which are indexed for random access. These struc-
tured objects resemble Postscript dictionaries, with some
having a data stream attached to them.

Some of these data streams in turn contain drawing com-
mands that are equivalent to a stylised version of Postscript
commands, without the programmability. Streams can be
compressed.
Generating drawing commands into a compressed data

stream that is compressed and in turn written incrementally
into the top-level PDF file is handled by stacking several
PWSs using the target facility described in Section 3.6.
The textual drawing commands are generated by a PWS

that is a subclass of the Postscript generator of the previous
section. The output of that PWS is passed to a streaming
flate compressor, a simplified PWS that compressed the data

sent to it via the appendBytes:length: and writes the com-
pressed output to its target, again via appendBytes:length:.
The final target is another PWS that writes dictionaries and
streams, keeping track of the exact byte position of each
dictionary and stream written to add to the PDF index that
is written at the end of the file.

6.5 XML and HTML
XML and HTML PWSs use the multiple-dispatch mechanism
to introduce their own private message protocol for creat-
ing XML/HTML content while at the same time remaining
compatible with other, more general output streams.
The Objective-Smalltalk website is served using a PWS

that generates HTML [24].

7 Evaluation
In Section 2, we noted several problems, including lack of
flexibility, performance and crashes on cyclic structures. The
previous section already showed how flexibility is improved
via triple-dispatch and chaining.

The crash on cyclic structures is avoided by the PWS
refusing to follow cycles. In order to do that, it keeps track of
the objects that are currently in the process of being output.
If it encounters such an object again, it short-circuits the
process, as seen in Figure 14.

7.1 Performance
We already noted some performance figures for producing
string representations in Section 2. In this section, we look
at performance in greater detail and demonstrate that PWSs
solve the performance issues encountered earlier.

All performance tests were run on aMacBook Pro (13-inch
2018) with a four core 2,7 GHz Intel Core i7 processor con-
figured for 8 hyperthreads, with 16GB of 2133 MHz LPDDR3
physical memory. Time was measured using the time com-
mand line program, memory consumption was measured
using the mstats() library call. Output was directed to a file
on the locally attached SSD and size measured after the run
using the wc command.
Figure 20 shows the code for creating the degenerate

graph using the description method used implicitly by
the NSLog() function.

1 int main(int argc, char *argv[]) {
2 Node *root=[Node onlyLeft:atoi(argv[0] leafSize

:10];
3 [[MPWByteStream Stdout] writeObject:root];
4 }

Figure 20. Output degenerate graph via NSLog() and de-
scription
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Figure 21 plots the memory and CPU consumption of runs
of the code in Figure 20 with graph depths ranging from 0
to 1000.

Figure 21. Memory and CPU use for producing a string
representation via NSLog()

Although both the in-memory size of the tree and the total
output size stay essentially constant at 12MB, both time to
process and memory used grow linearly with depth, with
memory consumption rising to 11 GB for a graph with depth
1000.

Figure 22 shows the identical graph being constructed,
except this time the output is via the MPWByteStream Poly-
morphic Write-Stream.

1 int main(int argc, char *argv[]) {
2 Node *root=[Node onlyLeft:atoi(argv[0] leafSize

:10];
3 [[MPWByteStream Stdout] writeObject:root];
4 }

Figure 22. Output degenerate graph via PWS

Figure 23 plots the memory and CPU consumption of the
PWS.
Note that although the depth axis is identical between

Figures 21 and 23, the y-axis had to be rescaled in order to
reasonably fit the same information: CPU consumption is
now shown in 10s of milliseconds instead of seconds, and
temporary memory consumption is shown in Kilobytes in-
stead of Gigabytes.
For the tree of depth 1000, the PWS version uses slightly

more than one million times less memory and uses 30 times
less CPU time. Memory consumption is not just constant re-
gardless of depth, which is the desired outcome for a stream-
ing operation, but also less than the output size.
The fact that memory consumption remained constant

regardless of depth may have been an artifact of the construc-
tion of the degenerate tree, which also had nearly constant

Figure 23. Memory and CPU use for producing a string
representation via PWS

output size and in-memory size. Figure 24 uses the balanced
tree constructor to create and then output trees of increasing
sizes.

1 int main(void ) {
2 Node *root=[Node tree:16 string:@"Hello␣World"];
3 [[MPWByteStream Stdout] writeObject:root];
4 }

Figure 24. Printing a tree using a PWS

As can be seen from the results graphed in Figure 25,
output size now increases, but memory consumption is still
constant.

Figure 25. Memory use for producing a string representa-
tion via PWS

7.2 Dispatch Overhead
Where the previous section compared PWS to traditional
OO approaches, this section will compare PWS to tradition
streaming approaches.
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Figure 26 reproduces the balanced-tree scenario from Fig-
ures 3, 5, and 24 in plain C, without any message dispatch.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4
5 typedef struct Node {
6 char *s;
7 struct Node *left;
8 struct Node *right;
9 } Node;
10
11 void printNode( Node *n, FILE *out ) {
12 if (n) {
13 fprintf(out, "<Node:string:␣%s;\n",n->s);
14 fprintf(out, "left:␣");
15 printNode(n->left,out);
16 fprintf(out, ";\n");
17 fprintf(out, "right:␣");
18 printNode(n->right,out);
19 fprintf(out, ";\n");
20 fprintf(out,">");
21 } else {
22 fprintf(out, "(null)");
23 }
24 }
25
26 Node *tree( int depth, char *s ) {
27 Node *n=calloc( 1, sizeof(Node));
28 n->s = s;
29 if ( depth > 0 ) {
30 n->left = tree( depth-1, s );
31 n->right= tree( depth-1, s );
32 }
33 return n;
34 }
35
36 int main(int argc, char *argv[]) {
37 int depth=argc > 1 ? atoi(argv[1]) : 10;
38 Node *root=tree( depth, "Hello␣World!");
39 printNode( root, stdout );
40 }

Figure 26. C version of tree generation and output

Both this C code and the code for the comparable PWS
were run with output directed to a file. The file output was
compared with the Unix diff command to ensure that both
programs produce the same output.
Figure 27 plots the wall-clock times for node tree depths

from 16 to 23: except for very small sizes, the PWS actually
performed better than the C version.

Some but not all the performance difference is due to the
stdio library’s buffer size, which is too small for current
I/O hardware and causes significant system call overhead.

Figure 27. C-Tree vs. PWS performance: total time

Figure 28 shows that removing system call overhead reduces
the gap without eliminating it.

Figure 28. C-Tree vs. PWS performance: CPU time

Increasing the buffer size for the C version to 10MB using
the setvbuf() library function further reduces the gap, still
without entirely eliminating it.

Although these results do not clearly show what the over-
head of triple dispatch is, they do show that is small enough
to be easily overwhelmed by other factors such as appropri-
ate sizing of I/O buffers.

7.3 Threats to Validity
On potential issue is that the problems encountered were
specific to Objective-C and its Foundation library. In order
to ensure that this is not the case, we reproduced the prob-
lematic results with a number of other languages.

The results for Ruby are shown in Figure 29.
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Figure 29. Ruby results

The results show the same general behaviour as observed
for Objective-C, with slightly less CPU usage and signifi-
cantly higher memory consumption. In fact, memory con-
sumption was sufficiently high that capturing that informa-
tion was stopped for higher tree depths.
Alternative intermediate representations were discussed

in Section 4 but not separately measured.

8 Discussion
PWS solves the problems encountered by the standard archi-
tectural adapters between the object-oriented architectural
style and the Unix pipes and filters architectural style: it is
flexible, can protect itself against cycles in the object graph
and has the performance characteristics we would expect of
a filter.
The downside is a slightly higher initial implementation

effort, but as this really is small and only required once, a
PWS-like mechanism could be the standard way of adapting
object-orientated styles to pipes and filters, just as stdio
is the standard adapter for general call/return architectural
styles.

One non-obvious aspect of the way PWS solves the prob-
lems created by relying on return values for encoding is that
those problems are structural. They are not due to deficits
in the implementation. Once it is decided that the API will
consist of sending a message to an object with the result in
the return value, the problem is not addressable.

The problem is only fixable by changing the API contract
and passing an accumulator for the result into the messages,
so that the result can be constructed incrementally.

Going in the other direction, on the other hand, is trivial:
if we find the PWS interface to be too cumbersome for just
returning a string result, a simple wrapper (Figure 30) will
suffice.

We can implement a description method by creating an
instance of MPWByteStream with a string target, writing the
receiver to that stream and returning the accumulated string
from the MPWByteStream’s target.

1 -(NSString*)description
2 {
3 MPWByteStream *s=[MPWByteStream stream];
4 [s writeObject:self];
5 return [s target];
6 }

Figure 30.Wrapper adapting a PWS to call/return style

This asymmetry between the call/return style and a more
streaming-oriented approach suggests that streaming is the
more fundamental style. That is: we can easily obtain a
call/return implementation given the streaming implemen-
tation, but not the other way around. This in turns sug-
gests that implementations of algorithms dealing with object
graphs should, if possible, aim for a streaming implemen-
tation first, even if that appears unnatural in the object-
oriented architectural style.

The purely mechanical nature of the differences between
the streaming approach and a call/return approach strongly
suggests that linguistic support could remove this inconve-
nience andmake high-performance, flexible code the obvious
and easy choice for developers.

9 Related Work
In the 1990s, the SFIO [14] library was introduced as a re-
placement for stdio. It introduced a number of advance-
ments such as the ability to stream into a string buffer in-
stead of a file descriptor, a feature later adopted by POSIX
2018 [5] in stdio using the fmemopen() call.

The standard libraries of Ruby [27], Python [22], Java [11],
and C# all follow the problematic pattern we describe. Even
Microsoft PowerShell [9], which allows piping objects be-
tween filters, uses a toString() method to return a string
representation for basic textual output of objects. It also has
a formatter pipeline, but does not use double dispatch.

Squeak Smalltalk’s Stream class implements a print:mes-
sage that’s very similar to PWS’s writeObject:, in that it
double dispatches to the object using the printOn: message
with the stream as argument [12]. Some, but not all of the
implementors of printOn: then dispatch back to the stream
using print:, for example for outputting elements of col-
lections. However, there is no automatic generation of the
stream writer message, no triple dispatch and no hierarchy
of related streams connected via chaining.
C++’s ostream class also passes the stream to overloads

of the << operator, making incremental output possible [15].
However, there is no triple dispatch and no chaining in order
to support a hierarchy of related output streams, and there
is no protection against cyclical object graphs.
The Common Lisp Input Manager (CLIM) [17] includes

byte streams that can be connected directly to output win-
dows without having to go through Unix pseudo terminals,
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similar to the special stream target discussed in Section 3.6.
CLIM streams use CLOS [10] generic functions, so can make
use of language-provided multiple dispatch facilities instead
of having to use triple dispatch.

10 Summary and Outlook
This paper looked at the intersection of object-oriented and
stream processing as embodied byUnix stdio from a software-
architectural point of view. With that perspective, the stan-
dard method of adapting object-oriented languages to the
pipes and filters was found to be lacking in several respects,
particularly losing both the polymorphism of the object-
oriented style and the streaming capabilities of the pipes and
filters style, in a worst of both worlds situation.
The paper then introduces Polymorphic Write-Streams,

which use dynamic language features to adapt between the
two architectural styles while preserving the benefits of both:
polymorphism and streaming performance.

This successful adaptation suggests that the same sort of
combination of an architectural point of view with dynamic
language capabilities could also yield a more object-oriented
version of stdin, completing a standard object I/O library,
stdoio.
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