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ABSTRACT
Although the call/return architectural style has served as the founda-
tion of much of computing since its existence, it no longer matches a
large proportion, probably the majority, of the programs or systems
created today.

However, our programming languages, be they imperative, func-
tional or object-oriented, support call/return variants as their pri-
mary or only abstraction mechanism. This mismatch between sys-
tem structure and our means of expressing those systems can be
overcome, but only with massive (“aircraft carrier”) engineering
effort that is beyond most casual developers.

In order to overcome this fundamental architectural mismatch
and make software constructions easier for professionals and acces-
sible for novices, we need to support other architectural styles on
an equal footing with call/return in our programming languages.

This paper presents one approach to multi-architectural pro-
gramming as well as progress with this approach.

CCS CONCEPTS
• Software and its engineering→Abstraction, modeling and
modularity;Language features;General programming languages.

KEYWORDS
Means of Abstraction, Combinators, Call/Return, Constraints, Data
Flow

ACM Reference Format:
Marcel Weiher. 2020. Can Programmers Escape the Gentle Tyranny of
call/return?. In Companion Proceedings of the 4th International Conference
on the Art, Science, and Engineering of Programming (<Programming’20>
Companion), March 23–26, 2020, Porto, Portugal. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3397537.3397546

1 INTRODUCTION
The call/return architectural style [17] has been and continues to be
fundamental to virtually all mainstream programming practice and
programming languages, be they imperative, functional or object-
oriented. In fact, it is so foundational that its embodiment in LISP as
apply/eval has been called the “Maxwells’s Equations of Program-
ming” [9], and it isn’t even recognised as an underlying paradigm,
with languages described as “multi-paradigm” for supporting two
or more of these variants.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
<Programming’20> Companion, March 23–26, 2020, Porto, Portugal
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7507-8/20/03. . . $15.00
https://doi.org/10.1145/3397537.3397546

However, the actual differences between these “paradigms” are
not all that great: both imperative and functional programming
have free-standing functions, sometimes called procedures that take
arguments and typically return a value. In object-oriented program-
ming, the procedures are attached to the objects, called methods and
dispatched dynamically, but otherwise operate identically. Table 1
summarises the three variants:

Table 1: Comparison of “paradigms”

Paradigm Syntax Side effects
Imperative f(x) discouraged
Functional f(x) disallowed
Object-oriented x.f() discouraged/contained

However, functions, procedures andmethods are primarily mech-
anisms for computing results, which they do, possibly given some
arguments, and then terminate. However, computers and programs
are no longer primarily concerned with computing results: they
are used to store data and communicate, most computation occurs
incidentally.

Since our computation mechanism is also our primary abstrac-
tion mechanism, we cannot abstract this difference away, leading
to unresolvable mismatch.

The remainder of the paper is structured as follows: Section 2
demonstrates how call/return programming complicates even a
simple temperature converter. Section 3 will look at what just hap-
pened. Section 4 presents an overview of the proposed solution
and approach. Sections 5-8 describe the architectural styles that
are currently supported. Section 9 shows some related work and
finally Section 10 summarises.

2 MOTIVATING EXAMPLE
As an example of the architectural issues faced when assembling
even fairly straightforward interactive applications, we will look at
a temperature converter application that converts between different
temperature scales, starting with Fahrenheit and Celsius.

2.1 Objective-Smalltalk
All code presented here is expressed in Objective-Smalltalk [18], a
dialect of the Smalltalk [13] language. Objective-Smalltalk general-
izes Smalltalk’s support for object-oriented programming to sup-
port for defining and using architectural connectors and borrows
method-definition syntax from Objective-C. Objective-Smalltalk
also generalizes identifiers to Polymorphic Identifiers, which look
like URIs in code [21].

Listing 1 gives a quick overview of the Objective-Smalltalk syn-
tax: an instance method of a class is introduced with the a minus
sign, followed by the method signature and the method body en-
closed in curly braces. Class methods would be introduced with the
plus sign, but we don’t have any class methods in these examples.
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obj msg. // unary obj.msg()
obj msg:7. // keyword obj.msg(7)
3 * 4. // binary 3.*(4)
c := 7. // assignment
-c { // instance method

ivar:c // return instance var c
}
ivar:field/value // field.value;

Figure 1: Objective-Smalltalk Syntax

Syntax inside methods is Smalltalk, with unary, binary and key-
word messages, statements terminated with periods and method
return indicated by the up caret.

Identifiers look like URIs, with a scheme separated from the path
by a colon, so ivar:c is the variable c in the ivar (instance
variable) scheme. Components of a path expression are separated
by the slash character typical of file systems rather than the dots
more typical of languages like Java.

2.2 Basic Model
The basic model of the temperature converter consists of storage for
the temperature and methods to set and inquire that temperature in
different temperature scales. An implementation of themodel object
is shown in Listing 2. To its clients it presents an interface with
two properties, c and f representing the temperature in Celsius
and Fahrenheit respectively. Internally, it stores the temperature
in a hidden instance variable c and derives the Fahrenheit value
on-demand, as well as converting Fahrenheit values on input.

- f:degreesF {
self c:(degreesF - 32) / 1.8.

}
- f {

self c * 1.8 + 32.
}
- c:degreesC {

ivar:c := degreesC.
}
- c {

^ivar:c.
}

Figure 2: Basic Temperature Converter Model

To keep the exposition manageable, we don’t show boilerplate
class definitions, instance variable definitions and generic applica-
tion initialization code.

2.3 Connecting UI Elements
For the UI, we assume we have text fields set up to input and display
numbers using Apple’s Cocoa UI toolkit. Our code for hooking up
those text fields to the model is shown in Listing 3. The code for
creating, positioning and configuring the text fields is not shown,
because we are primarily interested in the connecting code.

Lines 1-7 contain target/actionmethods that are called by the text
fields either when the user finishes editing or on every keystroke,

depending on how the fields are configured. Each target/action
method has a sender parameter that contains a reference to the
control that sent the action message. In our case, we ask the control
for its numeric value and set that as the corresponding temperature,
either Fahrenheit or Celsius depending on the actual control.

So far we have only had straightforward additions, but in order
to update the calculated values in the UI, we have to modify our
existing setter methods, both the “virtual“ setter for Fahrenheit that
just computes a Celsius value and the actual setter for the Celsius
value.

Each of these setters updates the other UI value, setting Celsius
needs to update the Fahrenheit text field, but not the Celsius text
field because that is presumably where the value originated.

- changedF:sender {
self f:sender intValue.

}
- changedC:sender {

self c:sender intValue.
}
- f:degreesF {

self c:(degreesF - 32) / 1.8.
ivar:ui/celsiusTextField/intValue := self c.

}
- f {

self c * 1.8 + 32.
}
- c:newValue {

ivar:c := newValue.
ivar:ui/fahrenheitTextField/intValue := self f.

}
- c {

ivar:c.
}

Figure 3: Connecting UI via messages

While seemingly straightforward, the code in Listing 3 has a
slight problem, at least if we are serious about minimizing UI up-
dates: when setting Fahrenheit values, we call the Celsius setter
after computing the correct temperature, meaning that we do re-
dundantly update the UI with an already present value, at least in
the case we convert Fahrenheit to Celsius.

Listing 4 fixes this problem by splitting the Celsius setter into
two parts, one low-level part that doesn’t do UI updates and is
called when converting from Fahrenheit, and one high-level part
that is called when actually entering Celsius for conversion and
does do the UI update. (Only the methods that were changed are
shown).

2.4 Adding Persistence
Adding persistence also requires making modifications to existing
code, though only to a single method which is why Listing 5 only
shows that single modified method. Whenever we set a new Celsius
value, we write this value to the user defaults database.

As we can see, the cover setter method for the Celsius variable
is getting to be a hub of changes for any additional architectural
dependencies.
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- f:degreesF {
self basicC:(degreesF - 32) / 1.8.
ivar:ui/celsiusTextField/intValue := self c.

}
- c:newValue {

self basicC:newValue.
ivar:ui/fahrenheitTextField/intValue := self f.

}
- basicC:newValue {

ivar:c := newValue.
}

Figure 4: Minimizing UI updates

- basicC:newValue {
ivar:c := newValue.
NSUserDefaults standardUserDefaults

setObject:newValue forKey:'c'.
self updateUI.

}

Figure 5: Persistence using native API

To make the code more comparable to the constraint solution
we build in Section 5, Listing 6 shows the same code expressed with
a Polymorphic Identifier using the defaults scheme instead of a
message-send to the NSUserDefaults shared instance. The two
pieces of code have the same semantic.

- basicC:newValue {
ivar:c := newValue.
defaults:c := ivar:c.
self updateUI.

}

Figure 6: Persistence using Polymorphic Identifier

This is a very simple persistence solution, as we are only con-
cerned about a single value, without any relationships, object iden-
tity or complex queries to worry about. In a more complex appli-
cation, dealing with persistence is likely to be much more trouble-
some.

2.5 Adding a Temperature Scale
Adding a new temperature scale, in this case the Kelvin scale that
starts at absolute zero, involves adding the conversion methods for
the new scale, adding UI elements (not shown) and hooking them
up to the model, shown in Listing 7.

Most of the code consists of straightforward if tedious additions,
except for the code keeping the UI in sync with the model. Every
method that sets a new value for a specific temperature has to
be modified to update the respective other temperature text fields
(assuming that the change originated in the UI).

At this point, it becomes clear that our original strategy of up-
dating the UI from the individual setter methods is probably not

- changedF:sender {
self f:sender intValue.

}
- changedC:sender {

self c:sender intValue.
}
- changedK:sender {

self k:sender intValue.
}
- f:degreesF {

self basicC:(degreesF - 32) / 1.8.
ivar:ui/celsiusTextField/intValue := self c.
ivar:ui/kelvinTextField/intValue := self k.

}
- f {

self c * 1.8 + 32.
}
- k:degreesK {

self basicC:(degreesF - 273.15.
ivar:ui/celsiusTextField/intValue := self c.
ivar:ui/fahrenheitTextField/intValue := self f.

}
- k {

self c + 273.15.
}
- c:newValue {

self basicC:newValue.
ivar:ui/fahrenheitTextField/intValue := self f.
ivar:ui/kelvinTextField/intValue := self k.

}
- c {

ivar:c.
}
- basicC:newValue {

defaults:c := ivar:c.
ivar:c := newValue.

}

Figure 7: Adding Kelvin scale

tenable in the long run. Listing 8 replaces this distributed logic with
a centralized -updateUImethod that updates all of the UI from the
model. This method is only invoked from the -c: accessor method.
While this change simplifies the code, it removes the optimization
that prevented updating the UI element that initiated the change.

The solution in Listing 8 starts to approximate a true Model View
Controller (MVC) [14][15] approach. However, the UI elements
are widgets, not classical Views, so they contain their own data
rather than referring to and refreshing themselves from the model.
Updated data must therefore be pushed to them, they cannot pull
it after receiving a #changed notification. Actually implementing
the MVC pattern in this instance would therefore entail introducing
an intermediate layer that mediates between the widgets and the
model, listening to #changed notifications and pulling data from
the model and pushing to the widgets.

2.6 Discussion
As we have seen, even a conceptually very simple application such
as a temperature converter quickly attracts significant complexity
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-updateUI {
ivar:ui/celsiusTextField/intValue := self c.
ivar:ui/fahrenheitTextField/intValue := self f.
ivar:ui/kelvinTextField/intValue := self k.

}
- f:degreesF {

self c:(degreesF - 32) / 1.8.
}
- f {

self c * 1.8 + 32.
}
- k:degreesK {

self c:(degreesF - 273.15.
}
- k {

self c + 273.15.
}
- c:newValue {

ivar:c := newValue.
self updateUI.

}
- c {

ivar:c.
}

Figure 8: Centralized UI update

with non-obvious trade-offs once the requirements of an interactive
version of that application are taken into account.

This complexity is not the result of essential complexity in the
domain model, but rather of the architectural embellishments re-
quired to move data from location to location in order to keep
the different parts of the application (model, user interface, per-
sistence) synchronised using methods that perform an action and
then terminate.

As Guy Steele noted in the OOPSLA Panel Resolved: Objects Have
Failed [1] (representing the position that object have not failed):

Another weakness of procedural and functional
programming is that their viewpoint assumes a
process by which "inputs" are transformed into
"outputs";

[...] the procedural and functional models
have failed, another reason why objects have
become the dominant exmodel. Ongoing behav-
ior, not completion, is now of primary interest.

The relationship between the UI and the model is an ongoing
one, as is the one between Celsius and Fahrenheit and between the
in-memory and persisted version. Expressing these relationships
as a set of actions that need to be called to maintain those relation-
ships adds accidental complexity that completely overwhelms the
simplicity of the relationships.

3 ARCHITECTURAL MISMATCH
The problems illustrated in the previous section are not an isolated
example. The fundamental mismatch between UI programming and
call/return programming languages was described by Chatty [6].

However, UIs are not the only problem. Other forms of Architec-
tural Mismatch are described in Architectural Mismatch: Why Reuse
Is So Hard [12], one of these being that (procedure) imports serve
multiple purposes [17]:

...the use of imports and exports confuses algo-
rithmic with architectural description.When fa-
cilities are imported from another module, this
may may indicate interaction between compo-
nents. But it might also simply represent the
inclusion of lower-level facilities to aid in the
implementation of the importing module – for
example, by importing a library module.

This realisation that subroutines serve multiple purposes is
not new, in 1952, Wheeler noted the two distinct uses of subrou-
tines [25]:

Sub-routines seem to have two distinct uses in
programmes. The first and most obvious use is
for the evaluation of functions, a simple exam-
ple being the evaluation of sine x given x. The
second use is for the organization of processes
[...]

As programs have shifted away from computing values, the
use of a function evaluation mechanism as a program structuring
mechanism has become more and more strained. In addition to the
ongoing behaviour that is more typical of programs today, prob-
lems also manifest themselves in error handling or asynchronous
programming where return values may not be available yet or at
all.

This mismatch presents the software practitioner with a stark
choice: either use the architectural style appropriate for the software
under construction, and mismatched to the language, or use an
architectural style matched to the language, but mismatched to the
software. Neither choice is good.

4 GENERALISING TO ARCHITECTURE
The hypothesis of this work is that the way to overcome the limita-
tions of the call/return style is neither to extend it, nor to replace it,
but rather to generalise from this one particular architectural style
to a method of programming that allows multiple architectural
styles.

This approach reconciles the conflicting observations that call/re-
turn is, as shown above, obviously limited, but at the same time also
incredibly useful, flexible and ubiquitous. It also has precedent in
the natural sciences, where newer theories such a general relativity
or quantum mechanics often include their classical predecessors as
special cases that are still widely useful.

As programming languages tend to at most allow extension,
not generalisation, testing this hypothesis requires a new (kind
of) programming language, one where “multi-paradigm” is not
limited to OO, FP and imperative styles. Objective-Smalltalk [18]
was developed for this purpose and serves as a test-bed.

Another necessary ingredient is a set of architectural styles to
adapt and incorporate. A pragmatic selection includes the afore-
mentioned call/return, dataflow constraints, Unix Pipes and Filters
and the REST architectural style underpinning the World Wide
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Web. This list is not meant to be definitive, but presents a good
starting point.

Finally, these architectural styles must be used in actual sys-
tems, because problems with the approach typically only manifest
themselves when used at scale. This presents a conundrum as it
is difficult to adopt experimental programming languages in real-
wold projects. So instead, libraries or frameworks implementing
the architectural styles are created with mainstream programming
languages but with linguistic integration in mind, and then adapted
to Objective-Smalltalk.

5 CONSTRAINT CONNECTORS
In order to illustrate the potential benefits of non-call/return archi-
tectural styles, let’s implement the temperature converter example
using Constraint Connectors [22], which provide a kind of one-way
and two-way dataflow constraints.

The one-way constraints are expressed syntactically using the
connector |=, which specifies that that the left hand side should be
kept in sync with the right hand side. The bi-directional connector
=|= specifies that both sides are to be kept in sync with each other.

The initial model shown in Listing 9 has mostly superficial dif-
ferences from the initial example in Listing 2: instead of a single
variable for Celsius, both Fahrenheit and Celsius are represented
as instance variables. The constraints specifying their relationships
are encoded directly and independently from setters and getters,
which are hidden.

ivar:f |= (9.0/5.0) * ivar:c + 32 .
ivar:c |= (ivar:f - 32) * (5.0/9.0).

Figure 9: Basic Temperature Converter Model

The update logic is triggered automatically whenever a variable
is modified to keep the other variable in sync.

5.1 Adding User Interface
The architectural differences become more noticeable when adding
UI, as shown in Listing 10. The code to hook up the UI is purely
additive, which is why Listing 10 only shows the additions. It defines
two additional bi-directional dataflow constraints that keep the
instance variables synchronized with their respective UI text fields.

ivar:ui/celsiusTextField/intValue =|= ivar:c.
ivar:ui/fahrenheitTextField/intValue =|= ivar:f.

Figure 10: Adding UI

The original model code does not need to be updated, because
the update logic is implicit in the constraint definitions. Optimally
updating only the values that have changed, so for example only the
dependent values when changing is also implicit in the connector
definition, and implemented behind the scenes in the constraint
solver.

5.2 Adding Persistence
Adding persistence is as easy as adding a constraint from one of the
temperature instance variables to the persistent variable, it doesn’t
really matter which.

ivar:c := defaults:celsius.
defaults:celsius |= ivar:c.

Figure 11: Adding Persistence

Referring to the persistent variable using the Polymorphic Iden-
tifier defaults:celsius makes it possible to place it on the left
hand side of a constraint connector ( |=), something that would
have been much more difficult with the method API (Listsing 5,
lines 3-4).

5.3 Adding a Temperature Scale
This time, adding the Kelvin temperature scale is also purely addi-
tive. We add an instance variable ivar:k to hold the temperature
in degrees Kelvin (not shown), connect an additional text field to
that field and define additional constraints relating the Kelvin and
Celsius instance variables. These additions are shown in Listing 12.

ivar:ui/kelvinTextField/intValue =|= ivar:k.
ivar:k |= ivar:c + 273.15.
ivar:c |= ivar:k - 273.15.

Figure 12: Adding a Temperature Scale

This brings us to the (almost) complete temperature converter
application shown in Listing 13. It shows all the elements of the
application and how they interact. It is not only more compact than
the non-constraint version in Listing 8, but actually handles a few
details that were elided in that version, such as initialization from
persistence and hooking up the text fields to the model.

ivar:ui/celsiusTextField/intValue =|= ivar:c.
ivar:ui/fahrenheitTextField/intValue =|= ivar:f.
ivar:ui/kelvinTextField/intValue =|= ivar:k.

ivar:f |= (9.0/5.0) * ivar:c + 32 .
ivar:c |= (ivar:f - 32) * (5.0/9.0).
ivar:k |= ivar:c + 293.
ivar:c |= ivar:k - 293.

ivar:c := defaults:celsius.
defaults:celsius |= ivar:c.

Figure 13: Complete Temperature Converter

The complete program is the simple concatenation of the indi-
vidual pieces, no modifications of previous code was necessary.
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5.4 Discussion
The point of the previous example is not that dataflow constraints
are the solution, though they are almost certainly part of a solution.
The point is that describing systems with ongoing behaviour is
much more straightforward when we have linguistic means for
directly expressing that ongoing behaviour.

But doesn’t object-oriented programming provide those mecha-
nisms, as Guy Steele posited? Not quite, as Andrew Black notes in
Object-oriented programming: Some history, and challenges for the
next fifty years [4]:

The program’s text is a meta-description of the
program behavior, and it is not always easy to
infer the behavior from the meta-description.
[..]

In my own practice as a teacher of object-
oriented programming, I know that I have suc-
ceeded when students anthropomorphize their
objects, that is, when they turn to their partners
and start to speak of one object asking another
object to do something. I have found that his
happens more often and more quickly when I
teach with Smalltalk than when I teach with
Java: Smalltalk programmers tend to talk about
objects, while Java programmers tend to talk
about classes.

So although object-oriented programming allows us to express
these continuous relationships, it does so only at the cost of the
actual program text, which is still call/return oriented, only being
a meta-description whose actual behaviour needs to be inferred,
with difficulty.

To illustrate this problem, let’s look at the code for setting up an
equivalent binding in Apple’s Cocoa framework [3] in Listing ??.

[celsiusField bind:@"value" toObject:model withKeyPath:@"
↪→ celsius" options:nil];

Figure 14: Setting up a Cooca Binding

In addition to being stringly typed and not entirely obvious as to
what is actually happening, this code sets up the binding, it is not
the binding. This means that the binding happens as a side effect of
sending this message, the code is the meta-desciption. There is no
place in the code that is an actual description of the binding. Apart
from the problems with conceptualising and visualising what the
program does, it also makes debugging very difficult, because there
is no line in the user code that the debugger can display when there
is a problem with the binding.

And of course, having to infer dynamic program behaviour from
a textual description that is far removed from said dynamic behavior
is not a new problem, it was famously described by Dijkstra in Go
To Statement Considered Harmful [8]:

My first remark is that, although the program-
mer’s activity ends when he has constructed a
correct program, the process taking place under
control of his program is the true subject matter

of his activity, for it is this process that has to
accomplish the desired effect;it is this process
that in its dynamic behavior has to satisfy the
desired specifications.Yet,once the program has
been made, the "making" of the corresponding
process is delegated to the machine.

My second remark is that our intellectual
powers are rather geared to master static rela-
tions and that our powers to visualize processes
evolving in time are relatively poorly developed.
For that reason we should do (as wise program-
mers aware of our limitations) our utmost to
shorten the conceptual gap between the static
program and the dynamic process, to make the
cor- respondence between the program (spread
out in text space) and the process (spread out
in time) as trivialas possible.

In Dijkstra’s case, it was the control structures that had to be
dynamically inferred from the direct jumps written in the program
text. The solution was what we nowadays refer to as structured pro-
gramming. We have the same problem with our ongoing relation-
ships, which we currently cannot encode and later read statically
in the program text, but have to visualize evolving over time.

6 DERIVING HIGH LEVEL ARCHITECTURE
Grouping the three text fields into the ui, the three temperature
variables into memory-model and the defaults database access into
persistence, we arrive at the high-level architecture shown in
Listing 15.

ui =|= memory-model.
memory-model := persistence.
persistence |= memory-model.

Figure 15: High Level Architecture of Temperature Con-
verter

Unlike the previous listings in this section, Listing 15 is pseudo
code, because we don’t yet have the required grouping mechanism
for constraints.

Using procedural abstraction to perform the grouping does not
work, the problems discussed earlier also apply.

7 STORAGE COMBINATORS
Storage Combinators [24] are a composable implementation of
In-Process-REST [20] and adaptation of the REST [11] architec-
tural style to non-distributed settings. The REST verbs represent a
storage-oriented API over an open-ended set of URIs and transports.

Storing and retrieving information is one of the primary uses of
computers, in fact Richard Feynmann, in his Lectures on Computa-
tion [10], noted the following:

One of the miseries of life is that everyone
names everything a litte bit wrong, and so it
makes everything a little harder to understand
in the world than it would be if it were named
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differently. A computer does not primarily com-
pute in the sense of doing arithmetic. Strange.
Although they call them computers, that’s not
what they primarily do. They primarily are fil-
ing systems.

Storage combinators let us abstract over storage by having stores
that can be composed directly similar to the way HTTP intermedi-
aries such as caches, load-balancers etc. can be added to an HTTP
processing chain.

A store is an object that implements the Storage protocol shown
in Listing 16

protocol Storage {
-at:ref.
-<void>at:ref put:object.
-<void>at:ref merge:object
-<void>deleteAt:ref;
}

Figure 16: Storage protocol expressed inObjective-Smalltalk

Example store endpoints include disk stores, dictionary stores,
file-system stores and HTTP stores. Storage combinators compute
their results by referring to other stores, combining, filtering or
otherwise processing the results obtained from those other stores
or being sent to those other stores.

Example storage combinators include a mapping store, which
performs a user-defined mapping operation either on the data being
loaded or stored or on the reference (URI) being used. A serialiser
is a mapping store that serialises data being stored (for example to
JSON) and de-serialises data being loaded. It is frequently combined
with the disk or HTTP endpoints. A caching store maintains the
relationship between a source store and a cache store.

With these stores, we can build a typical storage stack shown in
Figure 17.

CachingStore

DictStore

cache 

JSON

 source

Disk

Figure 17: Common storage stack

This graphical depiction corresponds 1:1 to a textual configura-
tion. For testing purposes, the stack can be replaced with just the
dictionary store. Similarly, a simple dictionary based in-memory

store for our temperature converter example can be replaced with
this persistent store without impacting any of the rest of the code.

This storage stack has the disadvantage that writes are synchro-
nous, therefore limiting performance. Making it asynchronous is
shown in Figure 18.

CachingStore

Memory

 cache Logger

 source
 (writes)

JSON

 source
  (reads)Queue

 refs
Copier

source target 

refs 

Disk

Figure 18: Asynchronous writer as a composition

This construction is based on the storage stack in Figure 17, but
replaces the direct connection of the writing part of the source
(disk) side of the cache with a reference to a logger. A logger is a
store that logs the references and operations (GET, PUT, DELETE,
..) but not the data. For writes, instead of writing the data, the
reference to the data is logged to a queue that feeds into a a copier,
which. The copier copies the data from the in-memory cache where
it was previously written to the its target, in this case the serialiser
and disk store.

As before, the diagram is not conceptual but corresponds directly
to the in-memory configuration, is in fact generated from it, and to
a textual representation without additional glue code.

In real-world uses such as Wunderlist and Microsoft To-Do,
significant application functionality was modelled using around a
dozen stores, split evenly between application-specific stores and
the kinds of generic stores shown here. Developers using stores
reported code-reduction and productivity improvements of at least
a factor of two.

The UI part of our temperature converter example is also handled
by having UI elements store a reference to the element they repre-
sent. Changes in the model are recorded by a logger and broadcast
so UI elements know to update themselves.

In Objective-Smalltalk, stores can be expressed directly as a kind
of component akin to a class, as shown in Listing 19. The store
(called a scheme) defines an instance variable db, two instance
methods (with the ’-’ prefix) and two property paths with the ’/’
prefix.

Property paths allows the store to resolve arbitrarily nested paths
of URIs with variable path components.
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scheme SQLiteScheme {
var db.

-initWithPath: dbPath {
self setDb:(FMDatabase databaseWithPath:dbPath).
self db open.
self.

}

-dictionariesForQuery:query {
self dictionariesForResultSet:(self db executeQuery:query).

}

/. {
|= {

resultSet := self dictionariesForQuery: 'select name from sqlite_master where [type] = "table" '.
names := resultSet collect at:'name'.
names := names, 'schema'.
self listForNames:names.

}
}

/schema/:table {
|= {

resultSet := self dictionariesForQuery: "PRAGMA table_info({table})".
columns := resultSet collect: { :colDict |
#ColumnInfo{

#name : (colDict at:'name') ,
#type : (colDict at:'type')

}.
}.
#TableInfo{ #name : table, #columns : columns }.

}
}

Figure 19: Part of a database adapter store in Objective-Smalltalk

8 DATAFLOW
In Infopipes [5], Andrew Black makes a point similar to Richard
Feynman’s, though he places communication at the center instead
of storage:

Recent years have witnessed a revolution in the way
people use computers. In today’s Internet-dominated
computing environment, information exchange has
replaced computation as the primary activity of most
computers.

Infopipes are an object-oriented pipes and filters system sim-
ilar to the one used in Objective-Smalltalk, which has been de-
scribed in part in iOS and macOS Performance Tuning [19] as well
as in Standad Object Out: Streaming Objects with Polymorphic Write
Streams [23]. Key element is the Streaming protocol shown in Fig-
ure 20. It defines a single message, writeObject:, which takes a
single argument.

A filter has a target that also conforms to the Streaming protocol
and is therefore symmetric. The basic construction is passive and
therefore does not require concurrency. However, the mechanism
is asynchrony-agnostic, therefore asynchronous elements do not

@protocol Streaming

-(void)writeObject:anObject;

@end

Figure 20: Streaming Protocol

have to be handled specially, which is a tremendous benefit in code
that has to deal with network requests: no call-backs, no pyramid-
of-doom, no futures or promises or async-await. Just compose the
filters according to what they are supposed to do and they will
work in either synchronous or asynchronous environments.

The base filter package is written in Objective-C, with a filter
mapping onto an Objective-C class. Although some metaprogram-
ming is used to reduce the ceremony required, there is still some
overhead compared to defining a function or method. Objective-
Smalltalk uses the syntax shown in Listing 21 to bring the overhead
of defining a filter down to that of a method.
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filter toupper
|{ ^object stringValue uppercaseString. }

Figure 21: Filter definition in Objective-Smalltalk

The code defines a filter named toupper. This filter is defined by
a single filter method, which gets added to the class that is created as
-writeObject:. The argument of the filter method is automatically
bound to the local variable object and the caret (ˆ) indicates the
result, which in this case is written to the next filter in the pipeline,
rather than returned to the caller as in Smalltalk.

8.1 Connect and Run
The filter defined above can be used as shown in Listing 22

(stdin -> toupper -> rawstdout ) run

Figure 22: Filter use Objective-Smalltalk

This “connect and run” idiom is common in architecture-oriented
languages, as well as with the constraint connectors and storage
combinators shown here. It might make a good replacement for
and generalisation of “apply/eval”.

9 RELATEDWORK
Architecture Description Languages (ADLs) like ACME [7] or Rapide [16],
as the name implies, describe architecture, they are not actually con-
structive. An exception is Unicon [26], which can generate code for
the architecture described in the tool. However, it also is a separate
language and mechanism, distinct from the substrate programming
language. With all these systems, describing the architecture is
in addition to programming the system. In Objective-Smalltalk,
software architecture is actually used to simplify programming.

ArchJava [2] is the only other language the author is aware of
that actually adds architectural elements to a general purpose pro-
gramming language. However, it extends an full general purpose
call/return programming language, whereas conceptually call/re-
turn is a special case. The ArchJava experience reports were one
of the reasons for the creation of Objective-Smalltalk as a separate
programming language rather than an extension of an existing
language.

9.1 The “gentle tyranny”
While there are few attempts to generalise from call/return to con-
nectors, there are many, trying to simulate different architectural
styles using call/return style programming is very common.

For dataflow, examples include now-common stream processing
frameworks such as Java Streams and so-called Functional Reactive
Programming such as Rx, FlapJax, ReactiveCocoa and Combine.
All of these simulate dataflow programming using call/return. List-
ing 23 shows an example of a Java Stream.

What is immediately noticeable is that this looks pretty much
the way we would expect a natively expressed dataflow to look. So
what is the problem? The problem is that the similarity is at best

myList
.stream()
.filter(s -> s.startsWith("c"))
.map(String::toUpperCase)
.sorted()
.forEach(System.out::println);

Figure 23: Java Stream

superficial, and even this superficial similarity is only obtained at a
heavy cost.

The code describes a pipeline that filters strings to those that start
with the letter “c”, converts those to upper case, sorts the list and
finally outputs it to the system console. The pipeline character is
suggested by the chaining of the method calls that indicate pipeline
stages processing the data.

However, the method calls that are chained do not, in fact, pro-
cess any data, even though that is what is suggested by the code
as written. Instead they are a fluent interface for constructing filter
objects that will then process the data. Because we cannot write
down a chain of filter objects directly, we have to introduce and
maintain an extra layer of indirection in order to make the code
look “natural”.

In part due to this indirection, adding filters is a sufficiently com-
plex task that it is not intended for users of the streams framework.
In addition to creating the filter, users also have to add a method to
the builder(s), which requires either a form of class extensions or
modifications to a library class.

The difficulty of extending the set of filters means custom pro-
cessing has to be performed by anonymous functions inside of map
or filter filters, which makes it hard to extract and encapsulate
functionality in named components.

Balanced against these difficulties is the fact that streams that are
implemented in this way integrate with the rest of the call/return
based environment, sort of, and look like what we’re trying to
accomplish, sort of.

And this is why the tyranny of the call/return architectural style
exerts its force gently: it is so flexible that we can get so close to
other architectural styles that pointing out the differences appears
to be splitting hairs.

However, the differences are not small, just subtle.

10 SUMMARY AND OUTLOOK
One of the reasons programming is so hard and requires seemingly
excessive amounts of engineering is that the (linguistic) tools we
use no longer match the systems we are expected to build using
those tools.

However, the assumption that this particular architectural style
is the only one that amounts to “programming” is so deeply en-
trenched that we tend to describe alternatives as not-programming,
so modeling, configuring or architectural-description.

The Objective-Smalltalk project is an exploration of the hypothe-
sis that we should be able to program using alternative architectural
styles on an equal footing with call/return. It does not call for re-
placing call/return, but instead for generalising it.
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Specific styles that have been explored include constraint con-
nectors, in-process REST with Storage Combinators and in-process
pipes and filters. All show significant potential for reducing acci-
dental complexity and some have already proven that potential in
successful real world projects.

While more research is needed both on the meta-architecture
and the specific styles included, Objective-Smalltalk and its bundled
styles are ready to move from experimentation and validation to
(early) adoption.
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