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Prigogine s hexagon.
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But they are not living...
Life systems must sustain
their structures/non-
equilibrium states by
themselves.




naoility




Rem:

Since every living systems die eventually, the sustainability is not
pertfect.

How to slow down the relaxation time towards the thermal equilibrium
state?
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Self-sustainability

system self-sustained mechanism sustained functional
life autopoiesis Uribe et al. (1973) life itself
brain ? self identity
cell homeodynamics Ikegami and Suzuki (2008) autonomy
evolution ? heritability
evolution ? evolvability
brain ? neural activity/consciousness
ecosystem homeochaos Kaneko and Ikegami (1990) species diversity
ecosystem rein control inman(2006) temperature
cell special spatial configuration self-reproduction
life ? adaptability
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Sustainability of memory
(Higher-level Inheritance)




Sustainability of memory
(Higher-level Inheritance)

 Test-tube replicators
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Sustainability of memory
(Higher-level Inheritance)
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Sustainability of memory
(Higher-level Inheritance)

 Test-tube replicators
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Cf. Swenson and Wilson’s experiments (PNAS2000)
on soil and aqua systems.
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Artificial Selection on Microbe
networks in the test tubes




Artificial Selection on Microbe
networks in the test tubes
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Artificial Selection on Microbe
networks in the test tubes

100 /l‘-xi ) A\
> . . P ~ .
E 8o a ‘&\ } g 3 l“l g‘ a . / * ‘/ \ ;
r - /’ o T / \ .- —F 5/ b W
> 60 . //; \ 1. / / \ S ;-__g 'f‘—‘ @ -‘)‘/‘ - \-,v"
;’ ’4’“- / g / \ \ o t-—r a . P AN

s F p 4 - X\ / / \ | /I = et ~ oA
[ \,-(" \ ‘ \ -y N\ / Y
o 20 \‘f \\\&/ i /1 h. '.. ,/ o k- St SN f
N — r \\'l ,// ¥ Y
0 - - —— S— i
120 3 < 5 ( B | 1 13 14 15 16 ] B 1" 13 14

)
-
= S

,“
0
o

-

|
iy

Dry weig
s
P-
il
|
N
) s
4
v
. -
i -\('.\
-
T
Dry Weight (mg)
H
e
\/
A
o
] |
A A
et
o E
-
|
'y
P
4
s
R
R 2

C N c W L
2] e B sz
a T FeX, X l'\ /‘\ a -“';m"*“»:m‘;zﬂi“':l  x :-ﬁ:i
. =g e /\‘/ ”'\i’ A - /R. P
= N, ¥ LaVieg W i \

~ Generation
Generation

Soil system Aqua system

2010E9A28H A HEH



Artificial Selection on Microbe
networks in the test tubes
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Sustainability of learning
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Basin Structure of Memory
attractors

Different colors correspond to different error values
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Stability of Attractors
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The Iterated Prisoner’'s Dilemma
Game

* Two actions are possible; cooperate(C) or defect
(D). Scores are assigned for each pair of actions.

Player As action CDD CDD...

Player B's action D D C C D C...
A's score
B's score

where 1<p<2 and 0<qg<1.

-Taiji, M. and lkegami, T. Dynamics of internal models in game players Physica D, 134, 253—-266. 1999.

-lkegami, T. and Taiji, M. Structures of Possible Worlds in a Game of Players with Internal Models
Acta Polytechnica Scandinavica No. 91(1998) pp.283-292.

2010E9A28H A HEH



Time

evolution
of model
patterns.
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Time
evolution
of

model
patterns.

Game
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* Time evolution of
action sequences and

n 3 -
Learning error w‘

the learning error. - p- 200
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Weight Landscape

8 10

-2 0 2 4 6
Model (RNN Weights)
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|. Here is the Varela’s oriiginal abstract model of autopoiesis

Production: 25+C—L
Bonding: L+L —L=L
Disintegration: L— S+S

surfac&ant structures — membrane system — selecting chemical system

This circular relationship is called AUTOPOIESIS

Varela, F. J.,, Maturana, H. R. & Uribe, R. ( 1974), “~Autopoiesis: The Organization of Living Systems, its
Characterization and a Model', BioSystems 5, 187-196. This simulation program is by Keisuke Suzuki.
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Chemical Experiments

Basically we have used Luisi’'s oleic-acid system.

) A certain pH range ( 11<pH<12)

i) An oil droplet consists of oleic anhydride.

lii) An oil droplet should be a certain size (a few hundred micro meter)

Oleic anhydride NaOH aq
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Basic reaction schema

. /
I +2 _> 3 IC:C‘ IIJI
CH4{CH.).CH. CH. (CH.)s CH. —C” anhydride
HO ) "‘C_C' - ; llj|

Oleic acid (3)

N 1: o>
e " T\L Oleate (4)

o
Consumable ofP
Oleic anhydride (1) / 3 proaducts (3+4)
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NUMERICAL COMPUTATION

The surface tension as a function of the chemical mass

)

G(v(x.t))

yd

C,
= { 0.1c.
0.

if0<z<0.8

else if 0.8 <z < 1

otherwise

V-u(x,t) =0
(% + u(x,t) - V)u(x,t) = —éVP(x, t) + vViu(x,t) + an(;/
Fi(x,1) = 7(v(x,f))rn + V(v(x, 1)) /
y(v(x,t)) = v(x,t) + b
(57 +u(x,t) - V)o(x,1) = G(o(x,8))3 + D V2u(x, )

d .
(E*U°V

)¢:()

Reaction at the bounaary. The reaction rate decreases when

the chemical mass increases due to the surfactant.

Hiroki Matsuno, Martin M. Hanczyc, Takashi lkegami: Self-maintained Movements of
Droplets with Convection Flow. ACAL 2007: 179-188.
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Spontaneous Symmetry Breaking by
Selection of a pair of convection flow
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non-mobile droplets

mobile droplets
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The histogram of moved distance for the initial droplets
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There is a positive feedback between Chemical Reaction and
Convection Flow: Without the convection flow, the droplet moves

slowly and stops eatrlier.

a velocity of center of gravity

of the droplet o«f

.

e ——————— —-—— -———— ~-~~---~—7--1

nommad
W cherwiry
2 oo N .

convection fle

W/0 comvection flow

DW

“simulation time
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Self-Organization of
Subjective Time

and Sustainable Autonomy
in Mind Time Machine (MTM)




[ ife/consciousness
emerges

N a adistributed
Sensory hetwork




AS for the first trial, | constructed a machine called MTM (Mind Time
Machine) that lived in in the real world.

MTM doesn’t do anything. It only senses the environment and
memorizes it, temporally changing very slowly its behavior.

[ say MTIM is living since it can die and since | feel a certain sense of
attachment and also detachment while playing with MM, which you
would expect playing with your pets.

2010E9A28H A HEH



Maximalism Design Principle

Ikegami, T. and Hanczyc, M.M, “The search for a first cell under the maximalism design principle”
Technoetic Arts 7 (2009) pp.153-164.

When aesigning MTM, | put many of my algorithm and knowledge
(Hopfield type network, the Hebbian learning, chaos dynamics, vido
feedback etc.) all together, which makes it difficult to analyze, but

instead of that we can test and observe things.

But what | am aiming for is NOT a simple self-organization
phenomena, but we need careful design of a sensory network and

environment.
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MTM consists of two parts; i) macro visual processing and i)

The operating principle is to process timeframes of the visual inputs by combining
chaotic instabilities from neural dynamics and optical feedback, in order to make
autonomous “time-organizing” phenomena.
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We presented this MTM for the first time at the Yamaguchi Center for Arts and
Media in March, 2010. The machine consists of three screens: right, left and
above, displayed at the corner of a cubic skeleton 5.400 meters per side.
Fifteen cameras attached to each pole of the skeleton photograph things that
happen in the venue. These images are decomposed into frames and chaotic
neural dynamics control other macro processes that combine, reverse and
superpose them to make new frames.
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Intake images from cameras were progressively embedded into the network's
connections as a memory of the patterns. Visual images are taken in and re-
played again and again with recursive modifications. The system itself is
completely deterministic and uses no random numbers, but it shows different
Images depending on its inherent instabillities, environmental lighting
conditions, movement of people coming into the venue and the system's
stored memory.

2010E9A28H A HEH



‘0
L Y

rE B B

201098 28H A EH



2010E9A28H A HEH






2010E9A28H X EH



2010E9A28H A HEH



A basic architecture: 2 layered neural networks.Visual inputs are to change
the parameters of a system and outputs are a selected visual image.

1st layer 2nd layer

coupling from the 1stta
fully coupled neugal maps
with the wieght wij

nout = micro NN

Hebbian Learning

Hebbian Lear

S O R R RN N
sequential “weighted” visual images, independent of whether
being selected or not, are superimposed into the mode sélection (possible combination of

neural weight by the way of Hopfield network cameras) by a winner-takes-all rule
A
/ controlling the autonomous movement of cameras

OULPUL
/O environmental factors (e.g.weather/human maC//O //*P

movement)
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macro TFP(lime Frame Processing,

feedback

«— I

time frames \\\
A e

reverse time delay

slit scan
7 >
%/me delay

normal mode(301fps)

physical time
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Three module networks are coupled asynchronously.

Memory dynamics

Learning
H OO

dynamics

Memory

visual images mode selection

weather/hughan movement

dynamics

\ long term memory

T camera movement

weather/human movement
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ASynchropeous. Lpdating memaory




Remark!

This is not a large chaotic dynamical system that updates the visual inputs
randomly. Different from the mere chaotic system, M TM is designed as life-like
system since its autonomy (autonomous dynamics) is only sustained by
coupling with the environment. Namely, we claim that MTM is “artificial life”,
since we design it to

[) retrieve information from its environment,

i) memorize it in the form of the Hopfield type learning which tunes the
parameters of the overall dynamics,

i) generate “episodic memory”

vi) change the network structure by the way of the Hebbian dynamics
continuously

v) organize its overall dynamics as adaptation to the environmental changes.
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1. Temporal evolution

Time steps

Time steps Time evolution of neural outputs
for each modular network on the
7th of April 2010.
A neural state from the 2nd layer
are superposed on the same figure.

Time steps

2010E9A28H X EH



2. Changes of return maps

?‘ ~-b'-' LR C

8-10am 10-12am 12am-2pm 2-4pm

Time evolution of return maps (of a neural output) of each module network
on the 7th of April 2010.
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3. Temporal evolution of weight average and the variance
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Mutual completion of modular networks

XN+l

net2 _
*;""": et g ¢ b
8-10af - 10-12am = 12am-2pm 2-4pm 4-6pm 6-8pm  Time

Time evolution of return maps (of a neural output) for each module network
on the 1st of April 2010.
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Entropy(aperiodicity);

40000
35000
30000
25000
20000
15000
10000

5000

0

16th of April 5 10

"/home/yuta/Dropbox.b

module netl

4. Characterizing dynamics

rainy day

homadyuta'Dr opbow. bakycam-log'enyopy 0 dad™ using 1:2:3

module net0

15 16th of May

“time (day)

m-log/entropy.1.dat" using 1:2:3

Thomadyuta/Dr opbow. bakycam-log'enyopy 2. da8” using 1:2:3

module net2

put a light shade
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Summary and discussions

We here designed MTM in the sense of out-and-out constructing artificial life in the real world. The
main mission is to make MTM not to die but sustains its adaptive behaviors.
MTM sometimes it eventually loses the reversibility to come back to the “alive state” , but sometimes

not. Where the SUStainable and robust dynamics comes from?

1) We should carefully prepare a sensory network of that site (this time they are
intake cameras), where we need to design the interface/environment .

2) Experience (slow time dynamics) and Learning (fast time dynamics) time
scales should be carefully designed.

3) A system must consist of asynchronous modules in real time scales.

This sustainabillity is what | think as minad. we have done/ and planning to make
different versions of MTM with sound sensory arrays.
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Stretching and Folding in the brain

A

Raichel’s default network in the brain system.

Marcus E. Raichleab,c,» and Abraham Z. Snyder, “A default mode of brain function: A brief history of an
evolving idea”, NeuroImage 37 (2007) 1083—1090.
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[ ife/consciousness
emerges in a
aistributed sensory
network




Different more complex sensory network do
organize its own conscious states, which [ am
WOrking on now.

cf. pingpong project with Mizuki Oka
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collaborating with

* Yuta Ogai ( univ. Tokyo)

Kenshu Shinysubo (photographer)
Yutaka Ishibashi (programmer)

Evala (sound control, ATAK, port)
Keiichiro Shibuya sound control, (ATAK)
Miyuki Kawamura (artist)
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micro NIN(1st laver)

Coupled Chaos Neural state equation (of the map version) by Nozawa,H. (chaos 2(3)
1992 pp.377-386) This network can search the global minimum of the energy landscape

which is given by

N
— —— Lwavzv] Z[Z
7,—1 1=1 1=1
M
wi; =y 2V = D2V = 1)
s=1

where these v is the neural state filtered by the Sigmoid function g(u)
and the capital \/ with the subscript s IS the state of the embeaded
pattern. The way the system embeds the memory is called “ Content

Addressable memory (CAM)”.
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Chaos Neural state equation (of the map version) by Nozawa,H. (chaos 1992)
the attractor sets are bounded between p’ =ro and p’=rp + 1-r

1
1 4+ ela—p)/B )

D1 =10 + (1= 7)(1

with r=0.7 and 8 = 0.006
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Coupled Chaos NN

1
pr=rph 4+ (1—r)1

1 -+ e(qff?,—pq’?,,)/ﬂ)

1
ah = — () wiip; + 1))
Wk~
J7k

Therefore, memory is accumulated to change the
bifurcation parameter of this coupled network.
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micro NN2nd laver)

Modlfied Hebbian Dynamics
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