-
Working with Konoha

Background

* Scripting Languages
— An interpreter style of program execution

— From Domain-Specific to General Object-Oriented
Programming Features

— "Ease of programming"
* Popularity and Industrial Acceptance
— System Operation:
* Perl, Python, etc.
— Web Applications:
* JavaScript, PHP, Perl, Ruby, Python, etc.
— Game:
* Lua, Python, etc.

-
Working with Konoha

Dynamic Languages

* Major scripting languages adopt dynamic typing
— enjoy flexibility and easier code reuse
— enables rapid software update cycle
— etc..

* Growingly interested in the advantage of static types:
— earlier detection of programming mistake
— better documentation
— good opportunity for compiler optimization
— program evolution

-~
Working with Konoha

Our Objective

* Static Language + Dynamic behaviors = Scripting

provide
Statically Typed Similar Scripting

Language Design Experience

add

“Ease of Programming”
Features in Python,
Ruby, JavaScript

-
Working with Konoha

What enables "Ease of Programming"?

* Dynamic Behaviors of Programs
— very common in scripting languages

Working with Konoha

Comparisons of Dynamic Behaviors

* Dynamic Languages share the common programming
features on dynamic behaviors

Features Perl Python Ruby JavaScript

typing dynamic dynamic dynamic dynamic dynamic static
field addition + + + + +

method addition + + +

method rewrite + + +

missing method +

duck typing + + + + +

eval + + + + +

Partial execution + + + + +

+ means end-user's availability, not language support

-
Working with Konoha

What enables "Ease of Programming"?

* Dynamic Behaviors of Programs
— very common in scripting languages

* Probably related language features:
— Runtime Alteration of Object Behaviors
— Absence of Type declaration
* duck typing (easier code reuse)
— Eval()
— Execution of Partially Written Programs

-
Working with Konoha

Field Addition

Most scripting languages provide a means to add/modify/
delete the member of an object

class Person {
String name; € No declaration of the age field

Person (String name) {
this.name = name;

}
}

Person p = new Person("Naruto") ;

p.age = 17
€ The age field is added instead of a type
error

This reduce the cost of rigid class design in programming

-
Working with Konoha

Duck Typing

Type inference provides a complement means to model the
absence of type declaration. But,

class Person {
String name;
Person (String name) {...}

}

1 D i
class Dog { € Person and Dog is not related
String name;

Dog(String name) {...}
}

void hello (w) {
print w.name; € What type is inferred for the variable w?

}

hello (new Person("Naruto"))
hello (new Dog("Hachi")) ;

-
Working with Konoha

Eval() and Partial Execution
* Eval()

— taking a string as code, and executing it

10;
eval ("fibo(n)") ;

o)

* The absence of static type checker:
— allow the execution of partially correct programs
— shorten the Edit-Compile-Link-Run process

-
Working with Konoha

Konoha - Our Approach

* Konoha 0.7: a new scripting language written in C from
scratch

— Imperative language (C/C++, Java-style grammar)

— "pure” object-oriented programming, nominal type
system, single inheritance, generics

— Python-style interactive shell

— open source, running on Linux, Windows, MacOS X,
Android OS, and TRON OS.

-
Working with Konoha

Language Design

* Java as Lingua Franca

* At least, Java programmers can read Konoha's source
code without misunderstanding

— Grammar, Classes, Libraries
— Language support for accepting dialects
= e.g., toUpper(), ToUpper(), to_upper(),

* Scripting Capability
— Simplicity = e.g., Int and Float are only supported
— Rich Operators
=»indexing, slicing, inclusion, etc.,

Comparison of Counter Class

(1)
class Counter
def initialize(n)
@cnt=n
end
def count
@cnt=@cnt+1
end
end
¢ = Counter.new(0)
c.count()

(4)
Counter = {}
Counter.new = function(n)
local obj = {}
obj.cnt=n
obj.count = function(self)
self.cnt = self.cnt + 1;
end
return obj
end
¢ = Counter.new(0)
c:count()

(2)
var Counter = function(num) {
this.cnt = num;
this.count = function() {
this.cnt++;
7
}

var ¢ = new Counter(0);
c.count();

(5)
package Counter;
sub new {
my Sclass = shift;
my Sself = { cnt => 0;};
return bless Sself, Sclass;
}
sub count {
my Sself = shift;
Sself->{cnt}++;
}
my Sobj = new Counter;
Sobj->count();

-

Working with Konoha

(3)
class Counter:
def _init__ (self, n):
self.cnt=n
def count(self):
selfecnt+=1
c = Counter(0)
c.count()

(6)

class Counter {
int cnt;
Counter(int n) {cnt=n; }
void count() { cnt++; }

}
c = new Counter(0);
c.count()

-
Working with Konoha

Python-style interactive shell

$ konoha

Konoha 0.7-betad4 (BAKUMAN) LGPL3.0 (rev:1076, Jan 8 2010
12:59:45)

[GCC 4.0.1 (Apple Inc. build 5490)] on macosx_32 (32, UTF-8)
Ooptions: 1iconv refc sqglite3 thread regex used_memory:235 kb
>>>

>>> class Counter {

int count;

Counter(int n) { count = n; }

.. void count() { count++; }

.. }
>>> C = new Counter(0);
>>> c.count()

>>> C

Counter {count: 1}

>>>

>>> c.run()

-
Working with Konoha

Model of Dynamic Behaviors
on Static Types

Runtime Alteration of Objects
Eval()
— Must preserve type safety

Duck typing
— Dynamic type (= an old paper, presented in the paper)
— Growing type (= a new idea)

Partial execution
— generate executable code despite detecting type errors

-
Working with Konoha

Growing Type

* Keyidea
— Type Cis growing at runtime
* Note that compilation times are parts of runtime
— Suppose C' is a modified class of C
— Safety needs C' <: C

compilation
time

eval eval
runtime

-
Working with Konoha

Method Addition

« Konoha allows us to define an additional method outside of
its class declaration

class Person {
String name;
int age;
Person (String name) {
this.name = name;

}
}

boolean Person.isChild() ({ € Methods can be added
return this.age < 21;

}

-
Working with Konoha

Method Rewriting and Deletion

* Suppose Person’' is a modified class

— Method rewriting and deletion are defined as the
operations satisfying with Person' <: Person

class Person {
String name;
int age;
boolean Person.isChild () {
return this.age < 21;

}

}
boolean Person.isChild () { € The method can be rewritten

return this.age < 18;

}
boolean Person.isChild() ; € Deletion as an abstract method

-
Working with Konoha

Field Addition

* Field accessor is syntax sugar of getter/setter method
— p.name = p.getName()
— p.age =20 = p.setAge(20)

* Explicit field addition can be modeled by the method
addition

-
Working with Konoha

Field Addition

* Field accessor is syntax sugar of getter/setter method
* Explicit field addition can be modeled by method addition
* Implicit field addition is either
— type error, expanded fields in all objects, or added
metadata entry

class Person { String name; }

Person p;

p.age = 17; // type error

dynamic p.age = 17; // added age to all instances
virtual p.age = 17; // added metadata entry

// p.meta["age"] = 17

-
Working with Konoha

Dynamic Any Type

* Dynamic any type is a special type that allows an additional
runtime type check instead of a static type check

class Person {
String name;
Person (String name) {...}
}
class Dog {
String name;
Dog(String name) {...}
}
void hello(any w) {
print w.name; € Not statically checked.

} Instead, insert a runtime type check before
calling w.name?

-
Working with Konoha

Growable Type

* Growing type allows runtime type growing
— Suppose NamelLike is an undeclared but growable class

class Person {
String name;
Person (String name) {...}
}
class Dog {
String name;
Dog(String name) {...}
}
vold hello(NameLike w) { & If .name is not found in Namelike,

} print w.name; the compiler adds getName()

* This could model the "duck typing" features in a both static
and nominal type sense

-
Working with Konoha

"Run Anytime" Compilation

* Correct parts of program must be executed despite the
detection of type errors

int newSerialNum (int n)
{
if(n == 0) {
InputStream in = new ('"serial.txt");

n = in.readLine();
in.close() ; € Detected type error

}

return n+1l;

}

-
Working with Konoha

"Run Anytime" Compilation

* Correct parts of program must be executed despite the
detection of type errors

int newSerialNum (int n)

{
if(n == 0) {
throw new TypeError ("") ;

€Replace that block with
} code throwing a runtime exception
return n+l;

}

* Now we can correctly run the function except for
newSerialNum(0)

Working with Konoha

(Preliminary) Performance Study

fibo(40) 6
nbody =100
aobench 25 Ruby1.9
mandelbrot 26 mPython3.1
56 Lua5.1
spectralnorm B Konoha0.7
0 2 4 6 8 1o “Javal.6

* Intuitive insights:
— Java1.6 : Konohao.7 =1: 8
— Konohao.7: Python3.0=1:8
* Future: Konoha-JIT x2 Konoha-SSA x? 2

Working with Konoha

Comparisons of Dynamic Behaviors

Python Ruby JavaScript Java Scala Konona
type declaration dynamic dynamic dynamic static static static
field addition + + + +
method addition + + +
method rewrite + + +
missing method + abstract
duck typing + + + structura dynamic

| typing
eval() + = + +
Partial execution + + + +

* Scalais used as a static scripting language, but it is still far
from dynamic languages in terms of dynamic behaviors

25

-
Working with Konoha

Related Work

Static language dynamic language

type inference
C#4 0 dynamic type Not a scripting language
because of decupling
execution of compiled

type inference
code from a complier

Scala explicit structural typing

type inference, Growing type,
Any type, eval(),
Konoha "run anytime" compiler

SOfttyping Typed scheme

e it ol type inference DRuby,
oo flexible, seems not so practica gradual typing RPython

-
Working with Konoha

Conclusion

Konoha is a statically typed scripting language that provides
the same or very similar programming experiences with
existing dynamic languages, such as Python and Ruby.

Konoha enjoyed static features:

— Readability for Java programmers

— Our earlier implementation shows good performance
Our approach is practical

Future Work
— More formal discussion on type theory
— Improve open source products

d Working with Konoha
Thank you for your attention

* Konoha is available at the following site:
— http://konoha.sourceforge.jp/
— http://code.google.com/p/konoha

B

@% e
3 i Loy

75?1
1
2ANA Y 49)7 4

S51%
e
T

e B
v)459 {945
7&J1U7957117k B K*;’/
Py Sy | vwnt‘?
“-"”—”wu]] hj
S "P Fz_", 3

S FAY YT IFAEP,
< gf”/. <ty
& 3’/:’!!‘7—7
5Jf_7

7/39
7'57
v mvor

