
Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Lisp to Ruby to
Rubinius

ネットワーク応用通信研究所
楽天 技術研究所

Rubyアソシエーション
@yukihiro_matz

Yukihiro "Matz" Matsumoto

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Lisp
1/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Lisp

one of the oldest

O-Parts
out of place artifact

2/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

O-Parts of the language

oldest but newest

symbolic computation

garbage collection

objects

exceptions

3/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Lisp

S-expression

macros

everything object

meta-programming

4/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Dark side of Lisp

Parentheses

dangling language

there's no lisp language

CLOS
powerful but complex

5/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Ruby

Lispy, but

no S-expression

no macros

no CLOS

6/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Ruby

Algol-ish syntax

Smalltalk-ish OO

Language for ordinary
programmers

7/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Lisp

(defun fact (n)
 (if (= n 1)
 1
 (* n (fact (1- n)))))
(print (format "6!=~D" (fact 6)))
; => 6!=720

8/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Lisp

;; move parens
(defun fact (n)
 (if (= n 1)
 1
 (* n (fact (1- n)))
)
)
(print (format "6!=~D" (fact 6)))

9/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Lisp

;; operator syntax
(defun fact (n)
 (if (n == 1)
 1
 (n * (fact (n - 1)))
)
)
(print (format "6!=~D" (fact 6)))

10/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Lisp

;; move argument parens
(defun fact (n)
 (if (n == 1)
 1
 (n * fact(n - 1))
)
)
print(format("6!=~D", fact(6)))

11/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Lisp

;; move argument parens
(defun fact (n)
 (if (n == 1)
 1
 (n * fact(n - 1))
)
)
print(format("6!=~D", fact(6)))

12/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Lisp

syntax structures
defun fact (n)
 if (n == 1)
 1
 else
 (n * fact(n - 1))
 end
end
print(format("6!=~D", fact(6)))

13/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Lisp

reduce parens
defun fact (n)
 if n == 1
 1
 else
 n * fact(n - 1)
 end
end
print(format("6!=~D", fact(6)))

14/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Ruby

def fact (n)
 if n == 0
 1
 else
 n * fact(n - 1)
 end
end
printf "6!=%d", fact(6), "\n"
=> 6!=720

15/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Lisp vs Ruby

Syntax

Less parentheses

Many 'end's

special forms vs syntax
structures

16/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Lisp vs Ruby

Semantics

Quite similar

nearly one to one translation

auto conversion from
fixnums to bignums

fact 200

17/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

MatzLisp

18/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

MatzLisp

not MacLisp

not FranzLisp

19/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Ruby

Lisp without S-expression

sprinkled with syntax sugar

with OO from Smalltalk

operators from C

strings/regexp from Perl

20/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Lisp without S-expr

Remember M-expression

21/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Ruby ＝ Weak Lisp?

No S-expression

No Macro

Who cares.

22/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Language Power ≠ Programming Power

23/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Personal History

BASIC to Lisp

24/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

BASIC

25/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

BASIC

26/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Got tired of BASIC

No user defined functions

No user defined data types

27/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Aristocracy

Language Designers

Implementers

−−−−−−−−−−−−−−−−−−−−−−−−

Programmers

28/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

I met Lisp

in an AI book

Lisp made my eyes open

users can do everything

29/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Users can do Everything

define functions

define data types

enhance the language

30/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Democracy

no discrimination

users can be language
implementers

31/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

But, wait

Unlike politics (or like politics)

freedom comes with
responsibility

ordinary people hate (too
much) responsibility

or too much power

32/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Too much power

smart people love power

smart people underestimate
ordinarity of ordinary people

33/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

中庸
Happy Medium

34/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Happy Medium

There should be somewhere
in between language

aristocracy and democracy,
where ordinary people can
live happily, without feeling

fear.

35/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Balance

It's quite easy to pursue
extreme, but seeking

'something in-between' is far
more difficult.

36/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Ruby
37/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Ruby

My answer to the ultimate
question.

38/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Result

39/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Self-sustaining
languages

C

Lisp

MFTL

Ruby

40/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

My Favorite Toy
Language

n. Describes a language about
which the developers are
passionate but no one else
cares about.

--Jargon File

41/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

My Favorite Toy
Language

The first great goal in the
mind of the designer of an
MFTL is usually to write a
compiler for it

--Jargon File

42/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

I am not a fan of meta-
circular implementation

43/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Switching the brain

C → Core mode

Ruby → App mode

44/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Self-sustaining systems

C

Compiler written in C

Compiled code does not
rely on the language

45/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Self-sustaining systems

Squeak

Bootstrap

Core written in Slang
subset of Smalltalk

compiles to C

libraries in Smalltalk

46/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Rubinius

Ruby implementation
influenced by Smalltalk

47/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Rubinius

small VM in C++

libraries written in Ruby

48/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Bootstrap

VM1.

alpha2.

bootstrap3.

platform4.

common5.

delta6.
49/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

VM

The virtual machine is able to
load and execute bytecode,
send messages (i.e. look up

and execute methods), and all
primitive functions are

available, but not yet hooked
up as Ruby methods.

50/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

VM

At this point there is enough
defined behavior to begin to

load up the rest of the
runtime kernel which is all

defined in ruby. This has to be
done in several passes as the

language grows.

51/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

alpha

This starts the loading of Ruby
code. The ability to open
classes and modules and

define methods exists. Also, it
is possible to raise exceptions

and cause the running
process to exit. This stage
lays the foundation for the

next two stages.
52/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

bootstrap

This stage continues to add
the minimum functionality to
support loading platform and

common. The primitive
functions are added for most

of the kernel classes.

53/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

platform

The FFI system is
implemented and Ruby

method interfaces to platform-
specific functions are

created. Once this is set up,
platform specific things such

as file access, math, and
POSIX commands are

attached.
54/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

common

The vast majority of the Ruby
core library classes are

implemented. The Ruby core
classes are kept as

implementation-neutral as
possible.

55/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

delta

Implementation-specific
versions of methods that

override the versions provided
in common are added.

56/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Problems

performance

open class

57/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

(Possible) Solution

JIT (LLVM)

selector namespace /
classbox

58/59

Lisp to Ruby to Rubinius Powered by Rabbit 0.6.4

Thank you!

59/59

